首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies have implicated a role for heterotrimeric G protein-coupled signaling in B cells, monocytes, and macrophages stimulated with LPS and have shown that G proteins coimmunoprecipitate with membrane-bound CD14. In this study, we have extended these observations in human dermal microvessel endothelial cells (HMEC) that lack membrane-bound CD14 and in murine macrophages to define further the role of heterotrimeric G proteins in TLR signaling. Using the wasp venom-derived peptide, mastoparan, to disrupt G protein-coupled signaling, we identified a G protein-dependent signaling pathway in HMEC stimulated with TLR4 agonists that is necessary for the activation of p38 phosphorylation and kinase activity, NF-kappaB and IL-6 transactivation, and IL-6 secretion. In contrast, HMEC activation by TLR2 agonists, TNF-alpha, or IL-1beta was insensitive to mastoparan. In the murine macrophage cell line, RAW 264.7, and in primary murine macrophages, G protein dysregulation by mastoparan resulted in significant inhibition of LPS-induced signaling leading to both MyD88-dependent and MyD88-independent gene expression, while TLR2-mediated gene expression was not significantly inhibited. In addition to inhibition of TLR4-mediated MAPK phosphorylation in macrophages, mastoparan blunted IL-1R-associated kinase-1 kinase activity induced by LPS, but not by TLR2 agonists, yet failed to affect phosphorylation of Akt by phosphoinositol-3-kinase induced by either TLR2- or TLR4-mediated signaling. These data confirm the importance of heterotrimeric G proteins in TLR4-mediated responses in cells that use either soluble or membrane-associated CD14 and reveal a level of TLR and signaling pathway specificity not previously appreciated.  相似文献   

2.
A combination of Lox-1 and Nox1 regulates TLR9-mediated foam cell formation   总被引:1,自引:0,他引:1  
Lee JG  Lim EJ  Park DW  Lee SH  Kim JR  Baek SH 《Cellular signalling》2008,20(12):2266-2275
The formation of foam cells is the hallmark of early atherosclerotic lesions, and the uptake of modified low-density lipoprotein (LDL) by macrophage scavenger receptors is thought to be a key process in their formation. In this study, we examined the role of lectin-like oxLDL receptor-1 (Lox-1) and NADPH oxidase 1 (Nox1) in toll-like receptor 9 (TLR9)-mediated foam cell formation. TLR9 activation of Raw264.7 cells or mouse primary peritoneal macrophages by CpG ODN treatment enhanced Lox-1 gene and protein expression. In addition, CpG ODN-induced Nox1 mRNA expression, which in turn increased foam cell formation. The inhibition of CpG ODN-induced reactive oxygen species (ROS) generation by treatment with antioxidants, as well as with knockdown of Nox1 using siRNA, suppressed the formation of foam cells. The induction of Lox-1 and Nox1 by CpG ODN was regulated via the TLR9-p38 MAPK signaling pathway. CpG ODN also increased NFκB activity, and a potent inhibitor of NFκB that significantly blocked CpG-induced Nox1 expression, suggesting that Nox1 regulation is mediated through an NFκB-dependent mechanism. Taken together, these results suggest that a combination of Lox-1 and Nox1 plays a key role in the TLR9-mediated formation of foam cells via the p38 MAPK pathway.  相似文献   

3.
4.
The innate immune recognition of bacterial lipopolysaccharide (LPS) is mediated by Toll-like receptor 4 (TLR4) and results in activation of proinflammatory signaling including NF-κB and MAPK pathways. Heterotrimeric G proteins have been previously implicated in LPS signaling in macrophages and monocytes. In the present study, we show that pertussis toxin sensitive heterotrimeric G proteins (Gα(i/o)) are involved in the activation of MAPK and Akt downstream of TLR2, TLR3, and TLR4 in endothelial cells. Gα(i/o) are also required for full activation of interferon signaling downstream of TLR3 and TLR4 but are not required for the activation of NF-κB. We find that Gα(i/o)-mediated activation of the MAPK is independent of the canonical MyD88, interleukin-1 receptor-associated kinase, and tumor necrosis factor receptor-associated factor 6 signaling cascade in LPS-stimulated cells. Taken together, the data presented here suggest that heterotrimeric G proteins are widely involved in TLR pathways along a signaling cascade that is distinct from MyD88-TRAF6.  相似文献   

