首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 465 毫秒
1.
When L-1210 murine leukemia cells were incubated with 60 microM PGE2 in culture medium containing fetal calf serum for various time, cell proliferation was inhibited dependent on incubation time. However, when the medium containing PGE2 was changed every 6 h during 24 h exposure to cells, growth inhibition became much weaker. Moreover, when the medium containing PGE2 was aged by preincubating without cells at 37 degrees C, growth inhibitory effect of the medium was enhanced with preincubation time, suggesting that active growth inhibitory compound(s) accumulated during preincubation. In culture medium containing fetal calf serum, PGE2 degraded time-dependently and the major product was identified as PGA2 by HPLC. Furthermore, when cells were incubated with the medium containing 60 microM[3H]PGE2 or the same medium aged by preincubation, we observed that the radioactivity was taken up by the cells time-dependently, and identified the incorporated radioactivity as PGA2. This uptake was closely correlated with decrease in viable cell number during incubation. These results suggested that growth inhibitory effect of PGE2 was due to the metabolic dehydration of PGE2 to PGA2, and PGA2, after taken up by cells, exerted cell growth inhibition.  相似文献   

2.
Asynchronous Chinese hamster ovary cells were microinjected with glutathione disulfide (GSSG). Successfully injected cells were scored by coinjecting FITC-dextran with GSSG, followed by fluorescent microscopy. After microinjection, cells were incubated for 2.5 h at 37 degrees C to permit thermotolerance development and then heated at 45 degrees C for 40 min. Cellular heat sensitivity was quantitated by counting the number of grains per cell after labeling heated cells with tritiated amino acids and processing for autoradiography. The data show that microinjection of GSSG induced thermotolerance which increased the number of grains per cell up to 500% of controls. Cells that were exposed to similar concentrations of GSSG in culture medium without microinjection or microinjected without GSSG did not develop thermotolerance.  相似文献   

3.
Maintenance of high cell viability was the main characteristic of our new strains of thermotolerant Saccharomyces. Total sugar conversion to ethanol was observed for sugarcane juice fermentation at 38-40 degrees C in less than 10 h and without continuous aeration of the culture. Invertase activity differed among the selected strains and increased during fermentation but was not dependent on cell viability. Invertase activity of the cells and optimum temperature for growth, as well as velocity of ethanol formation, were dependent on medium composition and the type of strain used. At high sugarcane syrup concentrations, the best temperature for ethanol formation by strain 781 was 35 degrees C. Distinct differences among the velocities of ethanol production using selected strains were also observed in sugarcane syrup at 35-38 degrees C.  相似文献   

4.
Spore germination and vegetative growth of Clostridium botulinum type E strain VH at 2 to 50 degrees C were studied. At all of these temperatures, germination began immediately after the addition of the spores to the germination medium. Microscopic observations during germination revealed three types of spores: phase bright (ungerminated), phase variable (partially germinated), and phase dark (fully germinated). At all temperatures except 50 degrees C, there was a pronounced lag between the initial appearance of phase-variable spores and their eventual conversion to phase-dark spores. The number of partially germinated spores increased steadily, reaching 40 to 60% by 18 to 21 h of incubation. During this time, phase-dark, fully germinated spores developed slowly and did not exceed 28% in any of the samples. At 18 to 26 h of incubation, the rate of full germination increased abruptly four-fold. There was extensive and relatively rapid germination at 2 degrees C, the lowest temperature tested, yielding about 60% phase-variable spores by 18 h, which became phase-dark by 26 h of incubation. The optimum temperature for partial and full germination was consistently 9 degrees C. Germination at 50 degrees C was exceptionally rapid and was completed within 1 to 2 h, although 40% remained phase bright. Vegetative cells showed detectable growth at 6 to 41 degrees C, with a distinct optimum at 32.5 degrees C. No growth occurred at 50 degrees C, and only marginal growth was observed at 6 to 14 degrees C. The psychrophilic nature of the germination process coupled with the cold tolerance of vegetative growth appears to give C. botulinum type E an advantage in cold climates as well as in cold-stored foods.  相似文献   

