首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NADPH oxidase p22phox subunit is responsible for the production of reactive oxygen species in the vascular tissue. The C242T polymorphism in the p22phox gene has been associated with diverse coronary artery disease phenotypes, but the findings about the protective or harmful effects of the T allele are still controversial. Our main aim was to assess the effect of p22phox C242T genotypes on arterial stiffness, a predictor of late morbidity and mortality, in individuals from the general population. We randomly selected 1,178 individuals from the general population of Vitoria City, Brazil. Genotypes for the C242T polymorphism were detected by PCR-RFLP, and pulse wave velocity (PWV) values were measured with a noninvasive automatic device Complior. p22phox and TNF-α gene expression were quantified by real-time PCR in human arterial mammary smooth muscle cells. In both the entire and nonhypertensive groups: individuals carrying the TT genotype had higher PWV values and higher risk for increased arterial stiffness [odds ratio (OR) 1.93, 95% confidence interval (CI) 1.27-2.92 and OR 1.78, 95% CI 1.07-2.95, respectively] compared with individuals carrying CC+CT genotypes, even after adjustment for covariates. No difference in the p22phox gene expression according C242T genotypes was observed. However, TNF-α gene expression was higher in cells from individual carrying the T allele, suggesting that this genetic marker is associated with functional phenotypes at the gene expression level. In conclusion, we suggest that p22phox C242T polymorphism is associated with arterial stiffness evaluated by PWV in the general population. This genetic association shed light on the understanding of the genetic modulation on vascular dysfunction mediated by NADPH oxidase.  相似文献   

2.
The p22phox protein subunit is essential for NADPH oxidase activity. The prevalence of C242T variants of p22phox gene was studied in 101 healthy Egyptian controls and 104 acute myocardial infarction (AMI) Egyptian patients. Contribution of oxidative stress, represented by serum oxidized-LDL (ox-LDL), in development of AMI was also examined and correlated with C242T gene variants. Genotyping and ox-LDL were assessed by PCR–RFLP and ELISA. Results showed that wild type CC genotype is prevalent in 27 % of controls; CT and TT are in 72 and 1 %. In patients, the distribution was 40.2, 59.8 and 0 % for CC, CT and TT; respectively, showing a significant difference (p = 0.0259). Serum ox-LDL levels were higher in patients than controls (p ≤ 0.0001). Subjects having CT genotype had lower levels of ox-LDL than CC genotype (p ≤ 0.005). C242T polymorphism of p22phox gene of NADPH oxidase is a novel genetic marker associated with reduced susceptibility to AMI.  相似文献   

3.
Systemic oxidative stress plays a role in many degenerative diseases. Although regular physical activity has been known as the most effective nonpharmacological intervention to alleviate the oxidative stress, the beneficial effect varies between individuals. We investigated whether NADPH oxidase p22phox gene C242T and A640G polymorphisms are associated with systemic oxidative stress level response to exercise training (ExTr). Fifty-nine sedentary middle-aged to older Caucasians with relatively high cardiovascular disease risk factors underwent a 6-mo standardized ExTr program. Body mass index, plasma lipoprotein-lipid profiles, cardiovascular fitness, and plasma thiobarbituric acid reactive substances (TBARS) were measured before and after ExTr. Demographic and initial levels of cardiovascular disease risk factors were similar among genotype groups for both polymorphisms. Overall, TBARS was decreased by 16% with ExTr in the entire group (P < 0.001). There was no significant difference in TBARS changes with ExTr among the C242T genotype groups. However, A allele carriers showed greater reduction in TBARS than noncarriers at the A640G locus (P = 0.05). There was a significant interaction (P = 0.05) between ExTr and A640G polymorphism in TBARS changes with ExTr. This interaction remained after accounting for age and baseline TBARS level. Furthermore, diplotype analysis showed that TBARS was decreased to a greater extent in the C242/A640 haplotype carriers compared with the noncarriers (P < 0.05). We found that p22phox polymorphisms, especially A640G, were associated with differential changes in systemic oxidative stress with aerobic exercise training.  相似文献   

