首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chondroitin 4-sulphate, chondroitin 6-sulphate, dermatan sulphate and keratan sulphate were N-deacetylated by treatment with hydrazine and then cleaved with HNO2 at pH 4.0, and the resulting products were reduced with NaB3H4. This reaction sequence cleaved the glycosaminoglycans at their N-acetyl-D-glucosamine or N-acetyl-D-galactosamine residues, which were converted into 3H-labelled 2,5-anhydro-D-mannitol (AManR) or 2,5-anhydro-D-talitol (ATalR) residues respectively. The end-labelled disaccharides, composed of D-glucuronic acid (GlcA), L-iduronic acid (IdoA) or D-galactose (Gal) and one of the anhydrohexitols, were identified as follows: both chondroitin 4-sulphate and chondroitin 6-sulphate gave GlcA----ATalR(4-SO4), GlcA----ATalR(6-SO4), IdoA----ATalR (4-SO4) and GlcA(2-SO4)----ATalR(6-SO4); dermatan sulphate gave IdoA----ATalR(4-SO4), GlcA----ATalR(4-SO4), GlcA----ATalR(6-SO4)----IdoA(2-SO4)ATalR(4-SO4) and IdoA----ATalR (4,6-diSO4); keratan sulphate gave Gal(6-SO4)----AManR(6-SO4), Gal----AManR(6-SO4), Gal(6-SO4)----AManR and Gal----AManR. Several additional disaccharides were generated by treatment of the uronic acid-containing disaccharides with hydrazine to epimerize their uronic acid residues at C-5. A number of these disaccharides were found to be substrates for lysosomal sulphatases and glycuronidases. Methods were developed for the separation of all of the disaccharide products by h.p.l.c. The rate of N-deacetylation of chondroitin 4-sulphate by hydrazinolysis was significantly lower than the rate of N-deacetylation of chondroitin 6-sulphate or chondroitin. Dermatan sulphate was N-deacetylated at an intermediate rate. The relative amounts of disaccharides obtained from chondroitin 4-sulphate, chondroitin 6-sulphate and dermatan sulphate under optimum hydrazinolysis/deamination conditions were comparable with the amounts of the corresponding products released from the polymers by chondroitinase treatment.  相似文献   

2.
As model compounds for Ni(II)-binding heparin-like compounds isolated from human kidneys (Templeton, D.M. & Sarkar, B. (1985) Biochem. J. 230 35-42.), we investigated two disaccharides--4-O-(2-O-sulfo-alpha-L-idopyranosyluronic acid)-2,5-anhydro- D-mannitol, disodium salt (1a), and 4-O-(2-O-sulfo-alpha-L-idopyranosyluronic acid)-6-O- sulfo-2,5-anhydro-D-mannitol, trisodium salt (1b)--that were isolated from heparin after nitrous acid hydrolysis and reduction. The monosulfate (1a) was active whereas the disulfate (1b) was inactive in a high-performance liquid chromatography (HPLC) binding assay with the tracer ions 63Ni(II) 54Mn(II), 65Zn(II), and 109Cd(II). This result is in accord with the isolation of two 67Cu(II) and 63Ni(II) binding fractions from a complete pool of nitrous-acid-derived heparin disaccharides using sulfate gradients and a MonoQ anion exchange column on an FPLC system. One was identified as compound (1a) and the other as a tetrasulfated trisaccharide by high resolution FAB-MS, NMR and HPLC-PAD. Similarly, two synthetic disaccharides-methyl, 2-O-sulfo-4-O-(alpha-L-idopyranosyluronic acid)-2-deoxy-2-sulfamide-alpha-D-glucosamine, trisodium salt [IdopA2S(alpha 1,4)GlcNS alpha Me, 2a], and 2-O-sulfo-4-O-(alpha-L-idopyranosyluronic acid)-2-deoxy-2-sulfamide-6-O-sulfo- alpha-D-glucosamine, tetrasodium salt [IdopA2S (alpha 1,4)GlcNS6S alpha Me, 2b]--were shown to bind tracer amounts of 63Ni and 67Cu using chromatographic assays. Subsequently, 1H NMR titrations of 1a, 1b, 2a, and 2b with Zn (OAc)2 were analyzed to yield 1:1 Zn(II)-binding constants of 472 +/- 59, 698 +/- 120, 8,758 +/- 2,237 and 20,100 +/- 5,598 M-1, respectively. The values for 2a and 2b suggest chelation. It is suggested that the idopyranosiduronic acid residue is the major metal binding site. NMR evidence for this hypothesis comes from marked 1H and 13C chemical shift changes to the iduronic acid resonances after addition of diamagnetic Zn(II) ions.  相似文献   