5.
Sporulation and enterotoxin formation were determined for 17 strains of Clostridium perfringens type A in autoclaved chicken dark meat and in Duncan-Strong sporulation medium. The mean numbers of heat-resistant spores detected after 24 h at 37 degrees C were log10 1.13 to log10 7.64/ml in Duncan-Strong medium and log10 4.93 to log10 6.59/g in chicken. Of 17 strains, 7 formed enterotoxin in Duncan-Strong culture supernatant (1.0 to 60 microgram/ml) and 8 produced enterotoxin in chicken (0.21 to 24 microgram/g). Additional studies with chicken were conducted with C. perfringens NCTC 8239. With an inoculum of 10(6) cells per g, greater than log10 7.99 vegetative cells per g were detected by 4 h in chicken at 37 degrees C. Heat-resistant spores occurred by 4 and 6 h and enterotoxin occurred by 8 and 6 h in autoclaved chicken dark meat and barbecued chicken drumsticks, respectively. Enterotoxin was detected in autoclaved dark meat after incubation at 45 degrees C for 1.5 h followed by 37 degrees C for 4.5 h, but not after incubation at 45 degrees C for 1.5 to 8 h. With an inoculum of 10(2) cells per g in oven-cooked or autoclaved chicken, greater than log10 8.00 vegetative cells per g were detected by 6 to 8 h at 37 degrees C, heat-resistant spores were detected by 8 h, and enterotoxin was detected by 12 h. A statistical analysis of odor determinants of chicken after growth of C. perfringens indicated that, at the 95% confidence level, the product was considered spoiled (off or unwholesome odor) by the time spores or enterotoxin were formed.  相似文献   

6.
Sporulation and enterotoxin formation were determined for 17 strains of Clostridium perfringens type A in autoclaved chicken dark meat and in Duncan-Strong sporulation medium. The mean numbers of heat-resistant spores detected after 24 h at 37 degrees C were log10 1.13 to log10 7.64/ml in Duncan-Strong medium and log10 4.93 to log10 6.59/g in chicken. Of 17 strains, 7 formed enterotoxin in Duncan-Strong culture supernatant (1.0 to 60 microgram/ml) and 8 produced enterotoxin in chicken (0.21 to 24 microgram/g). Additional studies with chicken were conducted with C. perfringens NCTC 8239. With an inoculum of 10(6) cells per g, greater than log10 7.99 vegetative cells per g were detected by 4 h in chicken at 37 degrees C. Heat-resistant spores occurred by 4 and 6 h and enterotoxin occurred by 8 and 6 h in autoclaved chicken dark meat and barbecued chicken drumsticks, respectively. Enterotoxin was detected in autoclaved dark meat after incubation at 45 degrees C for 1.5 h followed by 37 degrees C for 4.5 h, but not after incubation at 45 degrees C for 1.5 to 8 h. With an inoculum of 10(2) cells per g in oven-cooked or autoclaved chicken, greater than log10 8.00 vegetative cells per g were detected by 6 to 8 h at 37 degrees C, heat-resistant spores were detected by 8 h, and enterotoxin was detected by 12 h. A statistical analysis of odor determinants of chicken after growth of C. perfringens indicated that, at the 95% confidence level, the product was considered spoiled (off or unwholesome odor) by the time spores or enterotoxin were formed.  相似文献   

7.
Virulent and non-virulent strains of Flavobacterium psychrophilum of different serotypes were examined for survival and growth in non-immune and immune rainbow trout serum, in vitro. A majority of the examined strains consumed complement of non-immune serum, but the complement cascade was not able to cause an immediate (after 3 h incubation) notable reduction in viability of the inoculated cells. After 24 h incubation a more pronounced reduction in the number of viable bacteria was observed in untreated serum as well as in serum heated at 45 degrees C. In serum heated at 56 degrees C this reduction in cell number was not observed, but an increase in cell number did not occur either. The serum survival of one of the examined strains was different from the others in showing cell multiplication after 24 h incubation in normal as well as heat-treated (45 and 56 degrees C) serum. In immune serum no immediate reduction in viability of inoculated cells, of all tested strains, was observed. The number of viable cells showed a slow decrease or remained almost unchanged for up to 72 h post-inoculation in untreated serum, at 5 degrees C as well as 15 degrees C. In heat-treated serum (45 degrees C) the number of viable cells decreased slowly at 5 degrees C and 15 degrees C for up to 72 h. The results suggest that the examined strains were unaffected by the alternative complement reaction present in fish serum as well as by antibodies against F. psychrophilum. However, some unknown component(s) in the fish sera, or lack of nutrients or essential growth factors, inhibited the growth of most of the examined strains in the tested fish sera.  相似文献   

