首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Notch signalling is well-known to mediate lateral inhibition in inner ear sensory patches, so as to generate a balanced mixture of sensory hair cells and supporting cells. Recently, however, we have found that ectopic Notch activity at an early stage can induce the formation of ectopic sensory patches. This suggests that Notch activity may have two different functions in normal ear development, acting first to promote the formation of the prosensory patches, and then later to regulate hair-cell production within the patches. The Notch ligand Serrate1 (Jag1 in mouse and humans) is expressed in the patches from an early stage and may provide Notch activation during the prosensory phase. Here, we test whether Notch signalling is actually required for prosensory patch development. When we block Notch activation in the chick embryo using the gamma-secretase inhibitor DAPT, we see a complete loss of prosensory epithelial cells in the anterior otocyst, where they are diverted into a neuroblast fate via failure of Delta1-dependent lateral inhibition. The cells of the posterior prosensory patch remain epithelial, but expression of Sox2 and Bmp4 is drastically reduced. Expression of Serrate1 here is initially almost normal, but subsequently regresses. The patches of sensory hair cells that eventually develop are few and small. We suggest that, in normal development, factors other than Notch activity initiate Serrate1 expression. Serrate1, by activating Notch, then drives the expression of Sox2 and Bmp4, as well as expression of the Serrate1 gene itself. The positive feedback maintains Notch activation and thereby preserves and perhaps extends the prosensory state, leading eventually to the development of normal sensory patches.  相似文献   

2.
Each of the sensory patches in the epithelium of the inner ear is a mosaic of hair cells and supporting cells. Notch signalling is thought to govern this pattern of differentiation through lateral inhibition. Recent experiments in the chick suggest, however, that Notch signalling also has a prior function - inductive rather than inhibitory - in defining the prosensory patches from which the differentiated cells arise. Several Notch ligands are expressed in each patch, but their individual roles in relation to the two functions of Notch signalling are unclear. We have used a Cre-LoxP approach to knock out two of these ligands, Delta1 (Dll1) and Jagged1 (Jag1), in the mouse ear. In the absence of Dll1, auditory hair cells develop early and in excess, in agreement with the lateral inhibition hypothesis. In the absence of Jag1, by contrast, the total number of these cells is strongly reduced, with complete loss of cochlear outer hair cells and some groups of vestibular hair cells, indicating that Jag1 is required for the prosensory inductive function of Notch. The number of cochlear inner hair cells, however, is almost doubled. This correlates with loss of expression of the cell cycle inhibitor p27(Kip1) (Cdkn1b), suggesting that signalling by Jag1 is also needed to limit proliferation of prosensory cells, and that there is a core part of this population whose prosensory character is established independently of Jag1-Notch signalling. Our findings confirm that Notch signalling in the ear has distinct prosensory and lateral-inhibitory functions, for which different ligands are primarily responsible.  相似文献   

3.
In mammals, six separate sensory regions in the inner ear are essential for hearing and balance function. Each sensory region is made up of hair cells, which are the sensory cells, and their associated supporting cells, both arising from a common progenitor. Little is known about the molecular mechanisms that govern the development of these sensory organs. Notch signaling plays a pivotal role in the differentiation of hair cells and supporting cells by mediating lateral inhibition via the ligands Delta-like 1 and Jagged (JAG) 2. However, another Notch ligand, JAG1, is expressed early in the sensory patches prior to cell differentiation, indicating that there may be an earlier role for Notch signaling in sensory development in the ear. Here, using conditional gene targeting, we show that the Jag1 gene is required for the normal development of all six sensory organs within the inner ear. Cristae are completely lacking in Jag1-conditional knockout (cko) mutant inner ears, whereas the cochlea and utricle show partial sensory development. The saccular macula is present but malformed. Using SOX2 and p27kip1 as molecular markers of the prosensory domain, we show that JAG1 is initially expressed in all the prosensory regions of the ear, but becomes down-regulated in the nascent organ of Corti by embryonic day 14.5, when the cells exit the cell cycle and differentiate. We also show that both SOX2 and p27kip1 are down-regulated in Jag1-cko inner ears. Taken together, these data demonstrate that JAG1 is expressed early in the prosensory domains of both the cochlear and vestibular regions, and is required to maintain the normal expression levels of both SOX2 and p27kip1. These data demonstrate that JAG1-mediated Notch signaling is essential during early development for establishing the prosensory regions of the inner ear.  相似文献   