5.
Endotoxin tolerance reprograms Toll-like receptor (TLR) 4-mediated macrophage responses by attenuating induction of proinflammatory cytokines while retaining expression of anti-inflammatory and antimicrobial mediators. We previously demonstrated deficient TLR4-induced activation of IL-1 receptor-associated kinase (IRAK) 4, IRAK1, and TANK-binding kinase (TBK) 1 as critical hallmarks of endotoxin tolerance, but mechanisms remain unclear. In this study, we examined the role of the E3 ubiquitin ligase Pellino-1 in endotoxin tolerance and TLR signaling. LPS stimulation increased Pellino-1 mRNA and protein expression in macrophages from mice injected with saline and in medium-pretreated human monocytes, THP-1, and MonoMac-6 cells, whereas endotoxin tolerization abrogated LPS inducibility of Pellino-1. Overexpression of Pellino-1 in 293/TLR2 and 293/TLR4/MD2 cells enhanced TLR2- and TLR4-induced nuclear factor κB (NF-κB) and expression of IL-8 mRNA, whereas Pellino-1 knockdown reduced these responses. Pellino-1 ablation in THP-1 cells impaired induction of myeloid differentiation primary response protein (MyD88), and Toll-IL-1R domain-containing adapter inducing IFN-β (TRIF)-dependent cytokine genes in response to TLR4 and TLR2 agonists and heat-killed Escherichia coli and Staphylococcus aureus, whereas only weakly affecting phagocytosis of heat-killed bacteria. Co-expressed Pellino-1 potentiated NF-κB activation driven by transfected MyD88, TRIF, IRAK1, TBK1, TGF-β-activated kinase (TAK) 1, and TNFR-associated factor 6, whereas not affecting p65-induced responses. Mechanistically, Pellino-1 increased LPS-driven K63-linked polyubiquitination of IRAK1, TBK1, TAK1, and phosphorylation of TBK1 and IFN regulatory factor 3. These results reveal a novel mechanism by which endotoxin tolerance re-programs TLR4 signaling via suppression of Pellino-1, a positive regulator of MyD88- and TRIF-dependent signaling that promotes K63-linked polyubiquitination of IRAK1, TBK1, and TAK1.  相似文献   

6.
Protein kinase D (PKD), also called protein kinase C (PKC)mu, is a serine-threonine kinase that is involved in diverse areas of cellular function such as lymphocyte signaling, oxidative stress, and protein secretion. After identifying a putative PKD phosphorylation site in the Toll/IL-1R domain of TLR5, we explored the role of this kinase in the interaction between human TLR5 and enteroaggregative Escherichia coli flagellin in human epithelial cell lines. We report several lines of evidence that implicate PKD in TLR5 signaling. First, PKD phosphorylated the TLR5-derived target peptide in vitro, and phosphorylation of the putative target serine 805 in HEK 293T cell-derived TLR5 was identified by mass spectrometry. Furthermore, mutation of serine 805 to alanine abrogated responses of transfected HEK 293T cells to flagellin. Second, TLR5 interacted with PKD in coimmunoprecipitation experiments, and this association was rapidly enhanced by flagellin treatment. Third, pharmacologic inhibition of PKC or PKD with G?6976 resulted in reduced expression and secretion of IL-8 and prevented the flagellin-induced activation of p38 MAPK, but treatment with the PKC inhibitor G?6983 had no significant effects on these phenotypes. Finally, involvement of PKD in the p38-mediated IL-8 response to flagellin was confirmed by small hairpin RNA-mediated gene silencing. Together, these results suggest that phosphorylation of TLR5 by PKD may be one of the proximal elements in the cellular response to flagellin, and that this event contributes to p38 MAPK activation and production of inflammatory cytokines in epithelial cells.  相似文献   