4.
Ge J  Ding Z  Song Y  Wang F 《PloS one》2012,7(3):e31926

Background

The C242T polymorphism of the CYBA gene that encodes p22phox, a component of NADPH oxidase, has been found to modulate superoxide production. Oxidase is a major source of the superoxide anion that contributes to individual components of metabolic syndrome. We examined the relationship of the C242T polymorphism with the prevalence of metabolic syndrome in a Chinese population, taking account of consumed cigarette amounts.

Methodology/Principal Findings

In 870 participants, we collected biomarkers related to metabolic syndrome and detailed history of smoking and genotyped the C242T polymorphisms. After adjustment for covariates, the CT/TT genotypes were associated with a lower risk of metabolic syndrome (P = 0.0008). The odds of having metabolic syndrome in the CT/TT participants were 0.439 (95%CI: 0.265, 0.726), while for CC participants the odds were 1.110 (95%CI: 0.904, 1.362). There was significant (P = 0.014) interaction between the C242T polymorphism and smoking status in relation to the prevalence of metabolic syndrome. For smokers who smoke no less than 25 pack-years, those with CT/TT genotypes had lower risk of metabolic syndrome as compared with CC polymorphism carriers (P = 0.015). In the multiple regression analysis, the CT/TT genotypes were significantly associated with lower serum concentration of triglycerides both in all subjects and smokers; furthermore, the CT/TT genotypes were also related to smaller waist circumference in smokers.

Conclusions

Our study suggests that the C242T gene polymorphism is indeed related to the prevalence of metabolic syndrome and smoking dose might modify this association.  相似文献   

5.
Osteoarthritis (OA) is the most common form of arthritis with still unknown pathogenic etiology and considerable contribution of genetic factors. Recently, a new emerging role of oxidative stress in the pathology of OA has been reported, lacking however elucidation of the underlying mechanism. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase being a complex enzyme produced by chondrocytes, presents the major source of reactive oxygen species and main contributor of increased oxidative stress. The present study aims to evaluate the association of NADPH oxidase p22phox gene C242T, A640G and ?A930G polymorphisms with primary knee OA in the Greek population. One hundred fifty five patients with primary symptomatic knee OA participated in the study along with 139 matched controls. Genotypes were determined using polymerase chain reaction and restriction fragment length polymorphism technique. Allelic and genotypic frequencies were compared between both study groups. NADPH p22phox ?A930G polymorphism was significantly associated with knee OA in the crude analysis (P = 0.018). No significant difference was detected for C242T and A640G polymorphisms (P > 0.05). The association between ?A930G polymorphism and knee OA disappeared when the results were adjusted for obesity (P = 0.078, odds ratio 0.54, 95 % CI 0.272–1.071). The interaction between all three polymorphisms was not significant. The present study shows that NADPH oxidase p22phox gene C242T, A640G and ?A930G polymorphisms are not risk factors for knee OA susceptibility in the Greek population. Further studies are needed to give a global view of the importance of this polymorphism in the pathogenesis of OA.  相似文献   

6.
The CYBA gene variants have been inconsistently associated with coronary heart disease (CHD) risk. A case-control study was conducted genotyping 619 subjects to explore the contribution of C242T and A640G to CHD risk in the population. A significant risk was found associated with GG homozygosity (odds ratio (OR) 2.132, 95% confidence interval, 1.113-4.085). The C242T variant was associated with CHD risk in women. Bias due to population stratification was analysed. Phenotype changes linked to these polymorphisms were evaluated. Superoxide measurements revealed higher production as indicated by the presence of the G and T alleles. Differences in mRNA concentration in heterozygous A640G samples were analysed. Higher levels of G allele mRNA compared with A allele mRNA were found. NAD(P)H oxidase p22phox sub-unit expression was evaluated with Western blot. Experiments revealed a gradual relationship in p22phox protein expression according to genotypes of the analysed variants. Those GG TT double homozygous showed increased p22phox protein expressions regarding AA CC double homozygous. This study has demonstrated increased expression and activity of the NAD(P)H system components during atherogenesis and the results could help explain the relevance of the A640G variant as a CHD marker.  相似文献   