8.
Some mesophilic yeasts and a thermotolerant strain of Saccharomyces cerevisiae were found to grow at 40 degrees C in complex media containing 1% yeast extract when an inoculum of 10(6) or more cells.mL-1 was used. Yeast extract (6%) permitted Saccharomyces cerevisiae to grow at 40 degrees C even with a smaller inoculum size (10(5) cells.mL-1). The fraction of respiratory-deficient (petite) mutants in 40 degrees C grown culture was less than 10% except for the thermotolerant strain, which showed greatly increased levels depending on culture conditions. Seven of eight yeast strains exhibited extremely reduced cytochrome oxidase activity when grown at 40 degrees C irrespective of the frequency of the petite mutation. In contrast, the accumulation of ethanol in the medium and the ethanol-producing activity of the cells were not affected by growth at 40 degrees C.  相似文献   

9.
Early during vertebrate infection, T. cruzi is exposed to the host blood at an elevated temperature. Bearing this in mind, the pattern of protein synthesis of two parasite forms was examined. SDS-PAGE of heated organisms showed an increase in at least four proteins (103, 92, 75 and 61 kD). The temperature effect is also manifested in cells whose RNA synthesis is reduced by actinomycin D treatment. The synthesis of the '29 degrees proteins' is inhibited at 40 degrees C in organisms growing in culture medium; when the organisms were maintained in serum, the inhibition was not observed. The inhibitory effect observed at 40 degrees C was reversed when the temperature was shifted to 29 degrees C. These proteins were synthesized for 180 min at 37 degrees C or 360 min at 40 degrees C. The increased protein synthesis manifested at 37 degrees C had decreased 45 min after the temperature was lowered to 29 degrees C. When the cells were pre-incubated at 40 degrees C and shifted to 29 degrees C, the synthesis of the heat-induced proteins proceeded for at least 180 min. This pattern of heat induction in epimastigotes and trypomastigotes is the same irrespective of whether the incubation medium is LIT (for epimastigotes), M-16 (for trypomastigotes), or when serum was used for both cell types.  相似文献   

10.
Rat embryos in culture were exposed to pulsed ultrasound at SPTA intensity of 1.2 W/cm2 for 5, 15, and 30 min on day 9.5 of development. The whole embryo culture system allowed precise temperature control for directly examining the effects of ultrasound on the developing neural plate. After exposure, embryos were maintained in culture for a further 48 hr. No major morphological abnormalities were observed but a reduction in somite number occurred in the group insonated for 30 min, which was equivalent to a 2 hr delay in embryonic development. Similar delay in growth and "blistering" in the prosencephalon region of some embryos were observed after insonation for 15 min at 40.0 degrees C, an elevation of 1.5 degrees C over the temperature used for controls. Exposure to ultrasound for 15 min at 40 degrees C caused significant reduction in the growth of the head compared with that of control embryos. Heat shock genes for hsps 71/73 and 88 kD were induced after insonation for 30 min at 38.5 degrees C. Insonation did not cause any temperature changes in the culture medium. However, when the temperature of the culture medium was increased during insonation, defective development occurred. The results of these in vitro experiments suggest that ultrasound if resulting in significant hyperthermia could affect the development during early organogenesis of the neural plate and in particular they suggest that the embryo is at greater risk of damage during hyperthermic conditions. These results should provoke discussion of the concept that ultrasound in the febrile patient may present an increased embryonic risk which should be considered when deliberating on the use of diagnostic ultrasound procedures in the pregnant patient.  相似文献   

