首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rat adipocytes were incubated with 15 nM insulin in different buffers at 37°C. The cells were washed and reincubated at 16°C in the presence of 18 pM A14-[125I]monoiodoinsulin to determine the insulin receptor concentration. After incubation for 2 h in Tris buffer the binding decreased to about 30 %, whereas no decrease was found after incubation in Hepes, phosphate or bicarbonate buffers. Binding of tracer insulin reached a constant level by 45 min in Hepes buffer at 37°C, whereas it continued to increase in Tris buffer. Washout of tracer insulin after incubation in Tris buffer at 37°C showed a large, slowly dissociable fraction. It is suggested that the rapid down regulation of insulin receptors invitro is an artifact of the Tris buffer and that the phenomenon is due to a slowly reversible occupancy of a receptor pool with unlabelled insulin.  相似文献   

2.
B B Olwin  S D Hauschka 《Biochemistry》1986,25(12):3487-3492
Two distinct fibroblast growth factors (FGF) were purified to homogeneity from bovine brain on the basis of their ability to stimulate skeletal muscle myoblast proliferation. These growth factors are also mitogenic for Swiss 3T3 cells and appear to be closely related to or identical with previously isolated anionic and cationic fibroblast growth factors. The half-maximum concentrations (EC50) for stimulation of myoblast DNA synthesis by the anionic and cationic growth factors were 30pM and 1pM, respectively. In contrast, an EC50 of 45 pM was observed for stimulation of 3T3 cell DNA synthesis by both growth factors. Binding of 125I-labeled anionic FGF was saturable with apparent Kd values of 45 pM and 11 pM and approximately 60 000 and 2000 receptor sites per cell for 3T3 cells and MM14 murine myoblasts, respectively. Unlabeled anionic and cationic FGF equally displaced 125I-labeled anionic FGF from 3T3 cells while cationic FGF was more potent than anionic FGF for displacement from skeletal muscle myoblasts, demonstrating that a single receptor binds the two distinct growth factors. Binding was specific for these factors since platelet-derived growth factor, insulin, insulin-like growth factor 1, epidermal growth factor, and nerve growth factor were unable to displace bound 125I-labeled anionic FGF from Swiss 3T3 cells. Chemical cross-linking of specifically bound 125I-labeled anionic FGF to 3T3 cells and MM14 myoblasts identified a single detergent-soluble FGF receptor with an apparent molecular weight of 165 000.  相似文献   

3.
Phorbol 12-myristate 13-acetate (PMA) was used to examine the role of insulin receptor phosphorylation in the regulation of insulin receptor internalization in vascular endothelial cells. Association of 125I-insulin in rat capillary and bovine aortic endothelial cells preincubated with PMA was increased by 80 and 64% over control, respectively. The increase was due to enhanced 125I-insulin internalization as opposed to an effect on surface-bound hormone. PMA had no significant effect on 125I-insulin degradation or on release of internalized insulin from the cells. Internalization of 125I-labeled insulin receptor was determined by the resistance of labeled receptor to trypsinization. At 10 degrees C, nearly all of the labeled receptor was sensitive to removal by trypsin, indicating that it was exposed on the cell surface. Exposure of labeled cells to insulin (100 nM) at 37 degrees C resulted in the rapid appearance of trypsin-resistant insulin receptor, indicating receptor internalization. Steady state for receptor internalization was attained at 10-15 min. When surfaced-labeled cells were preincubated with PMA at 37 degrees C, the rate of insulin receptor internalization was increased by 3.6 +/- 0.2-fold and 2.1 +/- 0.5-fold at 1 and 5 min of insulin exposure, respectively (ED50 at 16 nM PMA). This effect of PMA was associated with an increase in serine phosphorylation of the insulin receptor. Thus, PMA increased insulin internalization in the endothelial cells by modulating the insulin-induced internalization of the receptor. The additive effects of PMA and insulin on insulin receptor phosphorylation suggest that the phorbol ester and insulin act via independent signaling mechanisms.  相似文献   

