首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 459 毫秒
1.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel with distinctive kinetics. At the whole-cell level, CFTR currents in response to voltage steps are time independent for wild type and for the many mutants reported so far. Single channels open for periods lasting up to tens of seconds; the openings are interrupted by brief closures at hyperpolarized, but not depolarized, potentials. Here we report a serine-to-phenylalanine mutation (S1118F) in the 11th transmembrane domain that confers voltage-dependent, single-exponential current relaxations and moderate inward rectification of the macroscopic currents upon expression in Xenopus oocytes. At steady state, the S1118F-CFTR single-channel conductance rectifies, corresponding to the whole-cell rectification. In addition, the open-channel burst duration is decreased 10-fold compared with wild-type channels. S1118F-CFTR currents are blocked in a voltage-dependent manner by diphenylamine-2-carboxylate (DPC); the affinity of S1118F-CFTR for DPC is similar to that of the wild-type channel, but blockade exhibits moderately reduced voltage dependence. Selectivity of the channel to a range of anions is also affected by this mutation. Furthermore, the permeation properties change during the relaxations, which suggests that there is an interaction between gating and permeation in this mutant. The existence of a mutation that confers voltage dependence upon CFTR currents and that changes kinetics and permeation properties of the channel suggests a functional role for the 11th transmembrane domain in the pore in the wild-type channel.  相似文献   

2.
《Biophysical journal》2021,120(18):3983-4001
The activation of voltage-dependent ion channels is associated with the movement of gating charges, which give rise to gating currents. Although gating currents from a single channel are too small to be detected, analysis of the fluctuations of macroscopic gating currents from a population of channels allows a good guess of their magnitude. The analysis of experimental gating current fluctuations, when interpreted in terms of a rate model of channel activation and assuming sufficiently high bandwidth, is in accordance with the presence of a main step along the activation pathway carrying a charge of 2.3–2.4 e0. To give a physical interpretation to these results and to relate them to the known atomic structure of the voltage sensor domain, we used a Brownian model of voltage-dependent gating based on atomic detail structure, that follows the laws of electrodynamics. The model predicts gating currents and gating current fluctuations essentially similar to those experimentally observed. The detailed study of the model output, also performed by making several simplifications aimed at understanding the basic dependencies of the gating current fluctuations, suggests that in real channels the voltage sensor moves along a sequence of intermediate states separated by relatively low (<5 kT) energy barriers. As a consequence, crossings of successive gating charges through the gating pore become very frequent, and the corresponding current shots are often seen to overlap because of the relatively high filtering. Notably, this limited bandwidth effect is at the origin of the relatively high single-step charge experimentally detected.  相似文献   

3.
HERG encodes an inwardly-rectifying potassium channel that plays an important role in repolarization of the cardiac action potential. Inward rectification of HERG channels results from rapid and voltage-dependent inactivation gating, combined with very slow activation gating. We asked whether the voltage sensor is implicated in the unusual properties of HERG gating: does the voltage sensor move slowly to account for slow activation and deactivation, or could the voltage sensor move rapidly to account for the rapid kinetics and intrinsic voltage dependence of inactivation? To probe voltage sensor movement, we used a fluorescence technique to examine conformational changes near the positively charged S4 region. Fluorescent probes attached to three different residues on the NH2-terminal end of the S4 region (E518C, E519C, and L520C) reported both fast and slow voltage-dependent changes in fluorescence. The slow changes in fluorescence correlated strongly with activation gating, suggesting that the slow activation gating of HERG results from slow voltage sensor movement. The fast changes in fluorescence showed voltage dependence and kinetics similar to inactivation gating, though these fluorescence signals were not affected by external tetraethylammonium blockade or mutations that alter inactivation. A working model with two types of voltage sensor movement is proposed as a framework for understanding HERG channel gating and the fluorescence signals.  相似文献   