3.
Hydrazinolysis of heparin and other glycosaminoglycans.   总被引:2,自引:0,他引:2       下载免费PDF全文
Heparin, carboxy-group-reduced heparin, several sulphated monosaccharides and disaccharides formed from heparin, and a tetrasaccharide prepared from chondroitin sulphate were treated at 100 degrees C with hydrazine containing 1% hydrazine sulphate for periods sufficient to cause complete N-deacetylation of the N-acetylhexosamine residues. Under these hydrazinolysis conditions both the N-sulphate and the O-sulphate substituents on these compounds were completely stable. However, the uronic acid residues were converted into their hydrazide derivatives at rates that depended on the uronic acid structures. Unsubstituted L-iduronic acid residues reacted much more slowly than did unsubstituted D-glucuronic acid or 2-O-sulphated L-iduronic acid residues. The chemical modification of the carboxy groups resulted in a low rate of C-5 epimerization of the uronic acid residues. The hydrazinolysis reaction also caused a partial depolymerization of heparin but not of carboxy-group-reduced heparin. Treatment of the hydrazinolysis products with HNO2 at either pH 4 or pH 1.5 or with HIO3 converted the uronic acid hydrazides back into uronic acid residues. The use of the hydrazinolysis reaction in studies of the structures of uronic acid-containing polymers and the implications of the uronic acid hydrazide formation are discussed.  相似文献   

4.
Radiolabelled disaccharide substrates for alpha-L-iduronidase, beta-D-glucuronidase, and sulfoiduronate sulfatase have been prepared from dermatan sulfate by application in sequence of N-deacetylation, deaminative cleavage, and reduction with NaBT4. The yield of disaccharides was approximately 87% of the total oligosaccharide fraction. Five disaccharides were isolated and tentatively identified. The major disaccharide, O-(alpha-L-idopyranosyluronic acid)-(1 leads to 3)-2,5-anhydro-D-[1-3H]talitol 4-sulfate (IdoA-anT4S), represented approximately 75% of the total disaccharide fraction. The other disaccharides were O-(alpha-L-idopyranosyluronic acid 2-sulfate)-(1 leads to 3)-2,5-anhydro-D-[1-3H]talitol 4-sulfate (IdoA2S-anT4S), O-(beta-D-glucopyranosyluronic acid)-(1 leads to 3)-2,5-anhydro-D-[1-3H]talitol 4-sulfate (GlcA-anT4S), O-(beta-D-glucopyranosyluronic acid)-(1 leads to 3)-2,5-anhydro-D-[1-3H]talitol 6-sulfate (GlcA-anT6S), and O-(alpha-L-idopyranosyluronic acid)-(1 leads to 3)-2,5-anhydro-D-[1-3H]talitol (IdoA-anT), which represented approximately 4.5, 11.2, 1.0, and 1.8%, respectively, of the total disaccharide fraction. When incubated with cultured skin-fibroblasts from normal controls, IdoA-anT4S was shown to be a sensitive substrate for alpha-L-iduronidase to produce 2,5-anhydro-D-talitol 4-sulfate (anT4S). Activity toward IdoA-anT4S was not observed with fibroblast homogenates from alpha-L-iduronidase-deficient patients (Mucopolysaccharidosis Type I). Similarly, normal-fibroblast homogenates degraded GlcA-anT6S to anT6S, and GlcA-anT4S to anT4S, at a rate 6 to 8 times greater than found for fibroblasts from beta-D-glucuronidase-deficient patients (Mucopolysaccharidosis Type VII). IdoA-anT4S was hydrolysed by alpha-L-iduronidase at a rate 365 times greater than that for IdoA-anT. Sulfation of the anhydro-D-[1-3H]talitol residues is an important structural determinant in the mechanism of action of alpha-L-iduronidase on disaccharide substrates. IdoA2S-anT4S was degraded to IdoA-anT4S and then to anT4S by normal-fibroblast homogenates, whereas fibroblasts from alpha-L-iduronidase-deficient and sulfoiduronate sulfatase-deficient (Mucopolysaccharidosis Type II) patients produced considerably decreased levels of anT4s and IdoA-anT4S (and anT4S), respectively.  相似文献   