4.
Recent studies have demonstrated that the Notch signaling pathway regulates the differentiation of sensory hair cells in the vertebrate inner ear [1] [2] [3] [4] [5] [6] [7] [8] [9]. We have shown previously that in mice homozygous for a targeted null mutation of the Jagged2 (Jag2) gene, which encodes a Notch ligand, supernumerary hair cells differentiate in the cochlea of the inner ear [7]. Other components of the Notch pathway, including the Lunatic fringe (Lfng) gene, are also expressed during differentiation of the inner ear in mice [6] [7] [8] [9] [10]. In contrast to the Jag2 gene, which is expressed in hair cells, the Lfng gene is expressed in non-sensory supporting cells in the mouse cochlea [10]. Here we demonstrate that a mutation in the Lfng gene partially suppresses the effects of the Jag2 mutation on hair cell development. In mice homozygous for targeted mutations of both Jag2 and Lfng, the generation of supernumerary hair cells in the inner hair cell row is suppressed, while supernumerary hair cells in the outer hair cell rows are unaffected. We also demonstrate that supernumerary hair cells are generated in mice heterozygous for a Notch1 mutation. We suggest a model for the action of the Notch signaling pathway in regulating hair cell differentiation in the cochlear sensory epithelium.  相似文献   

5.
6.
In the inner ear, Notch signaling has been proposed to specify the sensory regions, as well as regulate the differentiation of hair cells and supporting cell within those regions. In addition, Notch plays an important role in otic neurogenesis, by determining which cells differentiate as neurons, sensory cells and non-sensory cells. Here, I review the evidence for the complex and myriad roles Notch participates in during inner ear development. A particular challenge for those studying ear development and Notch is to decipher how activation of a single pathway can lead to different outcomes within the ear, which may include changes in the intrinsic properties of the cell, Notch modulation, and potential non-canonical pathways.  相似文献   

7.
Hair cells of the inner ear sensory organs originate from progenitor cells located at specific domains of the otic vesicle: the prosensory patches. Notch signalling is necessary for sensory development and loss of function of the Notch ligand jagged 1 (Jag1, also known as serrate 1) results in impaired sensory organs. However, the underlying mechanism of Notch function is unknown. Our results show that in the chicken otic vesicle, the Sox2 expression domain initially contains the nascent patches of Jag1 expression but, later on, Sox2 is only maintained in the Jag1-positive domains. Ectopic human JAG1 (hJag1) is able to induce Sox2 expression and enlarged sensory organs. The competence to respond to hJag1, however, is confined to the regions that expressed Sox2 early in development, suggesting that hJag1 maintains Sox2 expression rather than inducing it de novo. The effect is non-cell-autonomous and requires Notch signalling. hJag1 activates Notch, induces Hes/Hey genes and endogenous Jag1 in a non-cell-autonomous manner, which is consistent with lateral induction. The effects of hJag1 are mimicked by Jag2 but not by Dl1. Sox2 is sufficient to activate the Atoh1 enhancer and to ectopically induce sensory cell fate outside neurosensory-competent domains. We suggest that the prosensory function of Jag1 resides in its ability to generate discrete domains of Notch activity that maintain Sox2 expression within restricted areas of an extended neurosensory-competent domain. This provides a mechanism to couple patterning and cell fate specification during the development of sensory organs.  相似文献   

8.

Purpose

To determine whether activated Notch can promote a supporting cell fate during sensory cell differentiation in the inner ear.

Methods

An activated form of the Notch1 receptor (NICD) was expressed in early differentiating hair cells using a Gfi1-Cre mouse allele. To determine the effects of activated Notch on developing hair cells, Gfi1-NICD animals and their littermate controls were assessed at 5 weeks for hearing by measuring auditory brainstem responses (ABRs) and distortion product otoacoustic emissions (DPOAEs). The differentiation of NICD-expressing hair cells was assessed at postnatal day (P) 6, 11 and 20, using histological and molecular markers for hair cells, as well as supporting cells/progenitor cells. We also examined whether the effects of Notch were mediated by SOX2, a gene expressed in supporting cells and a likely downstream target of Notch, by crossing an inducible form of SOX2 to the Gfi1-Cre.