4.
Single-channel, macroscopic ionic, and macroscopic gating currents were recorded from the voltage-dependent sodium channel using patch-clamp techniques on the cut-open squid giant axon. To obtain a complete set of physiological measurements of sodium channel gating under identical conditions, and to facilitate comparison with previous work, comparison was made between currents recorded in the absence of extracellular divalent cations and in the presence of physiological concentrations of extracellular Ca2+ (10 mM) and Mg2+ (50 mM). The single-channel currents were well resolved when divalent cations were not included in the extracellular solution, but were decreased in amplitude in the presence of Ca2+ and Mg2+ ions. The instantaneous current-voltage relationship obtained from macroscopic tail current measurements similarly was depressed by divalents, and showed a negative slope-conductance region for inward current at negative potentials. Voltage dependent parameters of channel gating were shifted 9-13 mV towards depolarized potentials by external divalent cations, including the peak fraction of channels open versus voltage, the time constant of tail current decline, the prepulse inactivation versus voltage relationship, and the charge-voltage relationship for gating currents. The effects of divalent cations are consistent with open channel block by Ca2+ and Mg2+ together with divalent screening of membrane charges.  相似文献   

5.
The voltage-dependent gating mechanism of KAT1 inward rectifier potassium channels was studied using single channel current recordings from Xenopus oocytes injected with KAT1 mRNA. The inward rectification properties of KAT1 result from an intrinsic gating mechanism in the KAT1 channel protein, not from pore block by an extrinsic cation species. KAT1 channels activate with hyperpolarizing potentials from −110 through −190 mV with a slow voltage-dependent time course. Transitions before first opening are voltage dependent and account for much of the voltage dependence of activation, while transitions after first opening are only slightly voltage dependent. Using burst analysis, transitions near the open state were analyzed in detail. A kinetic model with multiple closed states before first opening, a single open state, a single closed state after first opening, and a closed-state inactivation pathway accurately describes the single channel and macroscopic data. Two mutations neutralizing charged residues in the S4 region (R177Q and R176L) were introduced, and their effects on single channel gating properties were examined. Both mutations resulted in depolarizing shifts in the steady state conductance–voltage relationship, shortened first latencies to opening, decreased probability of terminating bursts, and increased burst durations. These effects on gating were well described by changes in the rate constants in the kinetic model describing KAT1 channel gating. All transitions before the open state were affected by the mutations, while the transitions after the open state were unaffected, implying that the S4 region contributes to the early steps in gating for KAT1 channels.  相似文献   

6.
The pore properties and the reciprocal interactions between permeant ions and the gating of KCNQ channels are poorly understood. Here we used external barium to investigate the permeation characteristics of homomeric KCNQ1 channels. We assessed the Ba(2+) binding kinetics and the concentration and voltage dependence of Ba(2+) steady-state block. Our results indicate that extracellular Ba(2+) exerts a series of complex effects, including a voltage-dependent pore blockade as well as unique gating alterations. External barium interacts with the permeation pathway of KCNQ1 at two discrete and nonsequential sites. (a) A slow deep Ba(2+) site that occludes the channel pore and could be simulated by a model of voltage-dependent block. (b) A fast superficial Ba(2+) site that barely contributes to channel block and mostly affects channel gating by shifting rightward the voltage dependence of activation, slowing activation, speeding up deactivation kinetics, and inhibiting channel inactivation. A model of voltage-dependent block cannot predict the complex impact of Ba(2+) on channel gating in low external K(+) solutions. Ba(2+) binding to this superficial site likely modifies the gating transitions states of KCNQ1. Both sites appear to reside in the permeation pathway as high external K(+) attenuates Ba(2+) inhibition of channel conductance and abolishes its impact on channel gating. Our data suggest that despite the high degree of homology of the pore region among the various K(+) channels, KCNQ1 channels display significant structural and functional uniqueness.  相似文献   

