首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Drosophila Hrp38, a homolog of human hnRNP A1, has been shown to regulate splicing, but its function can be modified by poly(ADP-ribosyl)ation. Notwithstanding such findings, our understanding of the roles of poly(ADP-ribosyl)ated Hrp38 on development is limited. Here, we have demonstrated that Hrp38 is essential for fly eye development based on a rough-eye phenotype with disorganized ommatidia observed in adult escapers of the hrp38 mutant. We also observed that poly(ADP-ribose) glycohydrolase (Parg) loss-of-function, which caused increased Hrp38 poly(ADP-ribosyl)ation, also resulted in the rough-eye phenotype with disrupted ommatidial lattice and reduced number of photoreceptor cells. In addition, ectopic expression of DE-cadherin, which is required for retinal morphogenesis, fully rescued the rough-eye phenotype of the hrp38 mutant. Similarly, Parg mutant eye clones had decreased expression level of DE-cadherin with orientation defects, which is reminiscent of DE-cadherin mutant eye phenotype. Therefore, our results suggest that Hrp38 poly(ADP-ribosyl)ation controls eye pattern formation via regulation of DE-cadherin expression, a finding which has implications for understanding the pathogenic mechanisms of Hrp38-related Fragile X syndrome and PARP1-related retinal degeneration diseases.  相似文献   

2.
Poly(ADP-ribose) (pADPr) is a polymer assembled from the enzymatic polymerization of the ADP-ribosyl moiety of NAD by poly(ADP-ribose) polymerases (PARPs). The dynamic turnover of pADPr within the cell is essential for a number of cellular processes including progression through the cell cycle, DNA repair and the maintenance of genomic integrity, and apoptosis. In spite of the considerable advances in the knowledge of the physiological conditions modulated by poly(ADP-ribosyl)ation reactions, and notwithstanding the fact that pADPr can play a role of mediator in a wide spectrum of biological processes, few pADPr binding proteins have been identified so far. In this study, refined in silico prediction of pADPr binding proteins and large-scale mass spectrometry-based proteome analysis of pADPr binding proteins were used to establish a comprehensive repertoire of pADPr-associated proteins. Visualization and modeling of these pADPr-associated proteins in networks not only reflect the widespread involvement of poly(ADP-ribosyl)ation in several pathways but also identify protein targets that could shed new light on the regulatory functions of pADPr in normal physiological conditions as well as after exposure to genotoxic stimuli.  相似文献   

3.
Poly(ADP-ribosyl)ation is a posttranslational modification that alters the functions of the acceptor proteins and is catalyzed by the poly(ADP-ribose) polymerase (PARP) family of enzymes. Following DNA damage, activated poly(ADP-ribose) polymerase-1 (PARP-1) catalyzes the elongation and branching of poly(ADP-ribose) (pADPr) covalently attached to nuclear target proteins. Although the biological role of poly(ADP-ribosyl)ation has not yet been defined, it has been implicated in many important cellular processes such as DNA repair and replication, modulation of chromatin structure, and apoptosis. The transient nature and modulation of poly(ADP-ribosyl)ation depend on the activity of a unique cytoplasmic enzyme called poly(ADP-ribose) glycohydrolase which hydrolyzes pADPr bound to acceptor proteins in free ADP-ribose residues. While the PARP homologues have been recently reviewed, there are relatively scarce data about PARG in the literature. Here we summarize the latest advances in the PARG field, addressing the question of its putative nucleo-cytoplasmic shuttling that could enable the tight regulation of pADPr metabolism. This would contribute to the elucidation of the biological significance of poly(ADP-ribosyl)ation.  相似文献   

4.
5.
Poly(ADP-ribose) polymerase (PARP) activity is widespread among eukaryotes. Upon DNA damage PARP binds to DNA strand breaks and transfers ADP-ribose residues from NAD+ to acceptor proteins and to ADP-ribosyl protein adducts. This leads to branched polymers of protein-coupled poly(ADP-ribose) (pADPr). Because the germline of Drosophila has recently become important in the study of DNA double-strand break repair (DSBR) as opposed to somatic DSBR we tested whether the catalytic activity of PARP can be stimulated by γ-irradiation during Drosophila spermatogenesis. Using antibodies against pADPr we detected a significant increase in PARP activity in male germline cells during spermatogenesis upon γ-irradiation. Different stages of spermatogenesis revealed different subnuclear localization patterns of pADPr. In premeiotic and postmeiotic cells pADPr localized in a pattern overlapping with lamin and topoisomerase II at the nuclear rim. In primary spermatocytes pADPr is associated with three loci corresponding to the chromosomes at the nuclear periphery. Received: 12 October 1998; in revised form: 21 December 1998 / Accepted: 23 December 1998  相似文献   