11.
Wild isolates of the egg-parasitic fungi Paecilomyces lilacinus and Verticillium chlamydosporium, obtained from the organic environment of Durg, Chhattisgarh, India, were subjected to screening for in vitro growth using different media types, range of incubation temperature and pH, and their predatory activity to the eggs of Fasciola gigantica and Gigantocotyle explanatum. Maximum growth of P. lilacinus was obtained in corn-meal agar compared to any other media types. The preferred medium for growth of V. chlamydosporium was corn-meal agar, followed by potato-dextrose agar. After initial growth for 16 h of incubation, no growth was observed in water agar for both the fungi. Six different temperatures--4 degrees C, 10 degrees C, 18 degrees C, 26 degrees C, 34 degrees C and 40 degrees C--were used to observe growth profiles of the fungi in corn-meal agar medium. While no and very little growth of P. lilacinus and V. chlamydosporium was observed at 4 degrees C and 10 degrees C, respectively, growth profiles of both the fungi were optimal at 26-40 degrees C. A range of pH (pH 4-8) supported growth of both P. lilacinus and V. chlamydosporium. Full-grown plates of the fungi baited with viable eggs of F. gigantica and G. explanatum revealed that V. chlamydosporium was more vigorous in its egg-parasitic ability compared to P. lilacinus. Distortion of the eggs started on day 2-3 of egg baiting in culture plates of V. chlamydosporium, with complete distortion by day 7. On the contrary, P. lilacinus exhibited very limited egg-parasitic ability and some of the baited eggs even showed development of miracidia.  相似文献   

12.
The number of colonies formed by unirradiated Clostridium botulinum 62A spores was independent of temperature, in the range from 20 to 45 degrees C (in 5 degrees C increments); no colonies developed at 50 degrees C. Spores irradiated at 1.2 or 1.4 Mrads produced more macrocolonies at 40 degrees C than at higher or lower temperatures. Apparently, radiation-injured spores were capable of repair of 40 degrees C than at the other temperatures studied. More than 99% of the radiation (1.2 Mrads) survivors were injured and were unable to form macrocolonies in the presence of 5% NaCl. The germinated radiation-injured spores were also sensitive to dilution, resulting in the loss of viability of 77 to 79% of the radiation survivors. At 30 and 40 degrees C, the irradiated spores did not differ significantly in the extent of germination (greater than 99% at both 30 and 40 degrees C), emergence (64% at 30 degrees C and 67% at 40 degrees C), and the maximum number of emerged cells that started to elongate (69% at 30 degrees C and 79% at 40 degrees C). However, elongation was remarkably more extensive at 40 degrees C than at 30 degrees C. Many elongated cells lysed within 48 h at 30 degrees C, indicating an impaired repair mechanism. If the radiation-injured spores were incubated at 40 degrees C in the recovery (repair) medium for 8 to 10 h, they germinated, emerged, and elongated extensively and were capable of repair. If, after 8 to 10 h at 40 degrees C, these cultures were shifted to 30 degrees C, the recovery at 30 increased by more than eightfold, resulting in similar colony counts at 30 and 40 degrees C. Thus, repair appeared to be associated with outgrowth. Repair did not occur in the presence of chloramphenicol at 40 degrees C, whereas penicillin had no effect, suggesting that the repair involved protein synthesis but did not require multiplication.  相似文献   

13.
Membrane fluidity adaptation to the low growth temperature in Bacillus subtilis involves two distinct mechanisms: (1) long-term adaptation accomplished by increasing the ratio of anteiso- to iso-branched fatty acids and (2) rapid desaturation of fatty acid chains in existing phospholipids by induction of fatty acid desaturase after cold shock. In this work we studied the effect of medium composition on cold adaptation of membrane fluidity. Bacillus subtilis was cultivated at optimum (40 degrees C) and low (20 degrees C) temperatures in complex medium with glucose or in mineral medium with either glucose or glycerol. Cold adaptation was characterized by fatty acid analysis and by measuring the midpoint of phospholipid phase transition T(m) (differential scanning calorimetry) and membrane fluidity (DPH fluorescence polarization). Cells cultured and measured at 40 degrees C displayed the same membrane fluidity in all three media despite a markedly different fatty acid composition. The T(m) was surprisingly the highest in the case of a culture grown in complex medium. On the contrary, cultivation at 20 degrees C in the complex medium gave rise to the highest membrane fluidity with concomitant decrease of T(m) by 10.5 degrees C. In mineral media at 20 degrees C the corresponding changes of T(m) were almost negligible. After a temperature shift from 40 to 20 degrees C, the cultures from all three media displayed the same adaptive induction of fatty acid desaturase despite their different membrane fluidity values immediately after cold shock.  相似文献   

