共查询到20条相似文献,搜索用时 15 毫秒
1.
Differential membrane binding of the human immunodeficiency virus type 1 matrix protein. 总被引:5,自引:14,他引:5 下载免费PDF全文
The human immunodeficiency virus type 1 matrix protein (p17MA) plays a central role at both the early and late stages of the virus life cycle. During viral assembly, the p17MA domain of Pr55gag promotes membrane association, which is essential for the formation of viral particles. When viral infection occurs, the mature p17MA dissociates from the plasma membrane and participates in the nuclear targeting process. Thus, p17MA contains a reversible membrane binding signal to govern its differential subcellular localization and biological functions. We previously identified a membrane binding signal within the amino-terminal 31 amino acids of the matrix domain of human immunodeficiency virus type 1 Gag, consisting of myristate and a highly basic region (W. Zhou, L. J. Parent, J. W. Wills, and M. D. Resh, J. Virol. 68:2556-2569, 1994). Here we show that exposure of this membrane binding signal is regulated in different Gag protein contexts. Within full-length Pr55gag, the membrane targeting signal is exposed and can direct Pr55gag as well as heterologous proteins to the plasma membrane. However, in the context of p17MA alone, this signal is hidden and unable to confer plasma membrane binding. To investigate the molecular mechanism for regulation of membrane binding, a series of deletions within p17MA was generated by sequentially removing alpha-helical regions defined by the nuclear magnetic resonance structure. Removal of the last alpha helix (amino acids 97 to 109) of p17MA was associated with enhancement of binding to biological membranes in vitro and in vivo. Liposome binding experiments indicated that the C-terminal region of p17MA exerts a negative effect on the N-terminal MA membrane targeting domain by sequestering the myristate signal. We propose that mature p17MA adopts a conformation different from that of the p17MA domain within Pr55gag and present evidence to support this hypothesis. It is likely that such a conformational change results in an N-terminal myristyl switch which governs differential membrane binding. 相似文献
2.
Analysis of envelope sequence variants suggests multiple mechanisms of mother-to-child transmission of human immunodeficiency virus type 1. 总被引:1,自引:5,他引:1 下载免费PDF全文
In order to elucidate the molecular mechanisms involved in human immunodeficiency virus type 1 (HIV-1) mother-to-child transmission, we have analyzed the genetic variation within the V3 hypervariable domain and flanking regions of the HIV-1 envelope gene in four mother-child transmission pairs. Phylogenetic analysis and amino acid sequence comparison were performed on cell-associated viral sequences derived from maternal samples collected at different time points during pregnancy, after delivery, and from child samples collected from the time of birth until the child was approximately 1 year of age. Heterogeneous sequence populations were observed to be present in all maternal samples collected during pregnancy and postdelivery. In three newborns, viral sequence populations obtained within 2 weeks after birth revealed a high level of V3 sequence variability. In contrast, V3 sequences obtained from the fourth child (diagnosed at the age of 1 month) displayed a more restricted heterogeneity. The phylogenetic analysis performed for each mother-child sequence set suggested that several mechanisms may potentially be involved in HIV-1 vertical transmission. For one pair, child sequences were homogeneous and clustered in a single branch within the phylogenetic tree, consistent with selective transmission of a single maternal variant. For the other three pairs, the child sequences were more heterogeneous and clustered in several separate branches within the tree. In these cases, it appeared likely that more than one maternal variant was responsible for infection of the child. In conclusion, no single mechanism can account for mother-to-child HIV-1 transmission; both the selective transmission of a single maternal variant and multiple transmission events may occur. 相似文献
3.
Vaccine platform for prevention of tuberculosis and mother-to-child transmission of human immunodeficiency virus type 1 through breastfeeding 总被引:1,自引:0,他引:1 下载免费PDF全文
Im EJ Saubi N Virgili G Sander C Teoh D Gatell JM McShane H Joseph J Hanke T 《Journal of virology》2007,81(17):9408-9418
Most children in Africa receive their vaccine against tuberculosis at birth. Those infants born to human immunodeficiency virus type 1 (HIV-1)-positive mothers are at high risk of acquiring HIV-1 infection through breastfeeding in the first weeks of their lives. Thus, the development of a vaccine which would protect newborns against both of these major global killers is a logical yet highly scientifically, ethically, and practically challenging aim. Here, a recombinant lysine auxotroph of Mycobacterium bovis bacillus Calmette-Guérin (BCG), a BCG strain that is safer than those currently used and expresses an African HIV-1 clade-derived immunogen, was generated and shown to be stable and to induce durable, high-quality HIV-1-specific CD4+- and CD8+-T-cell responses. Furthermore, when the recombinant BCG vaccine was used in a priming-boosting regimen with heterologous components, the HIV-1-specific responses provided protection against surrogate virus challenge, and the recombinant BCG vaccine alone protected against aerosol challenge with M. tuberculosis. Thus, inserting an HIV-1-derived immunogen into the scheduled BCG vaccine delivered at or soon after birth may prime HIV-1-specific responses, which can be boosted by natural exposure to HIV-1 in the breast milk and/or by a heterologous vaccine such as recombinant modified vaccinia virus Ankara delivering the same immunogen, and decrease mother-to-child transmission of HIV-1 during breastfeeding. 相似文献
4.