6.
Poly(ADP-ribosyl)ation is a posttranslational modification catalyzed by the poly(ADP-ribose) polymerases (PARPs). These enzymes covalently modify glutamic, aspartic and lysine amino acid side chains of acceptor proteins by the sequential addition of ADP-ribose (ADPr) units. The poly(ADP-ribose) (pADPr) polymers formed alter the physico-chemical characteristics of the substrate with functional consequences on its biological activities. Recently, non-covalent binding to pADPr has emerged as a key mechanism to modulate and coordinate several intracellular pathways including the DNA damage response, protein stability and cell death. In this review, we describe the basis of non-covalent binding to pADPr that has led to the emerging concept of pADPr-responsive signaling pathways. This review emphasizes the structural elements and the modular strategies developed by pADPr-binding proteins to exert a fine-tuned control of a variety of pathways. Poly(ADP-ribosyl)ation reactions are highly regulated processes, both spatially and temporally, for which at least four specialized pADPr-binding modules accommodate different pADPr structures and reprogram protein functions. In this review, we highlight the role of well-characterized and newly discovered pADPr-binding modules in a diverse set of physiological functions.  相似文献   

7.
Analysis of ADP-ribose polymer sizes in intact cells   总被引:3,自引:0,他引:3  
Poly(ADP-ribose) is a polymer (pADPr) that is synthesized by poly (ADP-ribose) polymerases in response to DNA damaging agents. For instance, chemical alkylating agents such as MNNG [1] or physical stimulation of cells by -rays [2] are well known to induce pADPr synthesis. PARPs are members of a growing family of enzymes which includes PARP-1, PARP-2, S-PARP-1, tankyrase and V-PARP [3]. The association of PARP-1 and PARP-2 in DNA damage signaling pathways has been characterized, but tankyrase and V-PARP seem to be independent of DNA repair mechanisms.Poly(ADP-ribosyl)ation leads to heterogenous chain lengths of up to 200 units (mers) in vitro [3]. While most of these will be covalently bound to proteins, they may be released under alkaline conditions for analysis. Previous immunological methods such as immunoblots [4] showed that about 60–70% of the 6–8 mers pADPr were lost during fixation and that the very short pADPr (2–5 mers) were very weakly bound to the membrane [5]. Furthermore, detection of cellular pADPr using enzyme-linked immunosorbent assay (ELISA) revealed that some molecules of pADPr are also lost during fixation and washings. This phenomenon leads to underestimation of the short pADPr population in cells. Thus, evaluating which pADPr sizes are present in cells and tissues becomes critical.We report here the development of a new highly sensitive immunological method to detect synthesized pADPr sizes distribution in intact cells.  相似文献   

8.
Poly (ADP-ribose) polymerases (PARPs) catalyze the transfer of multiple poly(ADP-ribose) units onto target proteins. Poly(ADP-ribosyl)ation plays a crucial role in a variety of cellular processes including, most prominently, auto-activation of PARP at sites of DNA breaks to activate DNA repair processes. In humans, PARP1 (the founding and most characterized member of the PARP family) accounts for more than 90% of overall cellular PARP activity in response to DNA damage. We have found that, in contrast with animals, in Arabidopsis thaliana PARP2 (At4g02390), rather than PARP1 (At2g31320), makes the greatest contribution to PARP activity and organismal viability in response to genotoxic stresses caused by bleomycin, mitomycin C or gamma-radiation. Plant PARP2 proteins carry SAP DNA binding motifs rather than the zinc finger domains common in plant and animal PARP1 proteins. PARP2 also makes stronger contributions than PARP1 to plant immune responses including restriction of pathogenic Pseudomonas syringae pv. tomato growth and reduction of infection-associated DNA double-strand break abundance. For poly(ADP-ribose) glycohydrolase (PARG) enzymes, we find that Arabidopsis PARG1 and not PARG2 is the major contributor to poly(ADP-ribose) removal from acceptor proteins. The activity or abundance of PARP2 is influenced by PARP1 and PARG1. PARP2 and PARP1 physically interact with each other, and with PARG1 and PARG2, suggesting relatively direct regulatory interactions among these mediators of the balance of poly(ADP-ribosyl)ation. As with plant PARP2, plant PARG proteins are also structurally distinct from their animal counterparts. Hence core aspects of plant poly(ADP-ribosyl)ation are mediated by substantially different enzymes than in animals, suggesting the likelihood of substantial differences in regulation.  相似文献   