7.
Internal tetraethylammonium (TEA) and cesium ions block outward potassium current in nerve membrane in a voltage-dependent manner. Blockade with Cs+ occurs virtually instantaneously after membrane depolarization, whereas blockade with TEA+ occurs after a delay. The latter result suggested to Armstrong (1966, J. Gen. Physiol., 50:279-293; 1969, J. Gen. Physiol., 54:553-575) that potassium channels must open before TEA+ blockade can occur, which is in contrast to Cs+ blockade, which appears to be independent of channel gating. The results in this study concerning the effect of TEA+ on inward (tail) current argue against the Armstrong model. Specifically, TEA+ (partially) blocks inward current without altering the tail current time constant. This result indicates that TEA+ can occupy its binding site within the channel whether or not the channel gates are open. This alternative hypothesis can describe both the steady-state and time-dependent components of TEA+ blockade.  相似文献   

8.
Voltage-gated sodium channels mediate the initiation and propagation of action potentials in excitable cells. Transmembrane segment S4 of voltage-gated sodium channels resides in a gating pore where it senses the membrane potential and controls channel gating. Substitution of individual S4 arginine gating charges (R1–R3) with smaller amino acids allows ionic currents to flow through the mutant gating pore, and these gating pore currents are pathogenic in some skeletal muscle periodic paralysis syndromes. The voltage dependence of gating pore currents provides information about the transmembrane position of the gating charges as S4 moves in response to membrane potential. Here we studied gating pore current in mutants of the homotetrameric bacterial sodium channel NaChBac in which individual arginine gating charges were replaced by cysteine. Gating pore current was observed for each mutant channel, but with different voltage-dependent properties. Mutating the first (R1C) or second (R2C) arginine to cysteine resulted in gating pore current at hyperpolarized membrane potentials, where the channels are in resting states, but not at depolarized potentials, where the channels are activated. Conversely, the R3C gating pore is closed at hyperpolarized membrane potentials and opens with channel activation. Negative conditioning pulses revealed time-dependent deactivation of the R3C gating pore at the most hyperpolarized potentials. Our results show sequential voltage dependence of activation of gating pore current from R1 to R3 and support stepwise outward movement of the substituted cysteines through the narrow portion of the gating pore that is sealed by the arginine side chains in the wild-type channel. This pattern of voltage dependence of gating pore current is consistent with a sliding movement of the S4 helix through the gating pore. Through comparison with high-resolution models of the voltage sensor of bacterial sodium channels, these results shed light on the structural basis for pathogenic gating pore currents in periodic paralysis syndromes.  相似文献   

9.
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) ion channels are important for rhythmic activity in the brain and in the heart. In this study, using ionic and gating current measurements, we show that cloned spHCN channels undergo a hysteresis in their voltage dependence during normal gating. For example, both the gating charge versus voltage curve, Q(V), and the conductance versus voltage curve, G(V), are shifted by about +60 mV when measured from a hyperpolarized holding potential compared with a depolarized holding potential. In addition, the kinetics of the tail current and the activation current change in parallel to the voltage shifts of the Q(V) and G(V) curves. Mammalian HCN1 channels display similar effects in their ionic currents, suggesting that the mammalian HCN channels also undergo voltage hysteresis. We propose a model in which HCN channels transit between two modes. The voltage dependence in the two modes is shifted relative to each other, and the occupancy of the two modes depends on the previous activation of the channel. The shifts in the voltage dependence are fast (tau approximately 100 ms) and are not accompanied by any apparent inactivation. In HCN1 channels, the shift in voltage dependence is slower in a 100 mM K extracellular solution compared with a 1 mM K solution. Based on these findings, we suggest that molecular conformations similar to slow (C-type) inactivation of K channels underlie voltage hysteresis in HCN channels. The voltage hysteresis results in HCN channels displaying different voltage dependences during different phases in the pacemaker cycle. Computer simulations suggest that voltage hysteresis in HCN channels decreases the risk of arrhythmia in pacemaker cells.  相似文献   