5.
Oversulphated chondroitin sulphate proteoglycan from squid skin was isolated from 4 M guanidine hydrochloride extract by ion-exchange chromatography, gel chromatography and density gradient centrifugation. The proteoglycan had Mr 3.5 x 10(5), contained on average six oversulphated chondroitin sulphate chains (Mr 4 x 10(4)) bound on a polypeptide of Mr 2.8 x 10(4), and oligosaccharides consisting of both hexosamines, glucuronic acid, sulphates and fucose as the only neutral monosaccharide. The major amino acids of the proteoglycan protein core are glycine (corresponding to about one third of the total amino acids), aspartic acid/asparagine and serine, together amounting to 50% of the total. The proteoglycan was resistant to the proteolytic enzymes V8 protease, trypsin (treated with diphenylcarbamoyl chloride), alpha-chymotrypsin and pronase, while it was completely degraded by papain and to a large extent by collagenase. Pretreated proteoglycan with chondroitinase AC was degraded by pronase to a large extent and slightly by V8 protease and trypsin. The proteoglycan did not interact with hyaluronic acid and did not form self-aggregates. Oversulphated chondroitin sulphate chains were composed of unusual sulphated disaccharide units which were isolated and characterized by HPLC. In particular, it contained 2-acetamido-2-deoxy-3-O-(alpha-L-threo-4-enopyranosyluronic acid)-D-galactose 4-sulphate (delta di-4S) and disulphated disaccharides (delta di-diS) [90% 2-acetamido-2-deoxy-3-O-(alpha-L-threo-4-enopyranosyluronic acid 2/3-sulphate)-D-galactose 6-sulphate (delta di-diSD) and 10% 2-acetamido-2-deoxy-3-O-(alpha-L-threo-4-enopyranosyluronic acid 2/3-sulphate)-D-galactose 4-sulphate (delta di-diSK)] as the major disaccharides, significant amounts of trisulphated disaccharides (delta di-triS) and small amounts of 2-acetamido-2-deoxy-3-O-(alpha-L-threo-4-enopyranosyluronic acid)-D-galactose 6-sulphate (delta di-6S) and 2-acetamido-2-deoxy-3-O-(alpha-L-threo-4-enopyranosyluronic acid)-D-galactose (delta di-OS). Trisulphated disaccharides contained sulphate groups at C-4 and C-6 of the galactosamine and at C-2 or C-3 of the glucuronic acid. By HPLC analysis of a pure preparation of oversulphated chondroitin sulphate, it was found that it contains glucose, galactose, mannose and fucose most likely as branches.  相似文献   

6.
The molecular structure of human skin fibroblast heparan sulphate was examined by specific chemical or enzymic depolymerization and high-resolution separation of the resulting oligosaccharides and disaccharides. Important features of the molecular organization, disaccharide composition and O-sulphate disposition of this heparan sulphate were identified. Analysis of the products of HNO2 hydrolysis revealed a polymer in which 53% of disaccharide units were N-acetylated and 47% N-sulphated, with an N-/O-sulphate ratio of 1.8:1. These two types of disaccharide unit were mainly located in separate domains. Heparitinase and heparinase scission indicated that the iduronate residues (37% of total hexuronate) were largely present in contiguous disaccharide sequences of variable size that also contained the majority of the N-sulphate groups. Most of the iduronate residues (approx. 70%) were non-sulphated. About 8-10% of disaccharide units were cleaved by heparinase, but only a minority of these originated from contiguous sequences in the intact polymer. Trisulphated disaccharide units [alpha-N-sulpho-6-sulphoglucosaminyl-(1----4)-iduronate 2-sulphate], which are the major structural units in heparin, made up only 3% of the disaccharide units in heparan sulphate. O-Sulphate groups (approx. 26 per 100 disaccharide units) were distributed almost evenly among C-6 of N-acetylglucosamine, C-2 of iduronate and C-6 of N-sulphated glucosamine residues. The results indicate that the sulphated regions of heparan sulphate have distinctive and potentially variable structural characteristics. The high content of non-sulphated iduronate in this heparan sulphate species suggests a conformational versatility that could have important implications for the biological properties of the polymer.  相似文献   