7.
Life span depends on many factors, including the level of reactive oxygen species, like superoxide radical. Superoxide radical is produced from oxygen in the course of the oxidation of NADPH to NADP+. The process is catalyzed by NADPH oxidase. In this study, genotype and allele distributions of the C242T (rs4673) polymorphism in the CYBA gene, which encodes the α subunit of NADPH oxidase (p22phox), were examined in the sample of long livers and in the population sample of the city of Tomsk. Statistically significantly higher frequency of T allele among female long livers (34.625%), compared to the females from Russian population (26.32%) was demonstrated (χ2 = 5.226; p = 0.022; OR = 1.48). Thus, the T allele is associated with a high life expectancy in females from the Russian population. No such association was observed for males from the same population.  相似文献   

8.
BACKGROUND: High-density lipoprotein cholesterol (HDL-C) and its subfractions are modifiable with exercise training and these responses are heritable. The interleukin-6 (IL6)-174G/C polymorphism may be associated with HDL-C levels. We hypothesized that the IL6-174G/C polymorphism would be associated with plasma HDL-C response to exercise training. METHODS AND RESULTS: Sixty-five 50- to 75-year-olds on a standardized diet were studied before and after 24 weeks of aerobic exercise training. Significant differences existed among genotype groups for change with exercise training in HDL-C, HDL3-C, integrated HDL4,5NMR-C, and HDLsize. The CC genotype group increased HDL-C more than the GG (7.0 +/- 1.3 v. 1.0 +/- 1.1 mg/dL, p = 0.001) and GC groups (3.3 +/- 0.9 mg/dL, p = 0.02); for HDL3-C, the CC group increased more than the GG (6.1 +/- 1.0 v. 0.9 +/- 0.9, mg/dL p < 0.001) and GC groups (2.5 +/- 0.7 mg/dL, p = 0.006). Integrated HDL4,5NMR-C increased more in the CC than GG group (6.5 +/- 1.6 mg/dL v. 1.0 +/- 1.3 mg/dL, p = 0.01), as did HDLsize compared to the GG (CC: 0.3 +/- 0.1 v. GG: 0.1 +/- 0.1 nm, p = 0.02) and GC (0.0 +/- 0.0 nm, p = 0.007) groups. CONCLUSIONS: IL6 genotype is associated with HDL-C response to exercise training.  相似文献   

9.
It has been shown that NADPH oxidase plays a role in oxidative stress which has been involved in the development of metabolic syndrome. The ?930A/G polymorphism of the CYBA gene (that codes p22phox, a major component of the NADPH oxidase) has been associated with human hypertension and with a reduction in NADPH oxidase activity. In this work, we have examined the influence of the ?930A/G polymorphism on obesity risk and insulin resistance in a case-control study of Spanish subjects (n=313). In the obese group (n=159), there was a statistically significant association between the GG genotype of the ?930A/G polymorphism of the CYBA gene and fasting insulin levels and HOMA index. This outcome agrees with previous findings concerning functional analyses of this polymorphism and reinforces the hypothesis that insulin resistance is associated with oxidative stress. In conclusion, a protective effect in carriers of the ?930A/G, polymorphism of the p22phox gene against insulin resistance in a population of Spanish obese adults has been found.  相似文献   