Results

Activation of Notch1 in developing auditory hair cells causes profound deafness. The NICD-expressing hair cells switch off a number of hair cell markers and lose their characteristic morphology. Instead, NICD-expressing hair cells adopt a morphology resembling supporting cells and upregulate a number of supporting cell markers. These effects do not appear to be mediated by SOX2, because although expression of SOX2 caused some hearing impairment, the SOX2-expressing hair cells did not downregulate hair cell markers nor exhibit a supporting cell-like phenotype.

Conclusions

Our data show that Notch signaling inhibits hair cell differentiation and promotes a supporting cell-like phenotype, and that these effects are unlikely to be mediated by SOX2.  相似文献   

9.
The Notch signaling pathway is thought to regulate multiple stages of inner ear development. Mutations in the Notch signaling pathway cause disruptions in the number and arrangement of hair cells and supporting cells in sensory regions of the ear. In this study we identify an insertional mutation in the mouse Sfswap gene, a putative splicing factor, that results in mice with vestibular and cochlear defects that are consistent with disrupted Notch signaling. Homozygous Sfswap mutants display hyperactivity and circling behavior consistent with vestibular defects, and significantly impaired hearing. The cochlea of newborn Sfswap mutant mice shows a significant reduction in outer hair cells and supporting cells and ectopic inner hair cells. This phenotype most closely resembles that seen in hypomorphic alleles of the Notch ligand Jagged1 (Jag1). We show that Jag1; Sfswap compound mutants have inner ear defects that are more severe than expected from simple additive effects of the single mutants, indicating a genetic interaction between Sfswap and Jag1. In addition, expression of genes involved in Notch signaling in the inner ear are reduced in Sfswap mutants. There is increased interest in how splicing affects inner ear development and function. Our work is one of the first studies to suggest that a putative splicing factor has specific effects on Notch signaling pathway members and inner ear development.  相似文献   

10.
The sensory epithelia of the inner ear contain mechanosensory hair cells and non-sensory supporting cells. Both classes of cell are heterogeneous, with phenotypes varying both between and within epithelia. The specification of individual cells as distinct types of hair cell or supporting cell is regulated through intra- and extracellular signalling pathways that have been poorly understood. However, new methodologies have resulted in significant steps forward in our understanding of the molecular pathways that direct cells towards these cell fates.  相似文献   

11.
Inner ear mechanosensory hair cells transduce sound and balance information. Auditory hair cells emerge from a Sox2-positive sensory patch in the inner ear epithelium, which is progressively restricted during development. This restriction depends on the action of signaling molecules. Fibroblast growth factor (FGF) signalling is important during sensory specification: attenuation of Fgfr1 disrupts cochlear hair cell formation; however, the underlying mechanisms remain unknown. Here we report that in the absence of FGFR1 signaling, the expression of Sox2 within the sensory patch is not maintained. Despite the down-regulation of the prosensory domain markers, p27Kip1, Hey2, and Hes5, progenitors can still exit the cell cycle to form the zone of non-proliferating cells (ZNPC), however the number of cells that form sensory cells is reduced. Analysis of a mutant Fgfr1 allele, unable to bind to the adaptor protein, Frs2/3, indicates that Sox2 maintenance can be regulated by MAP kinase. We suggest that FGF signaling, through the activation of MAP kinase, is necessary for the maintenance of sensory progenitors and commits precursors to sensory cell differentiation in the mammalian cochlea.  相似文献   

12.
Expression of a mouse atonal homologue, math1, defines cells with the potential to become sensory hair cells in the mouse inner ear (Science 284 (1999) 1837) and Notch signaling limits the number of cells that are permitted to adopt this fate (Nat. Genet. 21 (1999) 289; J. Neurocytol. 28 (1999) 809). Failure of lateral inhibition mediated by Notch signaling is associated with an overproduction of ear hair cells in the zebrafish mind bomb (mib) and deltaA mutants (Development 125 (1998a) 4637; Development 126 (1999) 5669), suggesting a similar role for these genes in limiting the number of hair cells in the zebrafish ear. This study extends the analysis of proneural and neurogenic gene expression to the lateral line system, which detects movement via clusters of related sensory hair cells in specialized structures called neuromasts. We have compared the expression of a zebrafish atonal homologue, zath1, and neurogenic genes, deltaA, deltaB and notch3, in neuromasts and the posterior lateral line primordium (PLLP) of wild-type and mib mutant embryos. We describe progressive restriction of proneural and neurogenic gene expression in the migrating PLLP that appears to correlate with selection of hair cell fate in maturing neuromasts. In mib mutants there is a failure to restrict expression of zath1 and Delta homologues in the neuromasts revealing similarities with the phenotype previously described in the ear.  相似文献   