9.
Upon DNA damage induction, DNA-dependent poly(ADP-ribose) polymerases (PARPs) synthesize an anionic poly(ADP-ribose) (pADPr) scaffold to which several proteins bind with the subsequent formation of pADPr-associated multiprotein complexes. We have used a combination of affinity-purification methods and proteomics approaches to isolate these complexes and assess protein dynamics with respect to pADPr metabolism. As a first approach, we developed a substrate trapping strategy by which we demonstrate that a catalytically inactive Poly(ADP-ribose) glycohydrolase (PARG) mutant can act as a physiologically selective bait for the isolation of specific pADPr-binding proteins through its macrodomain-like domain. In addition to antibody-mediated affinity-purification methods, we used a pADPr macrodomain affinity resin to recover pADPr-binding proteins and their complexes. Second, we designed a time course experiment to explore the changes in the composition of pADPr-containing multiprotein complexes in response to alkylating DNA damage-mediated PARP activation. Spectral count clustering based on GeLC-MS/MS analysis was complemented with further analyses using high precision quantitative proteomics through isobaric tag for relative and absolute quantitation (iTRAQ)- and Stable isotope labeling by amino acids in cell culture (SILAC)-based proteomics. Here, we present a valuable resource in the interpretation of systems biology of the DNA damage response network in the context of poly(ADP-ribosyl)ation and provide a basis for subsequent investigations of pADPr-binding protein candidates.  相似文献   

10.
Long-term memory (LTM) formation requires new protein synthesis and new gene expression. Based on our work in Aplysia, we hypothesized that the rRNA genes, stimulation-dependent targets of the enzyme Poly(ADP-ribose) polymerase-1 (PARP-1), are primary effectors of the activity-dependent changes in synaptic function that maintain synaptic plasticity and memory. Using electrophysiology, immunohistochemistry, pharmacology and molecular biology techniques, we show here, for the first time, that the maintenance of forskolin-induced late-phase long-term potentiation (L-LTP) in mouse hippocampal slices requires nucleolar integrity and the expression of new rRNAs. The activity-dependent upregulation of rRNA, as well as L-LTP expression, are poly(ADP-ribosyl)ation (PAR) dependent and accompanied by an increase in nuclear PARP-1 and Poly(ADP) ribose molecules (pADPr) after forskolin stimulation. The upregulation of PARP-1 and pADPr is regulated by Protein kinase A (PKA) and extracellular signal-regulated kinase (ERK)—two kinases strongly associated with long-term plasticity and learning and memory. Selective inhibition of RNA Polymerase I (Pol I), responsible for the synthesis of precursor rRNA, results in the segmentation of nucleoli, the exclusion of PARP-1 from functional nucleolar compartments and disrupted L-LTP maintenance. Taken as a whole, these results suggest that new rRNAs (28S, 18S, and 5.8S ribosomal components)—hence, new ribosomes and nucleoli integrity—are required for the maintenance of long-term synaptic plasticity. This provides a mechanistic link between stimulation-dependent gene expression and the new protein synthesis known to be required for memory consolidation.  相似文献   

11.

Background  

Poly(ADP-ribosyl)ation is a posttranslational modification of nuclear proteins catalysed by poly(ADP-ribose) polymerases (PARPs), using NAD+ as a substrate. Activation of PARP-1 is in immediate response to DNA damage generated by endogenous and exogenous damaging agents. It has been implicated in several crucial cellular processes including DNA repair and maintenance of genomic stability, which are both intimately linked with the ageing process. The measurement of cellular poly(ADP-ribosyl)ation capacity, defined as the amount of poly(ADP-ribose) produced under maximal stimulation, is therefore relevant for research on ageing, as well as for a variety of other scientific questions.  相似文献   

12.
PARP1是真核细胞内具有多聚腺苷酸二磷酸核糖基(PAR)催化活性的蛋白酶,目前发现18个具有该活性的蛋白.多聚腺苷酸二磷酸核糖基化反应是细胞内进行的翻译后修饰,该修饰作用于许多蛋白,涉及到染色体的稳定,DNA损伤修复,基因转录,细胞的增长,死亡和凋亡等方面.在生理病理方面与炎症,肿瘤,衰老等疾病相关联.本文针对以上方面进行了总结和讨论.  相似文献   