10.
阿黑皮素原(Pro-opiomelanocortin, POMC)在动物采食和能量平衡调控中发挥重要作用, 文章对绵羊POMC基因外显子3进行扩增和测序, 筛选多态性位点, 并分析多态位点与湖羊和东弗里生×湖羊杂种羊生长性状的相关性。测序后发现湖羊POMC基因外显子3有2个单碱基突变(g.273 T/C和g.456 G/A), 根据273位点处发生的T/C突变, 建立PCR-RFLP分析方法, 并对162只湖羊和130只东湖杂种羊进行检测分析。结果发现, 在湖羊群体中检测到TT(0.469)、TC(0.438)和CC(0.093)3种基因型, 而在东湖杂种羊群体中仅检测到TT(0.754)和TC(0.246)两种基因型。POMC基因外显子3的273位点多态性与生长性状的相关性研究结果显示:湖羊群体中CC基因型个体的2月龄断奶重、4月龄尻高及TC基因型个体4月龄体长和管围均显著高于TT型个体(P<0.05); CC基因型个体的4月龄重、6月龄重极显著高于TT和TC基因型个体(P<0.01); CC基因型个体的4月龄体高和体长极显著高于TT型个体(P<0.01), 且显著高于TC基因型个体(P<0.05)。此外, CC型个体的管围极显著高于TT基因型个体(P<0.01)。东湖杂种羊群体中TC基因型个体的2月龄断奶重、4月龄重及4月龄体高、体长、胸深和管围都显著高于TT型个体(P<0.05), TC型个体的6月龄重极显著高于TT型个体(P<0.01)。研究结果表明, POMC基因外显子3与绵羊生长性状相关, C等位基因对体重及体尺性状的增加更有利。该结果为进一步探讨POMC基因作为绵羊生长性状的辅助选育标记奠定了基础。  相似文献   

11.
B cell lymphocyte kinase (BLK) encodes a member of the Src kinase family and thus may influence the proliferation and differentiation of cells. A single nucleotide polymorphism (SNP) located in the first intron of BLK has shown that the risk C allele of rs2248932 is associated with lower levels of messenger RNA expression of BLK. We hypothesized that this polymorphism may contribute to rheumatoid arthritis (RA) susceptibility. We studied BLK rs2248932 T/C gene polymorphisms in 329 patients with RA and 697 controls in a Chinese population. Genotyping was done using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). When the BLK rs2248932 TT homozygote genotype was used as the reference group, the CC genotype was associated with a significantly increased risk of RA. In the recessive model, when the BLK rs2248932 TT/TC genotypes were used as the reference group, the CC homozygote genotype was associated with a significantly increased susceptibility to RA. In stratification analyses, a significantly increased risk for RA associated with the BLK rs2248932 CC genotype was evident among younger patients, CRP-negative patients and anti-CCP-positive patients compared with the BLK rs2248932 TT/TC genotype. The risk was also significantly evident among RF-positive patients, patients with lower ESR levels, patients with lower or higher DAS28 score and patients with a lower functional class. These findings suggested that the functional SNP BLK rs2248932 T/C variant allele was associated with RA development. However, our results were obtained from a moderate-sized sample, and therefore this is a preliminary conclusion. Validation in a larger study from a more diverse ethnic population is needed to confirm these findings.  相似文献   

12.
13.
The goal of this study was to test the hypothesis that NADPH oxidase contributes importantly to renal cortical oxidative stress and inflammation, as well as renal damage and dysfunction, and increases in arterial pressure. Fifty-four 7- to 8-wk-old Dahl salt-sensitive (S) or R/Rapp strain rats were maintained for 5 wk on a high sodium (8%) or high sodium + apocynin (1.5 mmol/l in drinking water). Arterial and venous catheters were implanted on day 21. By day 35 in the high-Na S rats, mRNA expression of renal cortical gp91phox, p22phox, p47phox, and p67phox NADPH subunits in S rats increased markedly, and treatment of high-Na S rats with the NADPH oxidase inhibitor apocynin resulted in significant decreases in mRNA expression of these NADPH oxidase subunits. At the same time, in apocynin-treated S rats 1) renal cortical GSH/GSSG ratio increased, 2) renal cortical O2(.-) release and NADPH oxidase activity decreased, and 3) renal glomerular and interstitial damage markedly fell. Apocynin also decreased renal cortical monocyte/macrophage infiltration, and apocynin, but not the xanthine oxidase inhibitor allopurinol, attenuated decreases in renal hemodynamics and lowered arterial pressure. These data suggest that NADPH oxidase plays an important role in causing renal cortical oxidative stress and inflammation, which lead to decreases in renal hemodynamics, renal cortical damage, and increases in arterial pressure.  相似文献   