14.
Nine strains of bacteroides fragilis were cultivated in stirred fermentors and tested for their ability to produce glycosidases. B. fragilis subsp. vulgatus B70 was used for optimizing the production of glycosidases. The highest bacterial yield was obtained in proteose peptone-yeast extract medium. The optimum pH for maximal bacterial yield was 7.0, and the optimum temperature for growth was 37 degrees C. The formation of glycosidases was optimal between pH 6.5 and 7.5, and the optimum temperature for synthesis of glycosidases was between 33 and 37 degrees C. Culture under controlled conditions in fermentors gave more reproducible production of glycosidases than static cultures in bottles. The strain was also grown in continuous culture at a dilution rate of 0.1 liter/h at pH 7.0 and 37 degrees C with a yield of 2.0 mg of dry weight per ml in the complex medium. The formation of glycosidases remained constant during the entire continuous process.  相似文献   

15.
Nine strains of bacteroides fragilis were cultivated in stirred fermentors and tested for their ability to produce glycosidases. B. fragilis subsp. vulgatus B70 was used for optimizing the production of glycosidases. The highest bacterial yield was obtained in proteose peptone-yeast extract medium. The optimum pH for maximal bacterial yield was 7.0, and the optimum temperature for growth was 37 degrees C. The formation of glycosidases was optimal between pH 6.5 and 7.5, and the optimum temperature for synthesis of glycosidases was between 33 and 37 degrees C. Culture under controlled conditions in fermentors gave more reproducible production of glycosidases than static cultures in bottles. The strain was also grown in continuous culture at a dilution rate of 0.1 liter/h at pH 7.0 and 37 degrees C with a yield of 2.0 mg of dry weight per ml in the complex medium. The formation of glycosidases remained constant during the entire continuous process.  相似文献   

16.
A procedure for continuous culture of rat conceptuses during organogenesis with a number of advantages over existing methods has been established. In this method, rat conceptuses of pregnancy Day 10 (embryonic age 9.5 days; Witschi Stage 13) with embryos at pre- or early somite neurula stage were cultured for 96 h in roller bottles fitted with New Brunswick swivel caps. These caps have 5 inlets which permit continuous gassing of culture bottles and withdrawal of samples or supply of growth medium. The culture medium used in this study was immediately centrifuged, heat-inactivated fresh male rat serum. Continuous gassing of roller bottles with humidified gas mixtures of 5% CO2 and increasing O2 concentrations (5, 20, 40 and 95%), and balanced N2 provided optimal progressive conceptus development and differentiation. The average pO2 of the medium rose from 73.4 to 427.3 mm Hg, while the pCO2 and pH remained relatively stable. During the 96-h culture period, growth and differentiation of conceptuses were considerable, reaching Witschi Stage 27/28. Cultured embryos developed 48-52 somites with extensive differentiation of various organs: brain and sensory organs, heart and circulatory system, limb bud and hepatic prominence, and numerous internal visceral organs. Embryonic DNA and protein contents increased 100- to 200-fold from the initial values. Therefore, this improved procedure with periodic progressive increases in pO2 and stable low pCO2 and physiologic pH in the medium permits growth and differentiation of rat conceptuses in vitro over a prolonged period of time.  相似文献   