13.
14.
Poly(ADP-ribosyl)ation is a reversible post-translational modification that plays an essential role in many cellular processes, including regulation of DNA repair. Cellular DNA damage response by the synthesis of poly(ADP-ribose) (PAR) is mediated mainly by poly(ADP-ribose) polymerase 1 (PARP1). The XPC-RAD23B complex is one of the key factors of nucleotide excision repair participating in the primary DNA damage recognition. By using several biochemical approaches, we have analyzed the influence of PARP1 and PAR synthesis on the interaction of XPC-RAD23B with damaged DNA. Free PAR binds to XPC-RAD23B with an affinity that depends on the length of the poly(ADP-ribose) strand and competes with DNA for protein binding. Using 32P-labeled NAD+ and immunoblotting, we also demonstrate that both subunits of the XPC-RAD23B are poly(ADP-ribosyl)ated by PARP1. The efficiency of XPC-RAD23B PARylation depends on DNA structure and increases after UV irradiation of DNA. Therefore, our study clearly shows that XPC-RAD23B is a target of poly(ADP-ribosyl)ation catalyzed by PARP1, which can be regarded as a universal regulator of DNA repair processes.  相似文献   

15.
16.
17.
Poly(ADP-ribose) polymerase-1 (PARP-1), nuclear protein of higher eukaryotes, specifically detects strand breaks in DNA. When bound to DNA strand breaks, PARP-1 is activated and catalyzes synthesis of poly(ADP-ribose) covalently attached to the row of nuclear proteins, with the main acceptor being PARP-1 itself. This protein participates in a majority of DNA dependent processes: repair, recombination; replication: cell death: apoptosis and necrosis. Poly(ADP-ribosyl)ation of proteins is considered as mechanism, which signals about DNA damage and modulate protein functioning in response to genotoxic impact. The main emphasis is made on the roles of PARP-1 and poly(ADP-ribosyl)ation in base excision repair (BER), the process, which provides repair of DNA breaks. The main proposed functions of PARP-1 in this process are: factor initiating assemblage of protein complex of BER; temporary protection of DNA ends; modulation of chromatin structure via poly(ADP-ribosyl)ation of histones; signaling function in detection of the levels of DNA damage in cell.  相似文献   

18.
Poly(ADP-ribosyl)ation is a posttranslational protein modification significant for genomic stability and cell survival in response to DNA damage. Poly(ADP-ribosyl)ation is catalyzed by poly(ADP-ribose)polymerases (PARPs). Among the 17 members of the PARP family, PARP-1 and PARP-2 are described as enzymes whose catalytic activity is stimulated by some types of DNA damages.  相似文献   

19.
The importance of poly(ADP-ribose) metabolism in the maintenance of genomic integrity following genotoxic stress has long been firmly established. Poly(ADP-ribose) polymerase-1 (PARP-1) and its catabolic counterpart, poly(ADP-ribose) glycohydrolase (PARG) play major roles in the modulation of cell responses to genotoxic stress. Recent discoveries of a number of other enzymes with poly(ADP-ribose) polymerase activity have established poly(ADP-ribosyl)ation as a general biological mechanism in higher eukaryotic cells that not only promotes cellular recovery from genotoxic stress and eliminates severely damaged cells from the organism, but also ensures accurate transmission of genetic information during cell division. Additionally, emerging data suggest the involvement of poly(ADP-ribosyl)ation in the regulation of intracellular trafficking, memory formation and other cellular functions. In this brief review on PARP and PARG enzymes, emphasis is placed on PARP-1, the best understood member of the PARP family and on the relationship of poly(ADP-ribosyl)ation to cancer and other diseases of aging.  相似文献   

20.
Protein poly(ADP-ribosyl)ation (PARylation) regulates a number of important cellular processes. Poly(ADP-ribose) glycohydrolase (PARG) is the primary enzyme responsible for hydrolyzing the poly(ADP-ribose) (PAR) polymer in vivo. Here we report crystal structures of the mouse PARG (mPARG) catalytic domain, its complexes with ADP-ribose (ADPr) and a PARG inhibitor ADP-HPD, as well as four PARG catalytic residues mutants. With these structures and biochemical analysis of 20 mPARG mutants, we provide a structural basis for understanding how the PAR polymer is recognized and hydrolyzed by mPARG. The structures and activity complementation experiment also suggest how the N-terminal flexible peptide preceding the PARG catalytic domain may regulate the enzymatic activity of PARG. This study contributes to our understanding of PARG catalytic and regulatory mechanisms as well as the rational design of PARG inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号