Fossen T Wray V Bruns K Rachmat J Henklein P Tessmer U Maczurek A Klinger P Schubert U 《The Journal of biological chemistry》2005,280(52):42515-42527
The human immunodeficiency virus type 1 p6 protein represents a docking site for several cellular and viral binding factors and fulfills major roles in the formation of infectious viruses. To date, however, the structure of this 52-amino acid protein, by far the smallest lentiviral protein known, either in its mature form as free p6 or as the C-terminal part of the Pr55 Gag polyprotein has not been unraveled. We have explored the high resolution structure and folding of p6 by CD and NMR spectroscopy. Under membranous solution conditions, p6 can adopt a helix-flexible helix structure; a short helix-1 (amino acids 14-18) is connected to a pronounced helix-2 (amino acids 33-44) by a flexible hinge region. Thus, p6 can be subdivided into two distinct structural and functional domains; helix-2 perfectly defines the region that binds to the virus budding factor AIP-1/ALIX, indicating that this structure is required for interaction with the endosomal sorting complex required for transport. The PTAP motif at the N terminus, comprising the primary late assembly domain, which is crucial for interaction with another cellular budding factor, Tsg101, does not exhibit secondary structure. However, the adjacent helix-1 may play an indirect role in the specific complex formation between p6 and the binding groove in Tsg101. Moreover, binding studies by NMR demonstrate that helix-2, which also comprises the LXXLF motif required for incorporation of the human immunodeficiency virus type 1 accessory protein Vpr into budding virions, specifically interacts with the Vpr binding region, indicating that under the specific solution conditions used for structure analysis, p6 adopted a functional conformation. 相似文献
5.
6.
7.
Maternal SDF1 3'A polymorphism is associated with increased perinatal human immunodeficiency virus type 1 transmission 下载免费PDF全文
John GC Rousseau C Dong T Rowland-Jones S Nduati R Mbori-Ngacha D Rostron T Kreiss JK Richardson BA Overbaugh J 《Journal of virology》2000,74(12):5736-5739
Genetic polymorphisms in chemokine and chemokine receptor genes influence susceptibility to human immunodeficiency virus type 1 (HIV-1) infection and disease progression, but little is known regarding the association between these allelic variations and the ability of the host to transmit virus. In this study, we show that the maternal heterozygous SDF1 genotype (SDF1 3'A/wt) is associated with perinatal transmission of HIV-1 (risk ratio [RR], 1.8; 95% confidence interval [CI], 1.0 to 3.3) and particularly postnatal breastmilk transmission (RR, 3.1; 95% CI, 1.1 to 8.6). In contrast, the infant SDF1 genotype had no effect on mother-to-infant transmission. These data suggest that SDF1, which is a ligand for the T-tropic HIV-1 coreceptor CXCR4, may affect the ability of a mother to transmit the virus to her infant. This suggests that a genetic polymorphism in a gene encoding a chemokine receptor ligand may be associated with increased infectivity of the index case and highlights the importance of considering transmission as well as clinical outcome in designing chemokine-based therapies for HIV-1. 相似文献
8.
Rescue of human immunodeficiency virus type 1 matrix protein mutants by envelope glycoproteins with short cytoplasmic domains. 总被引:5,自引:17,他引:5 下载免费PDF全文
The matrix (MA) protein of human immunodeficiency virus type 1 (HIV-1) forms the outer protein shell directly underneath the lipid envelope of the virion. The MA protein has a key role in different aspects of virus assembly, including the incorporation of the HIV-1 Env protein complex, which contains a transmembrane glycoprotein with an unusually long cytoplasmic tail. In this study, we compared the abilities of HIV-1 MA mutants to incorporate Env protein complexes with long and short cytoplasmic tails. While the mutant particles failed to incorporate the authentic HIV-1 Env protein complex, they retained the ability to efficiently and functionally incorporate the amphotropic murine leukemia virus Env protein complex, which has a short cytoplasmic tail. Moreover, incorporation of the autologous Env protein complex could be restored by a second-site mutation that resulted in the truncation of the cytoplasmic tail of the HIV-1 transmembrane glycoprotein. Remarkably, the second-site mutation also restored the ability of MA mutants to replicate in MT-4 cells. These results imply that the long cytoplasmic tail of the transmembrane glycoprotein is responsible for the exclusion of the HIV-1 Env protein complex from MA mutant particles. 相似文献
9.