17.
The addition of hydrocortisone (HC) or dexamethasone (DEX) to WI38 cells at subcultivation is known to result in increased saturation densities (20-40%). We report that maximal increases in saturation density are, however, only observed if HC is added to the culture shortly after subcultivation. We have found that the proliferative response of WI38 cells to glucocorticoids is mediated by a secondary stimulatory factor(s) present in medium-conditioned by cells in the presence of the hormone. Control cultures refed with medium conditioned in the presence of HC for the first 24 h after seeding (24 h HC-CM) achieve saturation densities 20-40% higher than cultures refed with either medium conditioned in the absence of the hormone (24 h CM) or 24 h CM supplemented with fresh HC. Furthermore, WI38 cultures remain responsive to the stimulatory activity present in 24 h HC-CM throughout the growth cycle. The stimulatory effects of 24 h HC-CM are enhanced by repeatedly refeeding cultures; WI38 cells refed every 2 days with 24 h HC-CM demonstrate an extended period of logarithmic growth and achieve densities 2-3 times higher than controls. A preliminary characterization of this activity shows it to be of low molecular weight (MW) (dialyzable using 12 000 MW cut-off tubing) and heat-stable (75 degrees C).  相似文献   

18.
The protease activity, as assayed at pH 8.0 with azocasein as substrate, of a ciliate protozoan Tetrahymena pyriformis NT-1, was found to alter by growing the cells at various constant temperatures or at shifted temperatures. The intracellular protease activity, when cells were grown at either constant 39 degrees C or 15 degrees C, was decreased throughout the growth phase with significant secretion into the medium. On the other hand, when the culture temperature was transferred from 39 degrees C to 15 degrees C, the protease activity in cells was greatly increased up to about 28-fold at 8 h after the shift. There was, however, no secretion into the medium during the cold acclimation after the shift, where no cell division occurred. The elevated protease activity was quickly decreased to the control level when the culture was warmed to 39 degrees C after 8-h chilling, and recovery of normal cell division was seen. The marked increase in the protease activity caused by the shift to 15 degrees C was completely blocked by the addition of either cycloheximide or actinomycin D. The thermally induced enhancement of protease activity was found to occur with no different preference between three protease fractions.  相似文献   

19.
The occurrence of thermotolerance, induced by an initial heat treatment at 42 degrees C for 30 min, was studied in adult non-proliferating rat hepatocytes in primary culture. Heat treatment at 42 degrees C for 30 min did not affect cell morphology, cell attachment, Na+, K+ pump activity, K+ content and lactate dehydrogenase accumulation into the medium. In contrast, after exposure to 44 degrees C for 30 min a dramatic change in all these parameters was observed. However, of the cells, which remained attached to the substratum 24 h after treatment, Na+, K+ pump activity and K+ content appeared to be normal compared with untreated cells. Cells, pre-treated at 42 degrees C for 30 min, followed by incubation at 37 degrees C for 16 h, were found to be completely thermal resistant against heat treatment at 44 degrees C, as judged by cell morphology, detachment from the substratum, lactate dehydrogenase accumulation, Na+, K+ pump activity and K+ content. These results show that induction and development of thermotolerance can be studied in non-proliferating cells in primary culture.  相似文献   

20.
Spironucleus vortens were cultivated in either an artificial medium at different temperatures, or in medium at various pH conditions or supplemented with different bile concentrations at 25 degrees C. Temperature, pH and bile requirements for the optimal growth of the parasite were determined. Parasites multiplied quickly at 28 and 31 degrees C and reached maximum numbers on Day 4 of cultivation, whereafter they did not survive. At 25 degrees C, parasites survived longer than those at 28 and 31 degrees C with no difference in multiplication rate during the exponential phase. The longest survival period was seen at 22 degrees C, although the growth rate of the parasite was not as high as those at 25 degrees C. At a higher temperature of 37 degrees C, no parasites were observed alive after the second day of cultivation. Optimal pH range for the parasite's growth was 6.5 to 7.5, with the highest cell number at pH 7.5. Parasites survived longest (15 d) at pH 6.0, although the maximum number of cells was lower than those at the optimal pH. Parasites were dead within 24 h at pH levels above 8.5 or below 5.5. All cultures supplemented with either bovine or fish bile yielded numbers of parasites lower than cultures with no bile. In addition, parasite growth was significantly suppressed in medium supplemented with higher concentrations of bile. These results indicate that the optimal condition for the in vitro cultivation of S. vortens is 25 degrees C and pH 6.5 to 7.5 without supplementation with bile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号