7.
We have demonstrated that an extract of Ganoderma lucidum (Reishi or Ling-Zhi) polysaccharides (EORP) exerts immunomodulating activities by stimulating the expression of inflammatory cytokines from mouse spleen cells. Interestingly, via responding to LPS in genetic variation of murine macrophage HeNC2 and GG2EE cell lines, and using TLR4 Ab blockage in human blood-derived monocytic macrophages, we have found that the TLR4, but not complement receptor type 3, is a putative receptor of EORP, mediating the consequent immunomodulating events associated with IL-1 gene expression. Based on our studies of reactive oxygen species production, polymyxin B inhibition, and protein tyrosine kinase (PTK) activity, we ruled out the possibility of LPS contamination in EORP. We have found that EORP differentially modulates the protein kinase (PK)-mediated signal transduction pathways associated with inflammatory cytokine IL-1. In human macrophages and murine macrophage J774A.1 cells, EORP was found to up-regulate IL-1 secretion and pro-IL-1 (precursor of IL-1) as well as IL-1-converting enzyme expression. Specifically, EORP rapidly stimulates PTK-mediated phosphorylation, followed by induction of PKs and activation of MAPKs: ERK, JNK, and p38. Using PK inhibitors in the kinase activity assays, Western blot analyses and IL-1 ELISA, we have extensively examined and dissected the role of individual PK in the regulation of pro-IL-1/IL-1. Our findings establish that EORP-mediated signaling pathways are involved in the pro-IL-1/IL-1 regulation: PTK/protein kinase C/MEK1/ERK and PTK/Rac1/p21-activated kinase/p38.  相似文献   

8.
Aging is accompanied by a progressive decline in immune function. Studies have shown age-related decreases in the expression and signaling efficiency of Toll-like receptors (TLRs) in monocytes and dendritic cells and dysregulation of macrophage TLR3. Using a multivariable mixed effect model, we report a highly significant increase in TLR5-induced production of IL-8 from monocytes of older individuals (P < 0.0001). Elevated IL-8 is accompanied by increased expression of TLR5, both protein and mRNA, and by increased levels of TLR5-mediated phosphorylation of MAPK p38 and ERK. We noted incomplete activation of NF-κB in response to TLR5 signaling in monocytes of elderly donors, as reflected by the absence of an associated increase in the production of TNF-α. Elevated TLR5 may provide a critical mechanism to enhance immune responsiveness in older individuals.  相似文献   

9.
LPS tolerance has been investigated extensively in monocytes/macrophages. However, the LPS restimulation studies are not well documented in dendritic cells (DCs). In the present study, we investigated influences of TLR restimulation using murine bone marrow-derived DCs. Purified bone marrow-derived DCs (>98% CD11c+ B220-) were stimulated with TLR4 and TLR2 ligands for 24 h and then cultured with medium alone for 48 h as a resting interval (TLR4,2-primed DCs). The TLR4-MD2 expression was markedly reduced immediately after the TLR stimulation, but was restored following the resting interval. The TLR4,2-primed DCs exhibited significantly enhanced IL-10 production, but markedly diminished IL-12p40 production upon TLR4 restimulation compared with naive (unprimed) DCs. TLR4-mediated activation of p38 MAPK was markedly suppressed, whereas that of ERK1/2 was enhanced in the TLR4,2-primed DCs compared with naive DCs. Blocking the activation of ERK1/2 with U0126 reduced the enhanced IL-10 production by the TLR4,2-primed DCs upon the TLR4 restimulation. The U0126 showed no significant effects on the IL-12p40 production. Thus, the enhanced ERK1/2 activation appears to be, at least in part, responsible for the enhanced IL-10 production in the TLR4,2-primed DCs. In addition, TNFR-associated factor 3 expression was significantly up-regulated in the TLR4,2-primed DCs compared with that in naive DCs. We demonstrated in this study that DCs primed with TLR4 and TLR2 ligands and rested for 48 h showed enhanced IL-10 production upon TLR4 restimulation. The enhanced IL-10 production by the TLR4,2-primed DCs may be attributed to the altered balance of intracellular signaling pathways via p38 MAPK, ERK1/2, and TNFR-associated factor 3 upon TLR restimulation.  相似文献   

10.
In the present study, we tested our hypothesis that atorvastatin exerts its anti-inflammation effect via suppressing LPS-induced rapid upregulation of Toll-like receptor 4 (TLR4) mRNA and its downstream p38, ERK, and NF-κB signaling pathways in human umbilical-vein endothelial cells (HUVECs) and human aortic endothelial cells (HAECs). TLR4 mRNA expression and its downstream kinase activities induced by LPS alone or atorvastatin + LPS in endothelial cells were quantified using quantitative real-time PCR and enzyme-linked immunosorbent assay. Preincubation of LPS-stimulated endothelial cells with TLR4 siRNA was conducted to identify the target of the anti-inflammatory effects of atorvastatin. Atorvastatin incubation resulted in the reduction of LPS-induced TLR4 mRNA expression, ERK1/2 and P38 MAPK phosphorylation, and NF-κB binding activity. Pretreatment with MEK/ERK1/2 inhibitor PD98059 attenuated atorvastatin + LPS-induced NF-κB activity but had no effect on P38 MAPK phosphorylation. In contrast, pretreatment with P38 MAPK inhibitor SB203580 resulted in upregulation of atorvastatin + LPS-induced ERK1/2 phosphorylation but had no significant effects on NF-κB activity. On the other hand, blocking NF-κB with SN50 produced no effects on atorvastatin + LPS-induced ERK1/2 and P38 MAPK phosphorylation. Moreover, TLR4 gene silencing produced the same effects as the atorvastatin treatment. In conclusion, atorvastatin downregulated TLR4 mRNA expression by two distinct signaling pathways. First, atorvastatin stabilized Iκ-Bα, which directly inhibited NF-κB activation. Second, atorvastatin inactivated ERK phosphorylation, which indirectly inhibited NF-κB activation. Suppression of p38 MAPK by atorvastatin upregulates ERK but exerts no effect on NF-κB.  相似文献   