4.
IL-12 is a 75-kDa heterodimeric cytokine composed of disulfide-bonded 35-kDa and 40-kDa subunits. Included among the biologic activities mediated by IL-12 is induction of proliferation of PHA-activated human PBL. The concentration of IL-12 required to stimulate maximum proliferation of PHA-activated lymphoblasts is 50 to 100 pM. In this study, highly purified 125I-labeled IL-12 (7 to 15 microCi/microgram; 50 to 100% bioactive) was used to characterize the receptor for IL-12 on 4-day PHA-activated lymphoblasts. The binding of 125I-labeled IL-12 to PHA-activated lymphoblasts was saturable and specific because the binding of radiolabeled ligand was only inhibited by IL-12 and not by other cytokines. The kinetics of [125I]IL-12 binding to PHA-activated lymphoblasts was rapid at both 4 degrees C and 22 degrees C; reaching equilibrium within 60 min. At 22 degrees C, the rate of dissociation of [125I]IL-12 was slow in the absence of competing IL-12 (t1/2 = 5.9 h) and more rapid in the presence of 25 nM competing IL-12 (t1/2 = 2.5 h). The kinetically derived equilibrium dissociation constant ranged from 10 to 83 pM. Analysis of steady state binding data by the method of Scatchard identified a single binding site with an apparent equilibrium dissociation constant of 100 to 600 pM and 1000 to 9000 sites/lymphoblast. The equilibrium dissociation constant for competing ligands and sites per cell calculated from unlabeled IL-12 competition experiments ranged from 164 to 315 pM and 1067 to 3336, respectively, which is in good agreement with the values determined from steady state binding. The variations in KD and sites per cell were dependent on the individual preparations of lymphoblasts. Although the steady state binding data were consistent with a single class of high affinity binding sites, the kinetic dissociation data indicates a cooperative interaction between receptors on PHA-activated lymphoblasts. Affinity cross-linking of surface bound [125I]IL-12 to PHA-activated lymphoblasts at 4 degrees C identified a major complex of approximately 210 to 280 kDa. Anti-IL-12 antibodies also immunoprecipitated a complex of approximately 210 to 280 kDa that was produced by cross-linking unlabeled IL-12 to 125I-labeled lymphoblast cell-surface proteins. Cleavage of this complex with reducing agent identified one radiolabeled protein of approximately 110 kDa. These data suggest that the IL-12 binding site on PHA-activated lymphoblasts may be composed of a single protein of approximately 110 kDa.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
To gain a detailed understanding of those factors that govern the processing of dietary-derived lipoprotein remnants by macrophages we examined the uptake and degradation of rat triacylglycerol-rich chylomicron remnants and rat cholesterol-rich beta-very low density lipoprotein (beta-VLDL) by J774 cells and primary cultures of mouse peritoneal macrophages. The level of cell associated 125I-labeled beta-VLDL and 125I-labeled chylomicron remnants reached a similar equilibrium level within 2 h of incubation at 37 degrees C. However, the degradation of 125I-labeled beta-VLDL was two to three times greater than the degradation of 125I-labeled chylomicron remnants at each time point examined, with rates of degradation of 161.0 +/- 36.0 and 60.1 +/- 6.6 ng degraded/h per mg cell protein, respectively. At similar extracellular concentrations of protein or cholesterol, the relative rate of cholesteryl ester hydrolysis from [3H]cholesteryl oleate/cholesteryl [14C]oleate-labeled chylomicron remnants was one-third to one-half that of similarly labeled beta-VLDL. The reduction in the relative rate of chylomicron remnant degradation by macrophages occurred in the absence of chylomicron remnant-induced alterations in low density lipoprotein (LDL) receptor recycling or in retroendocytosis of either 125I-labeled lipoprotein. The rate of internalization of 125I-labeled beta-VLDL by J774 cells was greater than that of 125I-labeled chylomicron remnants, with initial rates of internalization of 0.21 ng/min per mg cell protein for 125I-labeled chylomicron remnants and 0.39 ng/min per mg cell protein for 125I-labeled beta-VLDL. The degradation of 125I-labeled chylomicron remnants and 125I-labeled beta-VLDL was dependent on lysosomal enzyme activity: preincubation of macrophages with the lysosomotropic agent monensin reduced the degradation of both lipoproteins by greater than 90%. However, the pH-dependent rate of degradation of 125I-labeled chylomicron remnants by lysosomal enzymes isolated from J774 cells was 50% that of 125I-labeled beta-VLDL. The difference in degradation rates was dependent on the ratio of lipoprotein to lysosomal protein used and was greatest at ratios greater than 50. The degradation of 125I-labeled beta-VLDL by isolated lysosomes was reduced 30-40% by preincubation of beta-VLDL with 25-50 micrograms oleic acid/ml, suggesting that released free fatty acids could cause the slower degradation of chylomicron remnants. Thus, differences in the rate of uptake and degradation of remnant lipoproteins of different compositions by macrophages are determined by at least two factors: 1) differences in the rates of lipoprotein internalization and 2) differences in the rate of lysosomal degradation.  相似文献   