10.
The mechanism of inward rectification was examined in cell-attached and inside-out membrane patches from Xenopus oocytes expressing the cloned strong inward rectifier HRK1. Little or no outward current was measured in cell-attached patches. Inward currents reach their maximal value in two steps: an instantaneous phase followed by a time-dependent "activation" phase, requiring at least two exponentials to fit the time- dependent phase. After an activating pulse, the quasi-steady state current-voltage (I-V) relationship could be fit with a single Boltzmann equation (apparent gating charge, Z = 2.0 +/- 0.1, n = 3). Strong rectification and time-dependent activation were initially maintained after patch excision into high [K+] (K-INT) solution containing 1 mM EDTA, but disappeared gradually, until only a partial, slow inactivation of outward current remained. Biochemical characterization (Lopatin, A. N., E. N. Makhina, and C. G. Nichols, 1994. Nature. 372:366-396.) suggests that the active factors are naturally occurring polyamines (putrescine, spermidine, and spermine). Each polyamine causes reversible, steeply voltage-dependent rectification of HRK1 channels. Both the blocking affinity and the voltage sensitivity increased as the charge on the polyamine increased. The sum two Boltzmann functions is required to fit the spermine and spermidine steady state block. Putrescine unblock, like Mg2+ unblock, is almost instantaneous, whereas the spermine and spermidine unblocks are time dependent. Spermine and spermidine unblocks (current activation) can each be fit with single exponential functions. Time constants of unblock change e-fold every 15.0 +/- 0.7 mV (n = 3) and 33.3 +/- 6.4 mV (n = 5) for spermine and spermidine, respectively, matching the voltage sensitivity of the two time constants required to fit the activation phase in cell-attached patches. It is concluded that inward rectification in intact cells can be entirely accounted for by channel block. Putrescine and Mg2+ ions can account for instantaneous rectification; spermine and spermidine provide a slower rectification corresponding to so-called intrinsic gating of inward rectifier K channels. The structure of spermine and spermidine leads us to suggest a specific model in which the pore of the inward rectifier channel is plugged by polyamines that enter deeply into the pore and bind at sites within the membrane field. We propose a model that takes into account the linear structure of the natural polyamines and electrostatic repulsion between two molecules inside the pore. Experimentally observed instantaneous and steady state rectification of HRK1 channels as well as the time-dependent behavior of HRK1 currents are then well fit with the same set of parameters for all tested voltages and concentrations of spermine and spermidine.  相似文献   

11.
Gating of Shaker K+ channels: I. Ionic and gating currents.   总被引:3,自引:1,他引:2       下载免费PDF全文
Ionic and gating currents from noninactivating Shaker B K+ channels were studied with the cut-open oocyte voltage clamp technique and compared with the macropatch clamp technique. The performance of the cut-open oocyte voltage clamp technique was evaluated from the electrical properties of the clamped upper domus membrane, K+ tail current measurements, and the time course of K+ currents after partial blockade. It was concluded that membrane currents less than 20 microA were spatially clamped with a time resolution of at least 50 microseconds. Subtracted, unsubtracted gating currents with the cut-open oocyte voltage clamp technique and gating currents recorded in cell attached macropatches had similar properties and time course, and the charge movement properties directly obtained from capacity measurements agreed with measurements of charge movement from subtracted records. An accurate estimate of the normalized open probability Po(V) was obtained from tail current measurements as a function of the prepulse V in high external K+. The Po(V) was zero at potentials more negative than -40 mV and increased sharply at this potential, then increased continuously until -20 mV, and finally slowly increased with voltages more positive than 0 mV. Deactivation tail currents decayed with two time constants and external potassium slowed down the faster component without affecting the slower component that is probably associated with the return between two of the closed states near the open state. In correlating gating currents and channel opening, Cole-Moore type experiments showed that charge moving in the negative region of voltage (-100 to -40 mV) is involved in the delay of the conductance activation but not in channel opening. The charge moving in the more positive voltage range (-40 to -10 mV) has a similar voltage dependence to the open probability of the channel, but it does not show the gradual increase with voltage seen in the Po(V).  相似文献   