7.
Four peptidokeratan sulphate fractions of different Mr and degree of sulphation were cut from the pig corneal keratan sulphate distribution spectrum. After exhaustive digestion with keratanase, the fragments were separated on DEAE-Sephacel and Bio-Gel P-10 and analysed for their Mr, degree of sulphation and amino sugar and neutral sugar content. It was found that every glycosaminoglycan chain is constructed of a constant domain of non-sulphated and monosulphated disaccharide units and a variable domain of disulphated disaccharide units. Total neuraminic acid of the four peptidokeratan sulphates was recovered from their isolated linkage-region oligosaccharides. In kinetic studies, the four peptidokeratan sulphates were investigated for Mr distribution after various incubation times with keratanase. There was a continuous shift towards lower Mr and no appearance of a distinct intermediate-sized product at any degradation time. The linkage-region oligosaccharide was already being liberated after a very short incubation period. From the results of these kinetic investigations in connection with the results of neuraminic acid analyses it is suggested that there exists only one disaccharide chain per peptidokeratan sulphate molecule. A model of corneal keratan sulphate is postulated. One of the alpha-mannose residues in the linkage region is bound to an oligosaccharide consisting of a lactosamine and a terminal sialic acid. The other alpha-mannose residue is attached to the disaccharide chain. This chain contains one or two non-sulphated disaccharide units at the reducing end, followed by 10-12 monosulphated disaccharide units. The disulphated disaccharide moiety of variable length is positioned at the non-reducing end of the chain.  相似文献   

8.
Although 2-O-sulfated L-iduronic acid (IdoA) residues have been known to occur in heparin, 2-O-sulfated D-glucuronic acid (GlcA) residues have been reported only recently (Bienkowski, M. J., and Conrad, H. E. (1985) J. Biol. Chem. 250, 356-365). Disaccharides prepared by cleavage of heparin and N-deacetylated chondroitin 6-sulfate with nitrous acid were used to demonstrate a new sulfatase that catalyzed the removal of the 2-O-sulfate substituents from GlcA but not IdoA residues. The deamination products were labeled by NaB3H4 reduction to give disaccharides from heparin and chondroitin sulfate which had reducing terminal 2,5-anhydro-D-mannitol ([3H]AManR) and 2,5-anhydro-D-talitol ([3H]ATalR) residues, respectively. IdoA(2-SO4)-[3H]AManR(6-SO4) from heparin and GlcA(2-SO4)-[3H]ATalR(6-SO4) from chondroitin sulfate were purified for use as substrates. GlcA(2-SO4)-[3H]AManR(6-SO4) was prepared by epimerization of IdoA(2-SO4)-[3H]AManR(6-SO4) with hydrazine at 100 degrees C. Lysosomal enzyme preparations from chick embryo chondrocytes and from two normal human fibroblast cell lines catalyzed the removal of the 2-O-SO4 substituent from the uronic acid residues of IdoA(2-SO4)-[3H]AManR(6-SO4), GlcA(2-SO4)-[3H] AManR(6-SO4), and GlcA(2-SO4)-[3H]ATalR(6-SO4). In contrast, a lysosomal enzyme preparation from a human fibroblast cell line deficient in idurono-2-sulfatase (Hunter's-syndrome), which had no activity on the IdoA(2-SO4)-[3H]AManR(6-SO4), converted GlcA(2-SO4)-[3H]AManR(6-SO4) to a mixture of GlcA-[3H] AManR(6-SO4) and [3H]AManR(6-SO4). This enzyme also converted GlcA(2-SO4)-[3H]ATalR(6-SO4) to a mixture of GlcA-[3H]ATalR(6-SO4) and [3H]ATalR(6-SO4). Digestion of both GlcA(2-SO4)-[3H]AManR(6-SO4) and GlcA(2-SO4)-[3H]ATalR(6-SO4) was inhibited by 35SO2-4 and was arrested at the monosulfated disaccharide stage by 1,4-saccharolactone. The glucurono-2-sulfatase exhibited a pH optimum of 4. The results indicate that there exists a separate sulfatase for the removal of sulfate substituents from C-2 of GlcA residues in glycosaminoglycans.  相似文献   