6.
Receptor sites for insulin on GH3 cells were characterized. Uptake of 125I-labeled insulin by the cells was dependent upon time and temperature, with apparent steady-states reached by 120, 20 and 10 min at 4, 23 and 37 degrees C, respectively. The binding sites were sensitive to trypsin, suggesting that the receptors contain protein. Insulin competed with 125I-labeled insulin for binding sites, with half-maximal competition observed at 5 nM insulin. Neither adrenocorticotropic hormone nor growth hormone competed for 125I-labeled insulin binding sites. 125I-labeled insulin binding was reversible, and saturable with respect to hormone concentration. 125I-labeled insulin was degraded at both 4 and 37 degrees C by GH3 cells, but not by medium conditioned by these cells. After a 5 min incubation at 37 degrees C, products of 125I-labeled insulin degradation could be recovered from the cells but were not detected extracellularly. Extending the time of incubation resulted in the recovery of fragments of 125I-labeled insulin from both cells and the medium. Native insulin inhibited most of the degradation of 125I-labeled insulin suggesting that degradation resulted, in part, from a saturable process. At steady-state, degradation products of 125I-labeled insulin, as well as intact hormone, were recovered from GH3 cells. After 30 min incubation at 37 degrees C, 80% of the cell-bound radioactivity was not extractable from GH3, cells with acetic acid.  相似文献   

7.
The mechanism of insulin-induced down-regulation of surface membrane insulin receptors was studied in the muscle cell line BC3H-1. Down-regulation for the differentiated myocytes is dose- and time-dependent with a half-maximum response at 0.5 nM insulin and a maximum decrease of 50% in the number of surface insulin receptors following exposure to 20 nM insulin for 18 h at 37 degrees C, as confirmed by Scatchard analysis. These receptors were fully recoverable upon lysis of the down-regulated myocyte with Triton X-100, demonstrating that down-regulation is mediated solely by insulin-induced receptor internalization without detectable receptor degradation. Phospholipase C treatment of intact down-regulated cells and Triton X-100 treatment after subcellular fractionation showed that no cryptic or masked receptors were detectable within the plasma membrane. Insulin-induced receptor internalization was dependent upon cellular energy production, protein synthesis, and endocytosis, but was insensitive to agents which primarily affect lysosomal, cytoskeletal, or transglutaminase activities. The magnitude of insulin-induced down-regulation and the kinetics of down-regulation and recovery of cell surface receptors indicate that the surface and internal receptor pools are in dynamic equilibrium with each other. The kinetic data are accommodated by separate internalization rate constants for the unoccupied (0.01 h-1) and occupied (0.11 h-1) surface receptors and a single recycling rate constant (0.11 h-1) for the internalized receptors. This model also explains the previous apparently paradoxical finding in several other systems that down-regulation is more sensitive to hormone than hormone-receptor binding under physiologic conditions. Down-regulation in BC3H-1 myocytes, therefore, appears to be mediated solely by an insulin-induced increase in the receptor internalization rate constant and a consequent shift in the dynamic equilibrium between the surface and internalized receptor pools, resulting in a 50% decrease in the number of cell surface receptors. In other systems where the internalized hormone receptor is a substrate for rapid degradation, the essential role of this shift in mediating the down-regulation process may be obscured.  相似文献   