14.
Using a phosphorylation-dependent cell-free system to study NADPH oxidase activation (McPhail, L. C., Qualliotine-Mann, D., and Waite, K. A. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 7931-7935), we previously showed that p47(phox), a cytosolic NADPH oxidase component, is phosphorylated. Now, we show that p22(phox), a subunit of the NADPH oxidase component flavocytochrome b(558), also is phosphorylated. Phosphorylation is selectively activated by phosphatidic acid (PA) versus other lipids and occurs on a threonine residue in p22(phox). We identified two protein kinase families capable of phosphorylating p22(phox): 1) a potentially novel, partially purified PA-activated protein kinase(s) known to phosphorylate p47(phox) and postulated to mediate the phosphorylation-dependent activation of NADPH oxidase by PA and 2) conventional, but not novel or atypical, isoforms of protein kinase C (PKC). In contrast, all classes of PKC isoforms could phosphorylate p47(phox). In a gel retardation assay both the phosphatidic acid-dependent kinase and conventional PKC isoforms phosphorylated all molecules of p22(phox). These findings suggest that phosphorylation of p22(phox) by conventional PKC and/or a novel PA-activated protein kinase regulates the activation/assembly of NADPH oxidase.  相似文献   

15.
Nox1 and Nox4, homologues of the leukocyte NADPH oxidase subunit Nox2 (gp91phox) mediate superoxide anion formation in various cell types. However, their interactions with other components of the NADPH oxidase are poorly defined. We determined whether a direct interaction of Nox1 and Nox4 with the p22phox subunit of the NADPH oxidase occurs. Using confocal microscopy, co-localization of p22phox with Nox1, Nox2, and Nox4 was observed in transiently transfected vascular smooth muscle cells (VSMC) and HEK293 cells. Plasmids coding for fluorescent fusion proteins of p22phox and the Nox proteins with cyan- and yellow-fluorescent protein (cfp and yfp, respectively) were constructed and expressed in VSMC and HEK293 cells. The cfp-tagged p22phox expression level increased upon cotransfection with Nox1 or Nox4. Protein-protein interaction between the fluorescent fusion proteins of p22phox and the Nox partners was observed using the fluorescence resonance energy transfer technique. Immunoprecipitation of native Nox1 from human VSMC revealed co-precipitation of p22phox. Immunoprecipitation from transfected HEK293 cells revealed co-precipitation of native p22phox with yfp-tagged Nox1, Nox2, and Nox4. Following mutation of a histidine (corresponding to the position 115 in human Nox2) to leucine, this interaction was abolished. Transfection of rat p22phox (but not Noxo1 and Noxa1) increased the radical generation in cells expressing Nox4. We provide evidence that p22phox directly interacts with Nox1 and Nox4, to form an superoxide-generating NADPH oxidase and demonstrate that mutation of the potential heme binding site in the Nox proteins disrupts the complex formation of Nox1 and Nox4 with p22phox.  相似文献   