12.
Large conductance calcium-dependent (Slo1 BK) channels are allosterically activated by membrane depolarization and divalent cations, and possess a rich modulatory repertoire. Recently, intracellular heme has been identified as a potent regulator of Slo1 BK channels (Tang, X.D., R. Xu, M.F. Reynolds, M.L. Garcia, S.H. Heinemann, and T. Hoshi. 2003. Nature. 425:531-535). Here we investigated the mechanism of the regulatory action of heme on heterologously expressed Slo1 BK channels by separating the influences of voltage and divalent cations. In the absence of divalent cations, heme generally decreased ionic currents by shifting the channel's G-V curve toward more depolarized voltages and by rendering the curve less steep. In contrast, gating currents remained largely unaffected by heme. Simulations suggest that a decrease in the strength of allosteric coupling between the voltage sensor and the activation gate and a concomitant stabilization of the open state account for the essential features of the heme action in the absence of divalent ions. At saturating levels of divalent cations, heme remained similarly effective with its influence on the G-V simulated by weakening the coupling of both Ca(2+) binding and voltage sensor activation to channel opening. The results thus show that heme dampens the influence of allosteric activators on the activation gate of the Slo1 BK channel. To account for these effects, we consider the possibility that heme binding alters the structure of the RCK gating ring and thereby disrupts both Ca(2+)- and voltage-dependent gating as well as intrinsic stability of the open state.  相似文献   

13.
The bacterial sodium channel, NaChBac, from Bacillus halodurans provides an excellent model to study structure-function relationships of voltage-gated ion channels. It can be expressed in mammalian cells for functional studies as well as in bacterial cultures as starting material for protein purification for fine biochemical and biophysical studies. Macroscopic functional properties of NaChBac have been described previously (Ren, D., B. Navarro, H. Xu, L. Yue, Q. Shi, and D.E. Clapham. 2001. Science. 294:2372-2375). In this study, we report gating current properties of NaChBac expressed in COS-1 cells. Upon depolarization of the membrane, gating currents appeared as upward inflections preceding the ionic currents. Gating currents were detectable at -90 mV while holding at -150 mV. Charge-voltage (Q-V) curves showed sigmoidal dependence on voltage with gating charge saturating at -10 mV. Charge movement was shifted by -22 mV relative to the conductance-voltage curve, indicating the presence of more than one closed state. Consistent with this was the Cole-Moore shift of 533 micros observed for a change in preconditioning voltage from -160 to -80 mV. The total gating charge was estimated to be 16 elementary charges per channel. Charge immobilization caused by prolonged depolarization was also observed; Q-V curves were shifted by approximately -60 mV to hyperpolarized potentials when cells were held at 0 mV. The kinetic properties of NaChBac were simulated by simultaneous fit of sodium currents at various voltages to a sequential kinetic model. Gating current kinetics predicted from ionic current experiments resembled the experimental data, indicating that gating currents are coupled to activation of NaChBac and confirming the assertion that this channel undergoes several transitions between closed states before channel opening. The results indicate that NaChBac has several closed states with voltage-dependent transitions between them realized by translocation of gating charge that causes activation of the channel.  相似文献   

14.
Kilic G  Lindau M 《Biophysical journal》2001,80(3):1220-1229
We investigated the voltage dependence of membrane capacitance of pituitary nerve terminals in the whole-terminal patch-clamp configuration using a lock-in amplifier. Under conditions where secretion was abolished and voltage-gated channels were blocked or completely inactivated, changes in membrane potential still produced capacitance changes. In terminals with significant sodium currents, the membrane capacitance showed a bell-shaped dependence on membrane potential with a peak at approximately -40 mV as expected for sodium channel gating currents. The voltage-dependent part of the capacitance showed a strong correlation with the amplitude of voltage-gated Na+ currents and was markedly reduced by dibucaine, which blocks sodium channel current and gating charge movement. The frequency dependence of the voltage-dependent capacitance was consistent with sodium channel kinetics. This is the first demonstration of sodium channel gating currents in single pituitary nerve terminals. The gating currents lead to a voltage- and frequency-dependent capacitance, which can be well resolved by measurements with a lock-in amplifier. The properties of the gating currents are in excellent agreement with the properties of ionic Na+ currents of pituitary nerve terminals.  相似文献   