8.
Primary cultures of rabbit hepatocytes which were preincubated for 20 h in a medium containing lipoprotein-deficient serum subsequently bound, internalized and degraded 125I-labeled high-density lipoproteins2 (HDL2). The rate of degradation of HDL2 was constant in incubations from 3 to 25 h. As the concentration of HDL2 in the incubation medium was increased, binding reached saturation. At 37 degrees C, half-maximal binding (Km) was achieved at a concentration of 7.3 micrograms of HDL2 protein/ml (4.06 X 10(-8)M) and the maximum amount bound was 476 ng of HDL2 protein/mg of cell protein. At 4 degrees C, HDL2 had a Km of 18.6 micrograms protein/ml (1.03 X 10(-7)M). Unlabeled low-density lipoproteins (LDL) inhibited only at low concentrations of 125I-labeled HDL2. Quantification of 125I-labeled HDL2 binding to a specific receptor (based on incubation of cells at 4 degrees C with and without a 50-fold excess of unlabeled HDL) yielded a dissociation constant of 1.45 X 10(-7)M. Excess HDL2 inhibited the binding of both 125I-labeled HDL2 and 125I-labeled HDL3, but excess HDL3 did not affect the binding of 125I-labeled HDL3. Preincubation of hepatocytes in the presence of HDL resulted in only a 40% reduction in specific HDL2 receptors, whereas preincubation with LDL largely suppressed LDL receptors. HDL2 and LDL from control and hypercholesterolemic rabbits inhibited the degradation of 125I-labeled HDL2, but HDL3 did not. Treatment of HDL2 and LDL with cyclohexanedione eliminated their capacity to inhibit 125I-labeled HDL2 degradation, suggesting that apolipoprotein E plays a critical role in triggering the degradative process. The effect of incubation with HDL on subsequent 125I-labeled LDL binding was time-dependent: a 20 h preincubation with HDL reduced the amount of 125I-labeled LDL binding by 40%; there was a similar effect on LDL bound in 6 h but not on LDL bound in 3 h. The binding of 125I-labeled LDL to isolated liver cellular membranes demonstrated saturation kinetics at 4 degrees C and was inhibited by EDTA or excess LDL. The binding of 125I-labeled HDL2 was much lower than that of 125I-labeled LDL and was less inhibited by unlabeled lipoproteins. The binding of 125I-labeled HDL3 was not inhibited by any unlabeled lipoproteins. EDTA did not affect the binding of either HDL2 or HDL3 to isolated liver membranes. Hepatocytes incubated with [2-14C]acetate in the absence of lipoproteins incorporated more label into cellular cholesterol, nonsaponifiable lipids and total cellular lipid than hepatocytes incubated with [2-14C]acetate in the presence of any lipoprotein fraction. However, the level of 14C-labeled lipids released into the medium was higher in the presence of medium lipoproteins, indicating that the effect of those lipoproteins was on the rate of release of cellular lipids rather than on the rate of synthesis.  相似文献   

9.
125I-insulin (10 fmoles) binding plus internalization (BI) to a clonal capillary endothelial (CE) cell line reached to a steady state after 20 min. Acid-washed fraction accounted for nearly half of the total specifically-bound hormone. Dissociation constants (Kd) for insulin-surface receptor in acid-extractable fraction were 0.04 nM (high affinity) and 4.7 nM (low affinity) with a total number of 210,000 high affinity receptors per cell. When 125I-labeled IGF-1 (15 fmoles) was incubated similarly, BI reached only a quasi-equilibrium by 6 min and continued to increase thereafter. 2-Deoxyglucose transport in these cells was stimulated by insulin whereas IGF-1 inhibited its entry.  相似文献   