16.
Apoptosis linked to oxidative stress has been implicated in pancreatitis. We investigated whether NADPH oxidase mediates apoptosis in cerulein-stimulated pancreatic acinar AR42J cells. We report here that cerulein treatment resulted in the activation of NADPH oxidase, as determined by ROS production, translocation of cytosolic subunits p 47(phox) and p 67(phox) to the membrane, and interaction between NADPH oxidase subunits. Cerulein induced Ca(2+) oscillation, the expression of apoptotic genes p53 and bax, and apoptotic indices (DNA fragmentation, TUNEL staining, caspase 3 activity, decrease in cell viability) in AR42J cells. Treatment with a Ca(2+) chelator, BAPTA-AM, or transfection with antisense oligonucleotides for NADPH oxidase subunits p22(phox) and p 47(phox) inhibited cerulein-induced ROS production, translocation of NADPH oxidase cytosolic subunits p 47(phox) and p 67(phox) to the membrane, and the expression of apoptotic genes and apoptotic indices, as compared to the cells without treatment and those transfected with the corresponding sense oligonucleotides. These results indicate that NADPH oxidase may mediate ROS-induced apoptosis in pancreatic acinar cells in a Ca(2+)-dependent manner.  相似文献   

17.
Human neutrophils participate in the host innate immune response, partly mediated by the multicomponent superoxide-generating enzyme NADPH oxidase. A correlation between phosphorylation of cytosolic NADPH oxidase components and enzyme activation has been identified but is not well understood. We previously showed that p22(phox), the small subunit of the membrane-bound oxidase component flavocytochrome b(558), is an in vitro substrate for both a phosphatidic acid-activated kinase and conventional protein kinase C isoforms (Regier, D. S., Waite, K. A., Wallin, R., and McPhail, L. C. (1999) J. Biol. Chem. 274, 36601-36608). Here we show that several neutrophil agonists (phorbol myristate acetate, opsonized zymosan, and N-formyl-methionyl-leucyl-phenylalanine) induce p22(phox) phosphorylation in intact neutrophils. To determine if phospholipase D (PLD) is needed for p22(phox) phosphorylation, cells were pretreated with ethanol, which reduces phosphatidic acid production by PLD in stimulated cells. Phorbol myristate acetate-induced phosphorylation of p22(phox) and NADPH oxidase activity were not reduced by ethanol. In contrast, ethanol reduced both activities when cells were stimulated by N-formyl-methionyl-leucyl-phenylalanine or opsonized zymosan. Varying the time of stimulation with opsonized zymosan showed that the phosphorylation of p22(phox) coincides with NADPH oxidase activation. GF109203X, an inhibitor of protein kinase C and the phosphatidic acid-activated protein kinase, decreased both p22(phox) phosphorylation and NADPH oxidase activity in parallel in opsonized zymosan-stimulated cells. Stimulus-induced phosphorylation of p22(phox) was on Thr residue(s), in agreement with in vitro results. Overall, these data show that NADPH oxidase activity and p22(phox) phosphorylation are correlated and suggest two mechanisms (PLD-dependent and -independent) by which p22(phox) phosphorylation occurs.  相似文献   

18.
To illuminate the origins of NADPH oxidase (Nox), we identified cDNA clones encoding Nox2, Nox4, p22 phagocyte oxidase (phox), p47phox, and p67phox in a chordate phylogenetically distant to the vertebrates, the sea squirt Ciona intestinalis. We also examined the spatiotemporal expression of these genes in embryos and juveniles. The sequences of the Nox2, Nox4, p22phox, p47phox, and p67phox cDNAs contained open reading frames encoding 581, 811, 175, 461, and 515 amino acids, respectively. The level of identities between the deduced Nox2, Nox4, p22phox, p47phox, and p67phox amino acid sequences and their corresponding human components were 54.0, 31.0, 44.4, 36.0, and 26.2%, respectively. Despite these low identities, the functional domains of the C. intestinalis and human NADPH oxidase and Nox4 are highly conserved. The genomic organizations of the components of the NADPH oxidase gene except for p67phox (a single exon gene) and the Nox4 gene in C. intestinalis are highly similar to those of the corresponding human NADPH oxidase genes. Further, the analyzed part of the C. intestinalis genome and EST database do not seem to present p40phox and Nox5. The Nox2, p22phox, p47phox, and p67phox genes were specifically expressed in the blood cells of juveniles. The Nox4 gene was expressed in blood cells and endostyle of juveniles. These results suggest that C. intestinalis NADPH oxidase components possess potential functional activities similar to those of human, but the manner in which cytosolic phox proteins in C. intestinalis interact is different from that in human.  相似文献   