9.
Dermatan sulfate increases the rate of inhibition of thrombin by heparin cofactor II (HCII) approximately 1000-fold by providing a catalytic template to which both the inhibitor and the protease bind. Dermatan sulfate is a linear polymer of D-glucuronic acid (GlcA) or L-iduronic acid (IdoA) alternating with N-acetyl-D-galactosamine (GalNAc) residues. Heterogeneity in dermatan sulfate results from varying degrees of O-sulfation and from the presence of the two types of uronic acid residues. To characterize the HCII-binding site in dermatan sulfate, we isolated the smallest fragment of dermatan sulfate that bound to HCII with high affinity. Dermatan sulfate was partially N-deacetylated by hydrazinolysis, cleaved with nitrous acid at pH 4, and reduced with [3H]NaBH4. The resulting fragments, containing an even number of monosaccharide units with the reducing terminal GalNAc converted to [3H]2,5-anhydro-D-talitol (ATalR), were size-fractionated and then chromatographed on an HCII-Sepharose column. The smallest HCII-binding fragments were hexasaccharides, of which approximately 6% bound. Based on ion-exchange chromatography, the bound material appeared to comprise a heterogeneous mixture of molecules possessing four, five, or six sulfate groups per hexasaccharide. Subsequently, hexasaccharides with the highest affinity for HCII were isolated by overloading the HCII-Sepharose column. The high-affinity hexasaccharides were fractionated by strong anion-exchange chromatography, and one major peak representing approximately 2% of the starting hexasaccharides was isolated. The high-affinity hexasaccharide was cleaved to disaccharides that were analyzed by anion-exchange chromatography, paper electrophoresis, and paper chromatography. A single disulfated disaccharide, IdoA(2-SO4)----ATalR(4-SO4) was observed, indicating that the hexasaccharide has the following structure: IdoA(2-SO4)----GalNAc(4-SO4)----IdoA(2-SO4)---- GalNAc(4-SO4)----IdoA(2-SO4)----ATalR(4-SO4). Since IdoA(2-SO4)----GalNAc(4-SO4) comprises only approximately 5% of the disaccharides present in intact dermatan sulfate, clustering of these disaccharides must occur during biosynthesis to form the high-affinity binding site for HCII.  相似文献   

10.
Human glucuronate 2-sulphatase (GAS), which is involved in the degradation of the glycosaminoglycans heparan sulphate and chondroitin 6-sulphate, was purified almost 2,000,000-fold to homogeneity in 8% yield from liver with a four-step six-column procedure, which consists of a concanavalin A-Sepharose/Blue A-agarose coupled step, a DEAE-Sephacel/octyl-Sepharose coupled step, CM-Sepharose chromatography and gel-permeation chromatography. Although more than 90% of GAS activity had a pI of greater than 7.5, other forms with pI values of 5.8, 5.3, 4.7 and less than 4.0 were also present. The pI greater than 7.5 form of GAS had a native molecular mass of 63 kDa. SDS/polyacrylamide-gel-electrophoretic analysis resulted in two polypeptide subunits of molecular mass 47 and 19.5 kDa. GAS was active towards disaccharide substrates derived from heparin [O-(beta-glucuronic acid 2-sulphate)-(1----4)-O-(2,5)-anhydro[1-3H]mannitol 6-sulphate (GSMS)] and chondroitin 6-sulphate [O-(beta-glucuronic acid 2-sulphate-(1----3)-O-(2,5)-anhydro[1-3H]talitol 6-sulphate (GSTS)]. GAS activity towards GSMS and GSTS was at pH optima of 3.2 and 3.0 respectively with apparent Km values of 0.3 and 0.6 microM respectively and corresponding Vmax values of 12.8 and 13.7 mumol/min per mg of protein respectively. Sulphate and phosphate ions are potent inhibitors of enzyme activity. Cu2+ ions stimulated, whereas EDTA inhibited enzyme activity. It was concluded that GAS is required together with a series of other exoenzyme activities in the lysosomal degradation of glycosaminoglycans containing glucuronic acid 2-sulphate residues.  相似文献   