10.
J E Chin  R Horuk 《FASEB journal》1990,4(5):1481-1487
This study gives an account of the biologic and kinetic binding properties of interleukin 1 alpha (IL 1 alpha), interleukin 1 beta (IL 1 beta), and Glu-4 (an NH2-terminal mutant of IL 1 beta) to interleukin 1 (IL 1) receptors in rabbit articular chondrocytes. All three IL 1's demonstrated full agonist properties in their ability to stimulate prostaglandin E2 (PGE2) synthesis. IL 1 alpha was 23-fold more biologically active than IL 1 beta, which was around 110-fold more active than Glu-4 based on the concentration of IL 1 required for half-maximal stimulation of PGE2. The binding of all three ligands was concentration-dependent and saturable at 4 degrees C. Scatchard analysis of receptor binding data showed that the dissociation constant (KD) of IL 1 alpha was 46 +/- 12 pM, and the receptor density was 3120 sites/cell. The association of IL 1 alpha at 4 degrees C did not attain equilibrium until after 10 h at 100 pM of 125I-labeled IL 1 alpha. The dissociation of bound IL 1 alpha was very slow, t1/2 of 21 h, although only one class of high-affinity receptors was detected. The KD of IL 1 beta binding was 72 +/- 3 pM with a receptor density of 800 +/- 40 sites/cell. Dissociation of bound 125I-labeled IL 1 beta at 4 degrees C appeared to indicate the presence of two receptor subsets, a fast and a slower component with a t1/2 of 2 min and 5 h, respectively. The receptor binding affinity of Glu-4 was 324 +/- 3 pM, in line with its reduced biologic activity. Both IL 1 alpha and IL 1 beta are rapidly internalized in chondrocytes in a time- and temperature-dependent manner.  相似文献   

11.
Insulin from the Atlantic hagfish, Myxine glutinosa, a primitive vertebrate, was studied with respect to degradation, receptor binding, and stimulation of glucose transport and metabolism in isolated rat adipocytes. The degradation was studied in a concentrated suspension with about 100mul of cells/ml of suspension. 125I-labeled hagfish insulin and 125I-labeled pig insulin were degraded at the same rate when present in concentrations of 0.3nM. Native hagfish insulin inhibited the rate of degradation of 125I-labeled pig insulin half-maximally at a concentration of 12+/-2 nM (S.D., n=6) as compared to 130+/-32 nM (S.D.,n=6) for pig insulin. Native hagfish insulin in a concentration of 130 nM was biologically inactivated at a rate several times slower than pig insulin in the same concentration. The results indicate that the maximal velocity (Vmax) of degradation of hagfish insulin as well as the concentration causing half-maximal velocity (Km) are about 10 times lower for hagfish insulin than for pig insulin. The receptor binding and the biological effects of hagfish insulin were studied in dilute cell suspensions where the degradation of hormone in the medium was negligible. The receptor binding affinity of hagfish insulin was 23+/-7 per cent (S.D., n=10) of that of pig insulin. Hagfish insulin was able to elicit the same maximal stimulation of both 3-o-methylglucose exchange and lipogenesis from glucose as pig insulin. However, the potency of hagfish insulin with respect to activation of lipogenesis was only 4.6+/-0.6 per cent (S.D., n=15) of that of pig insulin. Hagfish insulin thus constitutes the first described insulin which exhibits a discrepancy between relative binding affinity and relative potency. This discrepancy was not due to the methionine residue (B31) at the COOH-terminal end of the B chain of hagfish insulin, since removal of this residue caused no marked change in the binding affinity or the potency. The results indicate that the receptor occupancy must be 5 times higher with hagfish insulin than with pig insulin to cause a particular degree of activation of lipogenesis. Hagfish insulin might therefore be characterized as a "partial antagonist" on the receptors. However, it was not possible to demonstrate antagonistic properties of hagfish insulin on the cells. The effect of hagfish insulin plus pig insulin in submaximally stimulating concentrations was additive. Furthermore, the decay of activation of adipocytes after incubation with hagfish insulin followed the same time course as the decay of activation after incubation with pig insulin in a concentration of equal potency. These phenomena are in agreement with the concept that adipocytes possess a large excess of receptors which can mediate the effect of insulin on lipogenesis from glucose.  相似文献   