15.
We have characterized the effects of prepulse hyperpolarization and extracellular Mg(2+) on the ionic and gating currents of the Drosophila ether-à-go-go K(+) channel (eag). Hyperpolarizing prepulses significantly slowed channel opening elicited by a subsequent depolarization, revealing rate-limiting transitions for activation of the ionic currents. Extracellular Mg(2+) dramatically slowed activation of eag ionic currents evoked with or without prepulse hyperpolarization and regulated the kinetics of channel opening from a nearby closed state(s). These results suggest that Mg(2+) modulates voltage-dependent gating and pore opening in eag channels. To investigate the mechanism of this modulation, eag gating currents were recorded using the cut-open oocyte voltage clamp. Prepulse hyperpolarization and extracellular Mg(2+) slowed the time course of ON gating currents. These kinetic changes resembled the results at the ionic current level, but were much smaller in magnitude, suggesting that prepulse hyperpolarization and Mg(2+) modulate gating transitions that occur slowly and/or move relatively little gating charge. To determine whether quantitatively different effects on ionic and gating currents could be obtained from a sequential activation pathway, computer simulations were performed. Simulations using a sequential model for activation reproduced the key features of eag ionic and gating currents and their modulation by prepulse hyperpolarization and extracellular Mg(2+). We have also identified mutations in the S3-S4 loop that modify or eliminate the regulation of eag gating by prepulse hyperpolarization and Mg(2+), indicating an important role for this region in the voltage-dependent activation of eag.  相似文献   

16.
We observed that the current amplitude and activation of expressed, mouse brain large conductance, calcium-sensitive K+ channels (BKCa channels) may be reversibly enhanced following addition of low concentrations of the weakly permeant cation NH4+ to the cytoplasmic face of the channel in excised, inside-out membrane patches from HEK 293 cells. Conductance-voltage relations were left-shifted along the voltage axis by addition of NH4Cl in a concentration-dependent manner, with an EC50 of 18.5 mM. Furthermore, this effect was observed in the presence of cytosolic free calcium (approximately 1 microM), but was absent in a cytosolic bath solution containing nominally zero free calcium (e.g.. 5 mM EGTA only), a condition under which these channels undergo largely voltage-dependent gating. Recordings of single BKCa channel events indicated that NH4+ increased the channel open probability of single channel activity approximately 3-fold, but did not alter the amplitude of single channel currents. These findings suggest that the calcium-sensitive gating of mammalian BKCa channels may be modified by other ions present in cytosolic solution.  相似文献   

17.
Changes in voltage-dependent gating represent a common pathogenetic mechanism for genetically inherited channelopathies, such as benign familial neonatal seizures or peripheral nerve hyperexcitability caused by mutations in neuronal K(v)7.2 channels. Mutation-induced changes in channel voltage dependence are most often inferred from macroscopic current measurements, a technique unable to provide a detailed assessment of the structural rearrangements underlying channel gating behavior; by contrast, gating currents directly measure voltage-sensor displacement during voltage-dependent gating. In this work, we describe macroscopic and gating current measurements, together with molecular modeling and molecular-dynamics simulations, from channels carrying mutations responsible for benign familial neonatal seizures and/or peripheral nerve hyperexcitability; K(v)7.4 channels, highly related to K(v)7.2 channels both functionally and structurally, were used for these experiments. The data obtained showed that mutations affecting charged residues located in the more distal portion of S(4) decrease the stability of the open state and the active voltage-sensing domain configuration but do not directly participate in voltage sensing, whereas mutations affecting a residue (R4) located more proximally in S(4) caused activation of gating-pore currents at depolarized potentials. These results reveal that distinct molecular mechanisms underlie the altered gating behavior of channels carrying disease-causing mutations at different voltage-sensing domain locations, thereby expanding our current view of the pathogenesis of neuronal hyperexcitability diseases.  相似文献   