10.
Characterization of murine monoclonal antibodies to the tat protein from human immunodeficiency virus type 1. 下载免费PDF全文
D A Brake J Goudsmit W J Krone P Schammel N Appleby R H Meloen C Debouck 《Journal of virology》1990,64(2):962-965
A panel of murine monoclonal antibodies (MAbs) to the human immunodeficiency virus type 1 trans-activator tat protein were characterized. The anti-tat MAbs were mapped to the different domains of the tat protein by Western blot (immunoblot) and Pepscan analyses. One-half of the MAbs tested mapped to the amino-terminal proline-rich region, and one-third of the MAbs tested mapped to the lysine-arginine-rich region of tat. The individual MAbs were tested for inhibition of tat-mediated trans activation, using a cell-based in vitro assay system. MAbs which mapped to the amino-terminal region of the tat protein demonstrated the highest degree of inhibition, whereas MAbs reactive to other portions of the molecule exhibited a less pronounced effect on tat function. 相似文献
11.
12.
The Nef protein of human immunodeficiency virus type 1 enhances serine phosphorylation of the viral matrix. 总被引:7,自引:5,他引:2 下载免费PDF全文
The human immunodeficiency virus type 1 matrix (MA) protein is phosphorylated during virion maturation on its C-terminal tyrosine and on several serine residues. Whereas MA tyrosine phosphorylation facilitates viral nuclear import, the significance of MA serine phosphorylation remains unclear. Here, we report that MA serine but not tyrosine phosphorylation is strongly enhanced by Nef. Mutations that abrogated the membrane association of Nef and its ability to bind a cellular serine/threonine kinase greatly diminished the extent of virion MA serine phosphorylation. Correspondingly, a protein kinase coimmunoprecipitated with Nef could phosphorylate MA on serine in vitro, producing a phosphopeptide pattern reminiscent of that of virion MA. Recombinant p21-activated kinase hPAK65, a recently proposed relative of the Nef-associated kinase, achieved a comparable result. Taken together, these data suggest that MA is a target of the Nef-associated serine kinase. 相似文献
13.
A human nuclear shuttling protein that interacts with human immunodeficiency virus type 1 matrix is packaged into virions 总被引:2,自引:0,他引:2 下载免费PDF全文
Active nuclear import of the human immunodeficiency virus type 1 (HIV-1) preintegration complex (PIC) is essential for the productive infection of nondividing cells. Nuclear import of the PIC is mediated by the HIV-1 matrix protein, which also plays several critical roles during viral entry and possibly during virion production facilitating the export of Pr55(Gag) and genomic RNA. Using a yeast two-hybrid screen, we identified a novel human virion-associated matrix-interacting protein (VAN) that is highly conserved in vertebrates and expressed in most human tissues. Its expression is upregulated upon activation of CD4(+) T cells. VAN is efficiently incorporated into HIV-1 virions and, like matrix, shuttles between the nucleus and cytoplasm. Furthermore, overexpression of VAN significantly inhibits HIV-1 replication in tissue culture. We propose that VAN regulates matrix nuclear localization and, by extension, both nuclear import of the PIC and export of Pr55(Gag) and viral genomic RNA during virion production. Our data suggest that this regulatory mechanism reflects a more global process for regulation of nucleocytoplasmic transport. 相似文献
14.
A molecular determinant of human immunodeficiency virus particle assembly located in matrix antigen p17. 总被引:7,自引:4,他引:3 下载免费PDF全文
Y Morikawa T Kishi W H Zhang M V Nermut D J Hockley I M Jones 《Journal of virology》1995,69(7):4519-4523
We report single-point mutations that are located in the matrix protein domain of the gag gene of human immunodeficiency virus type 1 and that prevent Gag particle formation. We show that mutations of p17 that abolish human immunodeficiency virus particle assembly also prevent the dimerization of p17 protein, as measured directly by a protein-protein binding assay. In the three-dimensional structure of p17, mutations that abolish dimerization are located in a single alpha helix that forms part of a fingerlike projection from one side of the molecule. Peptides derived from this region of p17 also reduce the level of p17 dimer when they are added to p17-expressing cells and compete for p17 self-association when present in protein-protein binding assays. We propose that the dimerization of the Gag precursor that occurs by the interdigitation of alpha helices on adjacent matrix molecules is a key stage in virion assembly and that the prevention of such an interaction is the molecular basis of particle misassembly. 相似文献
15.