12.
Receptor sites for insulin on GH3 cells were characterized. Uptake of 125I-labeled insulin by the cells was dependent upon time and temperature, with apparent steady-states reached by 120, 20 and 10 min at 4, 23 and 37°C, respectively. The binding sites were sensitive to trypsin, suggesting that the receptors contain protein. Insulin competed with 125I-labeled insulin for binding sites, with half-maximal competition observed at 5 nM insulin. Neither adrenocorticotropic hormone nor growth hormone competed for 125I-labeled insulin binding sites. 125I-labeled insulin binding was reversible, and saturable with respect to hormone concentration. 125I-labeled insulin was degraded at both 4 and 37°C by GH3 cells, but not by medium conditioned by these cells. After a 5 min incubation at 37°C, products of 125I-labeled insulin degradation could be recovered from the cells but were not detected extracellularly. Extending the time of incubation resulted in the recovery of fragments of 125I-labeled insulin from both cells and the medium. Native insulin inhibited most of the degradation of 125I-labeled insulin suggesting that degradation resulted, in part, from a saturable process. At steady-state, degradation products of 125I-labeled insulin, as well as intact hormone, were recovered from GH3 cells. After 30 min incubation at 37°C, 80% of the cell-bound radioactivity was not extractable from GH3 cells with acetic acid.  相似文献   

13.
A thrombin receptor in resident rat peritoneal macrophages.   总被引:2,自引:0,他引:2  
Resident rat peritoneal macrophages possess 6 x 10(2) high-affinity binding sites per cell for bovine thrombin with a Kd of 11 pM, and 7.5 x 10(4) low-affinity sites with a Kd of 5.8 nM. These binding sites are highly specific for thrombin. Half-maximal binding of 125I-labeled bovine thrombin is achieved after 1 min at 37 degrees C, and after 12 min at 4 degrees C. The reversibly bound fraction of the ligand dissociates according to a biexponential time course with the rate constants 0.27 and 0.06 min-1 at 4 degrees C. Part of the tracer remains cell-associated even after prolonged incubation, but all cell-associated radio-activity migrates as intact thrombin upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The bound thrombin is minimally endocytosed as judged by the resistance to pH 3 treatment, and the receptor does not mediate a quantitatively important degradation of the ligand. The binding is not dependent on the catalytic site of thrombin, since irreversibly inactivated thrombin also binds to the receptor. 125I-labeled thrombin covalently cross-linked to its receptor migrates in sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a Mr 160,000, corresponding to an approximate receptor size of Mr 120,000.  相似文献   

14.
Isolated rat hepatocytes were incubated for 1 h at 37 degrees C with 10 nM insulin. Following washout of insulin, cells were incubated with [125I] monoiodoinsulin at 15 degrees C to assess surface insulin binding. Preincubation with 10 nM insulin did not cause a decrease in insulin binding. Scatchard analysis confirmed that insulin receptor number remained constant. In the presence of 200 microM chloroquine or 25 microM monensin, surface insulin binding after preincubation with 10 nM insulin fell to 81.1 +/- 1.2% or 39.0 +/- 2.7% of control, respectively. It is suggested that the maintenance of insulin receptor number following acute insulin treatment in vitro is due to an insulin receptor recycling pathway, possibly involving lysosomes and/or the Golgi apparatus.  相似文献   

15.
Subtypes of the neuropeptide Y (NPY) receptor in the rat brain were identified by the use of the selective Y-1 analog, [Leu34-Pro34] NPY. In rat brain homogenate binding studies, [Leu31-Pro34] NPY was found to produce a partial inhibition of 100 pM 125I-labeled peptide YY (PYY) binding with a plateau at 50-1000 nM [Leu31-Pro34] NPY resulting in a 70% inhibition of binding. The C-terminal fragment NPY 13-36, a putative Y-2 agonist, exhibited very little selectivity in rat brain homogenates. Scatchard analysis of 125I-labeled PYY binding to rat brain homogenate yielded biphasic plots with Kd values of 40 and 610 pM. Inclusion of 100 nM [Leu31-Pro34] NPY was found to eliminate the low affinity component of 125I-labeled PYY binding leaving a single, high affinity binding site with a Kd of 68 pM. In autoradiographic studies, displacement curves indicated that [Leu31-Pro34] NPY completely inhibited binding in the cerebral cortex with little effect on the binding in the hypothalamus. On the other hand NPY 13-36 inhibited binding in the hypothalamus at low concentrations but required higher concentrations to inhibit binding in the cerebral cortex. Other brain regions such as the hippocampus, appeared to contain both subtypes. Subsequent to these studies, a quantitative autoradiographic map was conducted using 50-100 pM 125I-labeled PYY in the presence and absence of [Leu31-Pro34] NPY which produced a selective displacement of binding in certain distinct brain regions. These areas included the cerebral cortex, certain thalamic nuclei and brainstem while ligand binding was retained in other brain regions including the zona lateralis of the substantia nigra, lateral septum, nucleus of the solitary tract and the hippocampus. Numerous brain regions appeared to contain both receptor subtypes. Therefore, the Y-1 and Y-2 receptor subtypes exhibited a somewhat distinct distribution in the brain. In addition, 125I-labeled PYY appears to label the Y-2 receptor with relatively higher affinity when compared to the Y-1 receptor.  相似文献   