19.
Tumor necrosis factor plays a critical role in airway smooth muscle hyperresponsiveness observed in asthma. However, the mechanisms underlying this phenomenon are poorly understood. We investigated if tumor necrosis factor-stimulated airway smooth muscle produced reactive oxygen species, leading to muscular hyperresponsiveness. Tumor necrosis factor increased intracellular and extracellular oxidants production in guinea pig airway smooth muscle cells and tissue homogenates. This production was abolished by inhibitors of NADPH oxidase (diphenylene iodinium or apocynin) and was enhanced by NADPH, whereas inhibitors of mitochondrial respiratory chain, nitric-oxide synthase, cyclooxygenase, and xanthine oxidase had no effect. NADPH oxidase subunits p22(phox) and p47(phox) were detected in smooth muscle cells and tissue homogenates by Western blot, immunohistochemistry, and spectral analysis. Furthermore, oxidants production was significantly reduced by transient transfection of smooth muscle cells with p22(phox) antisense oligonucleotides. Intracellular antioxidants and diphenylene iodinium abolished tumor necrosis factor-induced muscular hyperresponsiveness and increased in phosphorylation of the myosin light chain. Finally, NADPH oxidase subunits p22(phox) and p47(phox) were also detected in human airway smooth muscle. Collectively, these results demonstrate that tumor necrosis factor-stimulated airway smooth muscle produces oxidants through a NADPH oxidase-like system, which plays a pivotal role in muscle hyperresponsiveness and myosin light chain phosphorylation.  相似文献   

20.
The superoxide-generating NADPH oxidase complex of phagocytes consists of a membranal heterodimeric flavocytochrome (cytochrome b(559)), composed of gp91(phox) and p22(phox) subunits, and four cytosolic proteins, p47(phox), p67(phox), p40(phox), and the small GTPase Rac (1 or 2). All redox stations involved in electron transport from NADPH to oxygen are located in gp91(phox). NADPH oxidase activation is the consequence of assembly of cytochrome b(559) with cytosolic proteins, a process reproducible in a cell-free system, consisting of phagocyte membranes, and recombinant cytosolic components, activated by an anionic amphiphile. p22(phox) is believed to act as a linker between the cytosolic components and gp91(phox). We applied "peptide walking" to mapping of domains in p22(phox) participating in NADPH oxidase assembly. Ninety one synthetic overlapping pentadecapeptides, spanning the p22(phox) sequence, were tested for the ability to inhibit NADPH oxidase activation in the cell-free system and to bind individual cytosolic NADPH oxidase components. We conclude the following. 1) The p22(phox) subunit of cytochrome b(559) serves as an anchor for both p47(phox) and p67(phox). 2) p47(phox) binds not only to the proline-rich region, located at residues 151-160 in the cytosolic C terminus of p22(phox), but also to a domain (residues 51-63) located on a loop exposed to the cytosol. 3) p67(phox) shares with p47(phox) the ability to bind to the proline-rich region (residues 151-160) and also binds to two additional domains, in the cytosolic loop (residues 81-91) and at the start of the cytosolic tail (residues 111-115). 4) The binding affinity of p67(phox) for p22(phox) peptides is lower than that of p47(phox). 5) Binding of both p47(phox) and p67(phox) to proline-rich p22(phox) peptides occurs in the absence of an anionic amphiphile. A revised membrane topology model of p22(phox) is proposed, the core of which is the presence of a functionally important cytosolic loop (residues 51-91).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号