11.
Oligosaccharides obtained from heparan sulphate by nitrous acid degradation were shown to be degraded sequentially by beta-D-glucuronidase or alpha-L-iduronidase followed by alpha D-N-acetylglucosaminidase. Structural analysis of the tetrasaccharide fraction showed the following. (1) N-Acetylglucosamine is preceded by a non-sulphated uronic acid residue that can be either D-glucuronic of L-iduronic acid, but followed by a glucuronic acid residue. (2) The N-acetylglucosamine in the major fraction is sulphated. (3) Very few if any of the uronic acid residues are sulphated (4). The results indicate that the area of the heparan sulphate chain where disaccharides containing N-acetylglucosamine and N-sulphated glucosamine residues alternate is higher in sulphate content than expected and that the sulphate groups are mainly located on the hexosamine units.  相似文献   

12.
The microstructure of keratan sulphate purified from the interglobular domain, the keratan sulphate-rich region and total aggrecan was compared using fluorophore-assisted-carbohydrate-electrophoresis. Keratan sulphate in the interglobular domain was substantially less sulphated than keratan sulphate elsewhere on aggrecan, based on the ratio of unsulphated: monosulphated disaccharides generated by endo-β-galactosidase digestion, and the ratio of monosulphated: disulphated disaccharides generated by keratanase II digestion. The ratio of unsulphated: monosulphated: disulphated disaccharides was 1:4:5 for keratan sulphate from total aggrecan and the keratan sulphate-rich region, but only 1:0.9:0.8 for the interglobular domain. These results show that keratan sulphate in the interglobular domain of pig aggrecan has a microstructure that is distinct from keratan sulphate in the keratan sulphate-rich region.  相似文献   

13.
The stability of ester sulfates in porcine intestinal heparin to solvolytic desulfation (100 degrees C, 9 H) with dimethylsulfoxide containing 2% pyridine was examined, in comparison with the case of dilute acid treatment (0.1 M HCl, 100 degrees C, 70 min). The resulting heparin modifications were deaminated and the deamination products were fractionated by the procedures reported previously (1978) J. Biochem. 83, 1567-1575). The yields of disulfated disaccharide (b-2) and monosulfated disaccharides (e-2-1 and e-2-3) indicated that 2-O-sulfates in L-iduronic acid residues of heparin were more libile than 6-O-sulfates in glucosamine residues to the dilute acid treatment, whereas the opposite was the case for the solvolysis. The product of heparin modification by solvolysis was similar to whale heparin in the distribution of ester sulfates.  相似文献   

14.
Interactions between glycosaminoglycans and lipoproteins have been studied by affinity chromatography of various modified glycans on agarose substituted with low density lipoprotein (LDL). Elution was performed with increasing concentrations of NaCl. The electrostatic attraction between ligand and polyanion generally increased with increasing sulphate content. However, at equal charge density l-iduronic acid-containing glycans displayed higher affinity than D-glucuronic acid-containing ones. Within a population of heparin-related glycosaminoglycans, material containing 1.23 sulphate groups per hexosamine had higher affinity for LDL than did commercial heparin (2.40 sulphate/hexosamine). Decasaccharides or higher oligosaccharides from heparin-related glycans retained affinity only when they contained sulphate groups, while all fragments smaller than decasaccharide did not bind to LDL. Oligosaccharides that contained both sulphated and non-sulphated l-iduronic acid exhibited higher affinity than did fragments (of corresponding size) that contained only sulphated l-iduronic acid. Heparin-related glycans with the highest LDL-affinity contained 55% d-glucuronic acid. 11% non-sulphated l-iduronic acid and 34% l-iduronic acid-O-sulphate of total uronic acid.  相似文献   