11.
Severe injury deranges immune function and increases the risk of sepsis and multiple organ failure. Kupffer cells play a major role in mediating posttraumatic immune responses, in part via different Toll-like receptors (TLR). Although mitogen-activated protein kinases (MAPK) are key elements in the TLR signaling pathway, it remains unclear whether the activation of different MAPK are TLR specific. Male C3H/HeN mice underwent midline laparotomy (i.e., soft tissue injury), hemorrhagic shock (MAP approximately 35 mm Hg for 90 min), and resuscitation. Kupffer cells were isolated 2 h thereafter, lysed and immunoblotted with antibodies to p38, ERK1/2, or JNK proteins. In addition, cells were preincubated with specific inhibitors of p38, ERK1/2, or JNK MAPK followed by stimulation with the TLR2 agonist, zymosan; the TLR4 agonist, LPS; or the TLR9 agonist, CpG DNA. Cytokine (TNF-alpha, interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and KC) production was determined by cytometric bead array after 24 h in culture. MAPK activity as well as TNF-alpha, MCP-1, and KC production by Kupffer cells were significantly increased following trauma-hemorrhage. TLR4 activation by LPS stimulation increased the levels of all measured cytokines. CpG-stimulated TLR9 signaling increased TNF-alpha and IL-6 levels; however, it had no effect on chemokine production. Selective MAPK inhibition demonstrated that chemokine production was mediated via p38 and JNK MAPK activation in TLR2, -4, and -9 signaling. In contrast, TNF-alpha and IL-6 production was differentially regulated by MAPK depending on the TLR pathway stimulated. Thus, Kupffer cell TLR signaling employs different MAPK pathways in eliciting cytokine and chemokine responses following trauma-hemorrhage.  相似文献   

12.
Bruton's tyrosine kinase (Btk), the gene mutated in the human immunodeficiency X-linked agammaglobulinemia, is activated by LPS and is required for LPS-induced TNF production. In this study, we have investigated the role of Btk both in signaling via another TLR (TLR2) and in the production of other proinflammatory cytokines such as IL-1beta, IL-6, and IL-8. Our data show that in X-linked agammaglobulinemia PBMCs, stimulation with TLR4 (LPS) or TLR2 (N-palmitoyl-S-[2, 3-bis(palmitoyloxy)-(2R)-propyl]-(R)-cysteine) ligands produces significantly less TNF and IL-1beta than in normal controls. In contrast, a lack of Btk has no impact on the production of IL-6, IL-8, or the anti-inflammatory cytokine, IL-10. Our previous data suggested that Btk lies within a p38-dependent pathway that stabilizes TNF mRNA. Accordingly, TaqMan quantitative PCR analysis of actinomycin D time courses presented in this work shows that overexpression of Btk is able to stabilize TNF, but not IL-6 mRNA. Furthermore, using the p38 inhibitor SB203580, we show that the TLR4-induced production of TNF, but not IL-6, requires the activity of p38 MAPK. These data provide evidence for a common requirement for Btk in TLR2- and TLR4-mediated induction of two important proinflammatory cytokines, TNF and IL-1beta, and reveal important differences in the TLR-mediated signals required for the production of IL-6, IL-8, and IL-10.  相似文献   