R. I. Al-Shekhadat I. V. Dukhovlinov A. I. Kobatov N. A. Klimov A. P. Kozlov 《Applied Biochemistry and Microbiology》2011,47(8):730-736
A simple and efficient method for expression in Escherichia coli cells and purification of a recombinant matrix protein, p17, of human immunodeficiency type I virus has been described. HIV-1
subtype A DNA sequence encoding p17 was obtained by amplification of the viral gag gene segment and cloned into an expression vector under the control of T7Lac promoter. The conditions for cell growth and
induction of p17 synthesis by lactose and its further purification by metal chelate chromatography were optimized. p17 preparations
with 97% purity were obtained; the yield of the protein of 28 mg per 1l of culture was achieved. The obtained protein was
capable of binding antibodies from blood serum of a HIV-infected patient during immunoblotting. 相似文献
16.
Multiple isoforms of cyclophilin A associated with human immunodeficiency virus type 1 总被引:1,自引:0,他引:1
It is well-known that a peptidyl-prolyl cis-trans isomerase cyclophilin A (CyPA) is incorporated into Human immunodeficiency virus type 1 (HIV-1) particle. The proteome analysis of the purified HIV-1 strain LAV-1 (HIV-1(LAV-1)) reveals that three isoforms of CyPA with an isoelectric point (pI) of 6.00, 6.40, and 6.53 are inside the viral membrane and another isoform with a pI of 6.88 is outside the viral membrane; and that the CyPA isoform with a pI of 6.53 is N-acetylated. The mechanisms that permit the redistribution of CyPA with a pI of 6.88 on the viral surface have not yet been clarified, but it penetrates the viral membrane after budding. 相似文献
17.
18.
19.
Fledderman EL Fujii K Ghanam RH Waki K Prevelige PE Freed EO Saad JS 《Biochemistry》2010,49(44):9551-9562
Human immunodeficiency virus type 1 (HIV-1) encodes a polypeptide called Gag that is capable of forming virus-like particles (VLPs) in vitro in the absence of other cellular or viral constituents. During the late phase of HIV-1 infection, Gag polyproteins are transported to the plasma membrane (PM) for assembly. A combination of in vivo, in vitro, and structural studies have shown that Gag targeting and assembly on the PM are mediated by specific interactions between the myristoylated matrix [myr(+)MA] domain of Gag and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. Exposure of the MA myristyl (myr) group is triggered by PI(4,5)P2 binding and is enhanced by factors that promote protein self-association. In the studies reported here, we demonstrate that myr exposure in MA is modulated by pH. Our data show that deprotonation of the His89 imidazole ring in myr(+)MA destabilizes the salt bridge formed between His89(Hδ2) and Glu12(COO-), leading to tight sequestration of the myr group and a shift in the equilibrium from trimer to monomer. Furthermore, we show that oligomerization of a Gag-like construct containing matrix-capsid is also pH-dependent. Disruption of the His?Glu salt bridge by single-amino acid substitutions greatly altered the myr-sequestered?myr-exposed equilibrium. In vivo intracellular localization data revealed that the H89G mutation retargets Gag to intracellular compartments and severely inhibits virus production. Our findings reveal that the MA domain acts as a “pH sensor” in vitro, suggesting that the effect of pH on HIV-1 Gag targeting and binding to the PM warrants investigation. 相似文献
20.
Retroviral Gag protein is sufficient to produce Gag virus-like particles when expressed in higher eukaryotic cells. Here we describe the in vitro assembly reaction of human immunodeficiency virus Gag protein, which consists of two sequential steps showing the optimal conditions for each reaction. Following expression and purification, Gag protein lacking only the C-terminal p6 domain was present as a monomer (50 kDa) by velocity sedimentation analysis. Initial assembly of the Gag protein to 60 S intermediates occurred by dialysis at 4 degrees C in low salt at neutral to alkaline pH. However, higher order of assembly required incubation at 37 degrees C and was facilitated by the addition of Mg(2+). Prolonged incubation under these conditions produced complete assembly (600 S), equivalent to Gag virus-like particles obtained from Gag-expressing cells. Neither form disassembled by treatment with nonionic detergent, suggesting that correct assembly might occur in vitro. Electron microscopic observation confirmed that the 600 S assembly products were spherical particles similar to authentic immature human immunodeficiency virus particles. The latter assembly stage but not the former was accelerated by the addition of RNA although not inhibited by RNaseA treatment. These results suggest that Gag protein alone assembles in vitro, but that additional RNA facilitates the assembly reaction. 相似文献