13.
Several studies have demonstrated a link between diabetes and the dysfunction of the inner ear. Few studies, however, have reported the signalling mechanisms involved in metabolic control in human inner ear cells. Knowledge of the expression and role of the insulin receptor and downstream signalling components in the inner ear is sparce. Our immunohistochemistry approach has shown that the insulin receptor, insulin receptor substrate 1 (IRS1), protein kinase B (PKB) and insulin-sensitive glucose transporter (GLUT4) are expressed in the sensory epithelium of the human saccule, which also exhibits expression of a calcium-sensitive cAMP/cGMP phosphodiesterase 1C (PDE1C) and the vasopressin type 2 receptor. IRS1 and PDE1C are selectively expressed in sensory epithelial hair cells, whereas the other components are expressed in sensory epithelial supporting cells or in both cell types, as judged from co-expression or non-co-expression with glial fibrillary acidic protein, a marker for supporting cells. Furthermore, IRS1 appears to be localized in association with sensory nerves, whereas GLUT4 is expressed in the peri-nuclear area of stromal cells, as is the case for aquaporin 2. Thus, the insulin receptor, insulin signalling components and selected cAMP signalling components are expressed in the human saccule. In addition to well-known mechanisms of diabetes complications, such as neuropathy and vascular lesions, the expression of these proteins in the saccule could have a role in the observed link between diabetes and balance/hearing disorders.  相似文献   

14.
Components of the Wnt signaling pathway are expressed in the developing inner ear. To explore their role in ear patterning, we used retroviral gene transfer to force the expression of an activated form of beta-catenin that should constitutively activate targets of the canonical Wnt signaling pathway. At embryonic day 9 (E9) and beyond, morphological defects were apparent in the otic capsule and the membranous labyrinth, including ectopic and fused sensory patches. Most notably, the basilar papilla, an auditory organ, contained infected sensory patches with a vestibular phenotype. Vestibular identity was based on: (1) stereociliary bundle morphology; (2) spacing of hair cells and supporting cells; (3) the presence of otoliths; (4) immunolabeling indicative of vestibular supporting cells; and (5) expression of Msx1, a marker of certain vestibular sensory organs. Retrovirus-mediated misexpression of Wnt3a also gave rise to ectopic vestibular patches in the cochlear duct. In situ hybridization revealed that genes for three Frizzled receptors, c-Fz1, c-Fz7, and c-Fz10, are expressed in and adjacent to sensory primordia, while Wnt4 is expressed in adjacent, nonsensory regions of the cochlear duct. We hypothesize that Wnt/beta-catenin signaling specifies otic epithelium as macular and helps to define and maintain sensory/nonsensory boundaries in the cochlear duct.  相似文献   

15.
16.
杨志  姚俊  曹新 《遗传》2018,40(7):515-524
内耳是感受听觉和平衡觉的复杂器官。在内耳发育过程中,成纤维生长因子(fibroblast growth factor, FGF)信号通路参与了听基板的诱导、螺旋神经节(statoacoustic ganglion, SAG)的发育以及Corti器感觉上皮的分化。FGF信号开启了内耳早期发育的基因调控网络,诱导前基板区域以及听基板的形成。正常表达的FGF信号分子可促进听囊腹侧成神经细胞的特化,但成熟SAG神经元释放的过量FGF5可抑制此过程,形成负反馈环路使SAG在稳定状态下发育。FGF20在Notch信号通路的调控下参与了前感觉上皮区域向毛细胞和支持细胞的分化过程,而内毛细胞分泌的FGF8可调控局部支持细胞分化为柱细胞。人类FGF信号通路异常可导致多种耳聋相关遗传病。此外,FGF信号通路在低等脊椎动物毛细胞自发再生以及干细胞向内耳毛细胞诱导过程中都起到了关键作用。本文综述了FGF信号通路在内耳发育调控以及毛细胞再生中的作用及其相关研究进展,以期为毛细胞再生中FGF信号通路调控机制的阐明奠定理论基础。  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号