18.
Integrated allosteric model of voltage gating of HCN channels   总被引:8,自引:0,他引:8  
Hyperpolarization-activated (pacemaker) channels are dually gated by negative voltage and intracellular cAMP. Kinetics of native cardiac f-channels are not compatible with HH gating, and require closed/open multistate models. We verified that members of the HCN channel family (mHCN1, hHCN2, hHCN4) also have properties not complying with HH gating, such as sigmoidal activation and deactivation, activation deviating from fixed power of an exponential, removal of activation "delay" by preconditioning hyperpolarization. Previous work on native channels has indicated that the shifting action of cAMP on the open probability (Po) curve can be accounted for by an allosteric model, whereby cAMP binds more favorably to open than closed channels. We therefore asked whether not only cAMP-dependent, but also voltage-dependent gating of hyperpolarization-activated channels could be explained by an allosteric model. We hypothesized that HCN channels are tetramers and that each subunit comprises a voltage sensor moving between "reluctant" and "willing" states, whereas voltage sensors are independently gated by voltage, channel closed/open transitions occur allosterically. These hypotheses led to a multistate scheme comprising five open and five closed channel states. We estimated model rate constants by fitting first activation delay curves and single exponential time constant curves, and then individual activation/deactivation traces. By simply using different sets of rate constants, the model accounts for qualitative and quantitative aspects of voltage gating of all three HCN isoforms investigated, and allows an interpretation of the different kinetic properties of different isoforms. For example, faster kinetics of HCN1 relative to HCN2/HCN4 are attributable to higher HCN1 voltage sensors' rates and looser voltage-independent interactions between subunits in closed/open transitions. It also accounts for experimental evidence that reduction of sensors' positive charge leads to negative voltage shifts of Po curve, with little change of curve slope. HCN voltage gating thus involves two processes: voltage sensor gating and allosteric opening/closing.  相似文献   

19.
EAAT glutamate transporters do not only function as secondary-active glutamate transporters but also as anion channels. EAAT anion channel activity depends on transport substrates. For most isoforms, it is negligible without external Na(+) and increased by external glutamate. We here investigated gating of EAAT4 anion channels with various cations and amino acid substrates using patch clamp experiments on a mammalian cell line. We demonstrate that Li(+) can substitute for Na(+) in supporting substrate-activated anion currents, albeit with changed voltage dependence. Anion currents were recorded in glutamate, aspartate, and cysteine, and distinct time and voltage dependences were observed. For each substrate, gating was different in external Na(+) or Li(+). All features of voltage-dependent and substrate-specific anion channel gating can be described by a simplified nine-state model of the transport cycle in which only amino acid substrate-bound states assume high anion channel open probabilities. The kinetic scheme suggests that the substrate dependence of channel gating is exclusively caused by differences in substrate association and translocation. Moreover, the voltage dependence of anion channel gating arises predominantly from electrogenic cation binding and membrane translocation of the transporter. We conclude that all voltage- and substrate-dependent conformational changes of the EAAT4 anion channel are linked to transitions within the transport cycle.  相似文献   

20.
The voltage- and calcium-dependent gating properties of two lens gap-junctional hemichannels were compared at the macroscopic and single channel level. In solutions containing zero added calcium and 1 mM Mg, chicken Cx56 hemichannels were mostly closed at negative potentials and application of depolarizing voltage clamp steps elicited a slowly activating outward current. In contrast, chicken Cx45.6 hemichannels were predominantly open at negative potentials and rapidly closed in response to application of large depolarizing potentials. Another difference was that macroscopic Cx45.6 currents were much smaller in size than the hemichannel currents induced by oocytes with similar amounts of cRNA for Cx56. The aim of this study was to identify which regions of the connexins were responsible for the differences in voltage-dependent gating and macroscopic current amplitude by constructing a series of chimeric Cx45.6-Cx56 channels. Our results show that two charged amino acids that are specific for the alpha3-group connexins (R9 in the N-terminus and E43 in the first extracellular loop) are important determinants for the difference in voltage-dependent gating between Cx45.6 and Cx56 hemichannels; the first transmembrane-spanning domain, M1, is an important determinant of macroscopic current magnitude; R9 and E43 are also determinants of single channel conductance and rectification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号