16.
Although much evidence has been accumulated suggesting that tumor necrosis factor-alpha (TNF-alpha) is an important mediator of insulin resistance, the precise mechanism involved is still unclear. Recently, it has been reported that insulin-induced glucose uptake is mediated by activation of second messengers such as insulin receptor substrate 1 (IRS-1), phosphatidylinositol 3-kinase (PI3K), and diacylglycerol (DG)-protein kinase C (PKC). We have examined the effect of TNF-alpha on insulin-induced glucose uptake and activations of tyrosine kinase, IRS-1, PI3K and PKC in rat adipocytes. Pretreatment with 0.1-100 nM TNF-alpha for 60 min resulted in a significant decrease in 10 nM insulin- or 1 microM 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced [3H]2-deoxyglucose uptake without affecting basal glucose uptake. 10 nM insulin-stimulated activation of tyrosine kinase, IRS-1 and PI3K was suppressed by preincubation with 0.1-10 nM TNF-alpha for 60 min. 10 nM TNF-alpha pretreatment also suppressed 10 nM insulin- and 1 microM TPA-induced increases in membrane-associated PKCbeta and PKCzeta. Furthermore, 10 nM TNF-alpha, by itself, altered PKCbeta translocation from the membrane to cytosol. These results suggest that TNF-alpha inhibits insulin-stimulated activation of both the tyrosine kinase-IRS-1-PI3K-PKCzeta pathway and DG-PKC pathway. Finally, TNF-alpha contributes to insulin resistance in rat adipocytes.  相似文献   