15.
Fragmentation of the heparan sulfate chains from bovine glomerular basement membrane (GBM) by hydrazine/nitrous acid treatment followed by NaB3H4-reduction yielded a mixture of six sulfated disaccharides containing D-glucuronic (GlcUA) or L-iduronic acid (IdUA) and terminating in 2,5-anhydro[3H]mannitol (AnManH2), in addition to the nonsulfated component GlcUA beta 1----4AnManH2. Among these products two novel disaccharide units were identified as IdUA alpha 1----4AnManH2(3-SO4) and IdUA(2-SO4)alpha 1----4AnManH2(3-SO4); these accounted for 22% of the total sulfated species indicating that there are 2-3 residues of 3-O-sulfated glucosamine/heparan sulfate chain. The disulfated disaccharide was shown through its release by direct nitrous acid treatment to be situated in a GlcNSO3-IdUA(2-SO4)-GlcNSO3(3-SO4) sequence which is distinct from that in which 3-O-sulfated glucosamine is located in the antithrombin-binding region of heparins. Analyses of heparan sulfate from lens capsule, a nonvascular basement membrane, indicated the absence of sequences containing 3-O-sulfated glucosamine, although otherwise the sulfated disaccharides produced by hydrazine/nitrous acid/Na-B3H4 treatment (GlcUA beta 1----4AnManH2(6-SO4), IdUA alpha 1----4AnManH2(6-SO4), IdUA(2-SO4)alpha 1----4AnManH2 and IdUA(2-SO4)alpha 1----4AnManH2(6-SO4] were the same as from GBM. Examination of the GBM heparan sulfate domains after nitrous acid treatment indicated that the O- as well as N-sulfate groups are clustered in an iduronic acid-rich 10-disaccharide peripheral segment, while the internal region (approximately 20 disaccharides) is composed primarily of repeating GlcUA beta 1----4GlcNAc units. The localization of chain diversity to the outer region may facilitate interactions of the heparan sulfate with other macromolecular components.  相似文献   

16.
Heparan sulphate and heparin are chemically related alpha beta-linked glycosaminoglycans composed of alternating sequences of glucosamine and uronic acid. The amino sugars may be N-acetylated or N-sulphated, and the latter substituent is unique to these two polysaccharides. Although there is general agreement that heparan sulphate is usually less sulphated than heparin, reproducible differences in their molecular structure have been difficult to identify. We suggest that this is because most of the analytical data have been obtained with degraded materials that are not necessarily representative of complete polysaccharide chains. In the present study intact heparan sulphates, labelled biosynthetically with [3H]glucosamine and Na2(35)SO4, were isolated from the surface membranes of several types of cells in culture. The polysaccharide structure was analysed by complete HNO2 hydrolysis followed by fractionation of the products by gel filtration and high-voltage electrophoresis. Results showed that in all heparan sulphates there were approximately equal numbers of N-sulpho and N-acetyl substituents, arranged in a similar, predominantly segregated, manner along the polysaccharide chain. O-Sulphate groups were in close proximity to the N-sulphate groups but, unlike the latter, the number of O-sulphate groups could vary considerably in heparan sulphates of different cellular origins ranging from 20 to 75 O-sulphate groups per 100 disaccharide units. Inspection of the published data on heparin showed that the N-sulphate frequency was very high (greater than 80% of the glucosamine residues are N-sulphated) and the concentration of O-sulphate groups exceeded that of the N-sulphate groups. We conclude from these and other observations that heparan sulphate and heparin are separate families of N-sulphated glycosaminoglycans.  相似文献   

17.
Capillary zone electrophoresis (CZE) was used to separate eight commercial disaccharide standards of the structure delta UA2X(1----4)-D-GlcNY6X (where delta UA is 4-deoxy-alpha-L-threo-hex-4-enopyranosyluronic acid, GlcN is 2-deoxy-2-aminoglucopyranose, S is sulfate, Ac is acetate, X may be S, and Y is S or Ac). These eight disaccharides had been prepared from heparin, heparan sulfate, and derivatized heparins. A similar CZE method was recently reported for the analysis of eight chondroitin and dermatan sulfate disaccharides (A. Al-Hakim and R.J. Linhardt, Anal. Biochem. 195, 68-73, 1991). Two of the standard heparin/heparan sulfate disaccharides, having an identical charge of -2, delta UA2S(1----4)-D-GlcNAc and delta UA(1----4)-D-GlcNS, were not fully resolved using standard sodium borate/boric acid buffer. This buffer had proven effective in separating chondroitin/dermatan sulfate disaccharides of identical charge. Resolution of these two heparin/heparan sulfate disaccharides could be improved by extending the capillary length, preparing the buffer in 2H2O, or eliminating boric acid. Baseline resolution was achieved in sodium dodecyl sulfate in the absence of buffer. The structure and purity of each of the eight new commercial heparin/heparan sulfate disaccharide standards were confirmed using fast-atom-bombardment mass spectrometry and high-field 1H-NMR spectroscopy. Heparin and heparan sulfate were then depolymerized using heparinase (EC 4.2.2.7), heparin lyase II (EC 4.2.2.-), heparinitase (EC 4.2.2.8), and a combination of all three enzymes. CZE analysis of the products formed provided a disaccharide composition of each glycosaminoglycan. As little as 50 fmol of disaccharide could be detected by ultraviolet absorbance.  相似文献   