13.
14.
B cells possess functional characteristics of innate immune cells, as they can present Ag to T cells and can be stimulated with microbial molecules such as TLR ligands. Because crude preparations of Staphylococcus aureus are frequently used as polyclonal B cell activators and contain potent TLR2 activity, the scope of this study was to analyze the impact of S. aureus-derived TLR2-active substances on human B cell activation. Peripheral B cells stimulated with chemically modified S. aureus cell wall preparations proliferated in response to stimulation with crude cell wall preparations but failed to be activated with pure peptidoglycan, indicating that cell wall molecules other than peptidoglycan are responsible for B cell proliferation. Subsequent analysis revealed that surface protein A (SpA), similar to BCR cross-linking with anti-human Ig, sensitizes B cells for the recognition of cell wall-associated TLR2-active lipopeptides (LP). In marked contrast to TLR7- and TLR9-triggered B cell stimulation, stimulation with TLR2-active LP and SpA or with crude cell wall preparations failed to induce IgM secretion, thereby revealing qualitative differences in TLR2 signaling compared with TLR7/9 signaling. Notably, combined stimulation with SpA plus TLR2 ligands induced vigorous proliferation of a defined B cell subset that expressed intracellular IgM in the presence of IL-2. Conclusion: S. aureus triggers B cell activation via SpA-induced sensitization of B cells for TLR2-active LP. Combined SpA and TLR2-mediated B cell activation promotes B cell proliferation but fails to induce polyclonal IgM secretion as seen after TLR7 and TLR9 ligation.  相似文献   

15.
Toll-like receptors (TLRs) recognize pathogen-associated molecular patterns (PAMPS) leading to the activation of the innate immune response and subsequently to the shaping of the adaptive immune response. Of the known human TLRs, TLR3, 7, 8, and 9 were shown to recognize nucleic acid ligands. TLR3 signaling is induced by double-stranded (ds)RNA, a molecular signature of viruses, and is mediated by the TRIF (TIR domain-containing adaptor-inducing IFNbeta) adaptor molecule. Thus, TLR3 plays an important role in the host response to viral infections. The liver is constantly exposed to a large variety of foreign substances, including pathogens such as HBV (hepatitis B virus) and HCV (hepatitis C virus), which frequently establish persistent liver infections. In this work, we investigated the expression and signaling pathway of TLR3 in different hepatoma cell lines. We show that hepatocyte lineage cells express relatively low levels of TLR3 mRNA. TLR3 signaling in HEK293 cells (human embryonic kidney cells) activated NF-kappaB and IRF3 (interferon regulatory factor 3) and induced IFNbeta (interferon beta) promoter expression, which are known to lead to pro-inflammatory cytokine secretion. In Huh7 cells, there was only a short-term IRF3 activation, and a very low level of IFNbeta expression. In HepG2 cells on the other hand, while no induction of pro-inflammatory factors was observed, signaling by TLR3 was skewed towards the induction of apoptosis. These results indicate preferential induction of the apoptotic pathway over the cytokine induction pathway by TLR3 signaling in hepatocellular carcinoma cells with potential implications for therapeutic strategies.  相似文献   

16.
Toll-like receptors are a family of pattern-recognition receptors that contribute to the innate immune response. Toll-like receptor 3 (TLR3) signals in response to foreign, endogenous and synthetic ligands including viral dsRNA, bacterial RNA, mitochondrial RNA, endogenous necrotic cell mRNA and the synthetic dsRNA analog, poly(I:C). We have generated a monoclonal antibody (mAb CNTO2424) that recognizes the extracellular domain (ECD) of human TLR3 in a conformation-dependent manner. CNTO2424 down-regulates poly(I:C)-induced production of IL-6, IL-8, MCP-1, RANTES, and IP-10 in human lung epithelial cells. In addition, mAb CNTO2424 was able to interfere with the known TLR3-dependent signaling pathways, namely NF-κB, IRF-3/ISRE, and p38 MAPK. The generation of this neutralizing anti-TLR3 mAb provides a unique tool to better understand TLR3 signaling and potential cross-talk between TLR3 and other molecules.  相似文献   