17.
The hemopoietic growth factor granulocyte-macrophage colony-stimulating factor, GM-CSF, specifically controls the production of granulocytes and macrophages. This report describes the binding of biologically-active 125I-labeled murine GM-CSF to a range of hemopoietic cells. Specific binding was restricted to murine cells and neither rat nor human bone marrow cells appeared to have surface receptors for 125I-labeled GM-CSF. 125I-Labeled GM-CSF only appeared to bind specifically to cells in the myelomonocytic lineage. The binding of 125I-labeled GM-CSF to both bone marrow cells and WEHI-3B(D+) was rapid (50% maximum binding was attained within 5 min at both 20 degrees C and 37 degrees C). Unlabeled GM-CSF was the only polypeptide hormone which completely inhibited the binding of 125I-labeled GM-CSF to bone marrow cells, however, multi-CSF (also called IL-3) and G-CSF partially reduced the binding of 125I-labeled GM-CSF to bone marrow cells. Interestingly, the binding of 125I-labeled GM-CSF to a myelomonocytic cell line, WEHI-3B(D+), was inhibited by unlabeled GM-CSF but not by multi-CSF or G-CSF. Scatchard analysis of the binding of 125I-labeled GM-CSF to WEHI-3B(D+) cells, bone marrow cells and peritoneal neutrophils indicated that there were two classes of binding sites: one of high affinity (Kd1 = 20 pM) and one of low affinity (Kd2 = 0.8-1.2 nM). Multi-CSF only inhibited the binding of 125I-labeled GM-CSF to the high affinity receptor on bone marrow cells: this inhibition appeared to be a result of down regulation or modification of the GM-CSF receptor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The long exposure times required to observe stimulatory effects of insulin on steroidogenesis and protein synthesis in granulosa cells suggested that these effects might be secondary to stimulation of another metabolic process. The present studies examined the effects of insulin, the insulin-like growth factor somatomedin-C (Sm-C), human chorionic gonadotropin (hCG), and forskolin, a compound that activates adenylyl cyclase independently of a receptor, on glucose metabolism. Granulosa cells from preovulatory porcine ovarian follicles were incubated at 37 degrees C in Dulbecco's phosphate-buffered saline supplemented with bovine serum albumin, vitamins, amino acids, and glucose (0.01-20 mM). Cells were incubated with [14C]glucose for up to 23 h with or without a prior 20-h preincubation. Oxidation of glucose, assessed by quantitation of 14CO2 produced, was dependent on time and concentration of glucose. Optimal glucose concentrations for glucose oxidation were 3 mM in the absence or presence of insulin and correlated well with the measured glucose concentrations in follicular fluid (3 mM). After a 20-h preincubation in the absence or presence of insulin (1 microM), the rates of CO2 production were 10.6 and 21.6 pmol/micrograms DNA/h for control and insulin-treated cells, respectively. Insulin had an EC50 of 164 nM. Sm-C and hCG were more potent stimulators than insulin with EC50s of 768 pM and 161 pM, respectively. The greater sensitivity of granulosa cells to Sm-C than to insulin supports the concept that insulin exerts its effect via reactivity with the Sm-C receptor. The effect of hCG may have been mediated by cyclic adenosine 3',5'-monophosphate (cAMP), since forskolin also enhanced 14CO2 production.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The binding of biologically active, 125I-labeled basic fibroblast growth factor (FGF) to baby hamster kidney-derived cell line cells (BHK-21) was studied at 4 degrees C. Unlabeled FGF displaced cell surface bound 125I-FGF, but platelet-derived growth factor, epidermal growth factor, insulin, or transferrin did not. Binding was saturable both as a function of time and as a function of increasing 125I-FGF concentrations. Scatchard analysis of the binding data revealed the presence of about 1.2 X 10(5) binding sites/cell with an apparent KD of 270 pM. The number of the binding sites was down-regulated following preincubation of the cells with FGF. The density of binding sites/cell also decreased as an inverse function of cell density. When 125I-FGF binding was studied in a BHK-21 cell membrane preparation, it was found that the membranal binding site displayed a lower KD of 21 pM. 125I-FGF was covalently cross-linked to its cell surface receptor on intact BHK-21 cells using the homobifunctional agent disuccinimidyl suberate. Two macromolecular species with an apparent molecular weight of 145,000 and 125,000, respectively, were labeled under both reducing and nonreducing conditions. Unlabeled FGF competed with 125I-FGF for binding to both macromolecular species. The labeling of the macromolecules was also inhibited by heparin. No labeling was observed in the absence of the cross-linkers or when heat-inactivated 125I-FGF was used instead of radiolabeled, biologically active FGF.  相似文献   

20.
The response of human neutrophils to N-formyl peptides were studied under conditions where ligand binding was controlled by infusing a cell suspension with the peptide over a time period comparable to the normal half-time for binding. Receptor occupancy was measured in real time with a fluorescently labeled peptide using flow cytometry. This binding was approximated by a simple reversible model using typical on (7 X 10(8) M- min-1) and off (0.35/min) rate constants and the infusion rates (0.02-0.2 nM/min). Under conditions of stimulus infusion intracellular calcium elevation, superoxide generation, and right angle light scatter and F-actin formation were measured. As the infusion rate was decreased into the range of 10 pM/min, lowering the rate of increase of receptor occupancy to approximately 0.5% per min, the calcium and right angle light scatter responses elongated in time and decreased in magnitude. Superoxide generation decreased below infusion rates of approximately 100 pM/min (occupancy increasing at a rate in the range of 5% per min). This behavior could contribute to differences between chemotactic responses, which appear to require low rates of receptor occupancy over long periods, and bactericidal or inflammatory responses (free radical generation and degranulation), which require bursts of occupancy of several percent of the receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号