18.
1. Heparin was degraded by enzymes of adapted Flavobacterium heparinum. Several degradation products were separated by combined Sephadex-gel filtration and paper chromatography, and chemically analysed. 2. These products were identified as glucosamine 2,6-disulphate, saturated disaccharides constituted of uronic acid and glucosamine and containing two and three sulphate residues, and tetra- and hexa-saccharides with the same basic disaccharide units. 3. The implications of these findings with respect to the present knowledge of heparin structure and its enzymic degradation are discussed.  相似文献   

19.
Glycosaminoglycans (GAGs) are known to participate in central nervous system processes such as development, cell migration, and neurite outgrowth. In this paper, we report an initial glycomics study of GAGs from the porcine central nervous system. GAGs of the porcine central nervous system, brain and spinal cord were isolated and purified by defatting, proteolysis, anion-exchange chromatography, and methanol precipitation. The isolated GAG content in brain was 5 times higher than in spinal cord (0.35 mg/g of dry sample, compared to 0.07 mg/g of dry sample). In both tissues, chondroitin sulfate (CS) and heparan sulfate (HS) were the major and the minor GAG, respectively. The average molecular masses of CS from brain and spinal cord were 35.5 and 47.1 kDa, respectively, and those for HS from brain and spinal cord were 56.9 and 34 kDa, respectively. The disaccharide analysis showed that the compositions of CS from brain and spinal cords are similar, with uronic acid (1→3) 4-O-sulfo-N-acetylgalactosamine residue corresponding to the major disaccharide unit (CS type A) along with five minor disaccharide units. The major disaccharides of both brain and spinal cord HS were uronic acid (1→4) N-acetylglucosamine and uronic acid (1→4) 6-O-sulfo-N-sulfoglucosamine, but their composition of minor disaccharides differed. Analysis by (1)H and two-dimensional NMR spectroscopy confirmed these disaccharide analyses and provided the glucuronic/iduronic acid ratio. Finally, both purified CS and HS were biotinylated and immobilized on BIAcore SA biochips. Interactions between these GAGs and fibroblast growth factors (FGF1 and FGF2) and sonic hedgehog (Shh) were investigated by surface plasmon resonance.  相似文献   

20.
Heparin was converted by treatment with nitrous acid primarily into sulfated disaccharides. The mixture of disaccharides was reduced with sodium boro[3H]hydride and the disaccharides were purified by preparative paper electrophoresis and paper chromatography. Four disaccharides were obtained. On the basis of their paper electrophoretic mobilities and the products formed at intermediate stages of their acid hydrolysis, the disaccharides were identified as 4-O-(2-O-sulfo-α-l-idopyranosyluronic acid)-6-O-sulfo-2,5-anhydro-d-mannitol, 4-O-(2-O-sulfo-α-l-idopyranosyluronic acid)-2,5-anhydro-d-mannitol, 4-O-(α-l-idopyranosyluronic acid)-6-O-sulfo-2,5-anhydro-d-mannitol, and 4-O-(β-d-glucopyranosyluronic acid)-6-O-sulfo-2,5-anhydro-d-mannitol. The purified disaccharides were used as standards in the development of a high-performance liquid chromatography procedure for their separation and quantitation on a Partisil-10 SAX anion-exchange column. The three monosulfated disaccharides were resolved by isocratic elution with 40 mm KH2PO4. The KH2PO4 concentration was tehn increased to 400 mm to elute the disulfated disaccharide. Column effluents were collected in 12-ml fractions, and the recovery of each 3H-labeled product was determined by scintillation counting. When sodium boro-[3H]hydride with a specific activity of 315 mCi/mmol was used in the reduction of the heparin deamination products, the disaccharides gave 28,500 cpm/nmol in the effluent peaks. Quantitative recoveries of the 3H-disaccharides were obtained. It was demonstrated that the method developed using the purified disaccharides gave reproducible and quantitative results in direct assays of aliquots of boro[3H]hydride-reduced heparin deamination mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号