17.
The roles of intracellular reactive oxygen species (ROS) and related signalling pathways in mycobacterial infection are largely unknown. Here we show that tuberculin purified protein derivative (PPD)/Toll-like receptor (TLR) 2/ROS signalling through activation of apoptosis-regulating signal kinase (ASK) 1 and p47phox pathways is responsible for the induction of proinflammatory responses during tuberculosis (TB) infection. Tuberculin PPD stimulation resulted in rapid activation of mitogen-activated protein kinases (MAPKs) and an early burst of ROS in monocytes/macrophages in a TLR2-dependent manner. PPD-induced ROS production led to robust activation of ASK1 upstream of p38 MAPK, via TLR2. Interestingly, phosphorylation of the cytosolic NADPH oxidase subunit p47phox and ASK1 activation are mutually dependent on PPD/TLR2-mediated signalling. Furthermore, active pulmonary TB patients showed upregulated ROS generation, as well as enhanced activation of ASK1/p38/p47phox pathways in their primary monocytes compared with healthy controls, which suggests a systemic primed status during TB. Taken together, these results indicate that activation of the ASK1/p38 MAPK/p47phox cascade plays a central role in PPD/TLR2-induced ROS generation and suggests the existence of a 'ROS/ASK1' inflammatory amplification feedback loop in monocytes/macrophages. The altered regulation of this axis with an increasing free-radical burden may contribute to the immunopathogenesis of human TB.  相似文献   

18.
Asp(299)Gly (D299G) and, to a lesser extent, Thr(399)Ile (T399I) TLR4 polymorphisms have been associated with gram-negative sepsis and other infectious diseases, but the mechanisms by which they affect TLR4 signaling are unclear. In this study, we determined the impact of the D299G and T399I polymorphisms on TLR4 expression, interactions with myeloid differentiation factor 2 (MD2), LPS binding, and LPS-mediated activation of the MyD88- and Toll/IL-1R resistance domain-containing adapter inducing IFN-β (TRIF) signaling pathways. Complementation of human embryonic kidney 293/CD14/MD2 transfectants with wild-type (WT) or mutant yellow fluorescent protein-tagged TLR4 variants revealed comparable total TLR4 expression, TLR4-MD2 interactions, and LPS binding. FACS analyses with anti-TLR4 Ab showed only minimal changes in the cell-surface levels of the D299G TLR4. Cells transfected with D299G TLR4 exhibited impaired LPS-induced phosphorylation of p38 and TANK-binding kinase 1, activation of NF-κB and IFN regulatory factor 3, and induction of IL-8 and IFN-β mRNA, whereas T399I TLR4 did not cause statistically significant inhibition. In contrast to WT TLR4, expression of the D299G mutants in TLR4(-/-) mouse macrophages failed to elicit LPS-mediated induction of TNF-α and IFN-β mRNA. Coimmunoprecipitation revealed diminished LPS-driven interaction of MyD88 and TRIF with the D299G TLR4 species, in contrast to robust adapter recruitment exhibited by WT TLR4. Thus, the D299G polymorphism compromises recruitment of MyD88 and TRIF to TLR4 without affecting TLR4 expression, TLR4-MD2 interaction, or LPS binding, suggesting that it interferes with TLR4 dimerization and assembly of intracellular docking platforms for adapter recruitment.  相似文献   

19.
20.
The specific signals mediating the activation of microglia and astrocytes as a prelude to, or consequence of, CNS inflammation continue to be defined. We investigated TLRs as novel receptors mediating innate immune responses in human glial cells. We find that microglia express mRNA for TLRs 1-9, whereas astrocytes express robust TLR3, low-level TLR 1, 4, 5, and 9, and rare-to-undetectable TLR 2, 6, 7, 8, and 10 mRNA (quantitative real-time PCR). We focused on TLRs 3 and 4, which can signal through both the MyD88-dependent and -independent pathways, and on the MyD88-restricted TLR2. By flow cytometry, we established that microglia strongly express cell surface TLR2; TLR3 is expressed at higher levels intracellularly. Astrocytes express both cell surface and intracellular TLR3. All three TLRs trigger microglial activation upon ligation. TLR3 signaling induces the strongest proinflammatory polarizing response, characterized by secretion of high levels of IL-12, TNF-alpha, IL-6, CXCL-10, and IL-10, and the expression of IFN-beta. CXCL-10 and IL-10 secretion following TLR4 ligation are comparable to that of TLR3; however, other responses were lower or absent. TLR2-mediated responses are dominated by IL-6 and IL-10 secretion. Astrocytes respond to TLR3 ligation, producing IL-6, CXCL-10, and IFN-beta, implicating these cells as contributors to proinflammatory responses. Initial TLR-mediated glial activation also regulates consequent TLR expression; while TLR2 and TLR3 are subject to positive feedback, TLR4 is down-regulated in microglia. Astrocytes up-regulate all three TLRs following TLR3 ligation. Our data indicate that activation of innate immune responses in the CNS is not homogeneous but rather tailored according to cell type and environmental signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号