首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The opposing problems of graft-vs-host disease (GVHD) and failure of alloengraftment present major obstacles to the application of bone marrow transplantation (BMT) across complete MHC barriers. The addition of syngeneic T-cell-depleted (TCD) bone marrow (BM) to untreated fully allogeneic marrow inocula in lethally irradiated mice has been previously shown to provide protection from GVHD. We have used this model to study the effects of allogeneic T cells on levels of chimerism in recipients of mixed marrow inocula. The results indicate that T cells in allogeneic BM inocula eliminate both coadministered recipient-strain and radioresistant host hematopoietic elements to produce complete allogeneic chimerism without clinical GVHD. To determine the role of GVH reactivity in this phenomenon, we performed similar studies in an F1 into parent combination, in which the genetic potential for GVHD is lacking. The presence of T cells in F1 marrow inocula led to predominant repopulation with F1 lymphocytes in such chimeras, even when coadministered with TCD-recipient-strain BM. These results imply that the ability of allogeneic BM cells removed by T cell depletion to increase levels of allochimerism may be mediated by a population which is distinct from that which produces GVHD. These results may have implications for clinical BM transplantation.  相似文献   

2.
Immune tolerance to organ transplants has been reported in laboratory animals and in humans after nonmyeloablative conditioning of the host and infusion of donor bone marrow cells. We examined the mechanisms of immune tolerance to mouse cardiac allografts in MHC-mismatched hosts that developed mixed chimerism after posttransplant conditioning with a 2-wk course of multiple doses of lymphoid tissue irradiation, depletive anti-T cell Abs, and an infusion of donor bone marrow cells. When CD1(-/-) or J(alpha)281(-/-) hosts with markedly reduced NK T cells were used instead of wild-type hosts, then the conditioning regimen failed to induce tolerance to the heart allografts despite the development of mixed chimerism. Tolerance could be restored to the CD1(-/-) hosts by infusing enriched T cells from the bone marrow of wild-type mice containing CD1-reactive T cells but not from CD1(-/-) host-type mice. Tolerance could not be induced in either IL-4(-/-) or IL-10(-/-) hosts given the regimen despite the development of chimerism and clonal deletion of host T cells to donor MHC-Ags in the IL-10(-/-) hosts. We conclude that immune tolerance to bone marrow transplants involves clonal deletion, and tolerance to heart allografts in this model also involves regulatory CD1-reactive NK T cells.  相似文献   

3.
Reconstitution of lethally irradiated mice with a mixture of T cell-depleted syngeneic plus T cell-depleted allogeneic bone marrow (B10 + B10.D2----B10) leads to the induction of mixed lymphopoietic chimerism, excellent survivals, specific in vivo transplantation tolerance to subsequent donor strain skin grafts, and specific in vitro unresponsiveness to allogeneic donor lymphoid elements as assessed by mixed lymphocyte reaction (MLR) proliferative and cell-mediated lympholysis (CML) cytotoxicity assays. When B10 recipient mice received mixed marrow inocula in which the syngeneic component had not been T cell depleted, whether or not the allogeneic donor marrow was treated, they repopulated exclusively with host-type cells, promptly rejected donor-type skin allografts, and were reactive in vitro to the allogeneic donor by CML and MLR assays. In contrast, T cell depletion of the syngeneic component of the mixed marrow inocula resulted in specific acceptance of allogeneic donor strain skin grafts, whether or not the allogeneic bone marrow was T cell depleted. Such animals were specifically unreactive to allogeneic donor lymphoid elements in vitro by CML and MLR, but were reactive to third party. When both the syngeneic and allogeneic marrow were T cell depleted, variable percentages of host- and donor-type lymphoid elements were detected in the mixed reconstituted host. When only the syngeneic bone marrow was T cell depleted, animals repopulated exclusively with donor-type cells. Although these animals had detectable in vitro anti-host (B10) reactivity by CML and MLR and reconstituted as fully allogeneic chimeras, they exhibited excellent survival and had no in vivo evidence for graft-vs-host disease. In addition, experiments in which untreated donor spleen cells were added to the inocula in this last group suggest that the presence of T cell-depleted syngeneic bone marrow cells diminishes graft-vs-host disease and the mortality from it. This system may be helpful as a model for the study of alloresistance and for the identification of syngeneic cell phenotypes, which when present prevent engraftment of allogeneic marrow.  相似文献   

4.
Historically, conditioning for engraftment of hematopoietic stem cells has been nonspecific. In the present study, we characterized which cells in the recipient hematopoietic microenvironment prevent allogeneic marrow engraftment. Mice defective in production of alphabeta-TCR(+), gammadelta-TCR(+), alphabeta- plus gammadelta-TCR(+), CD8(+), or CD4(+) cells were transplanted with MHC-disparate allogeneic bone marrow. Conditioning with 500 cGy total body irradiation (TBI) plus a single dose of cyclophosphamide (CyP) on day +2 establishes chimerism in normal recipients. When mice were conditioned with 300 cGy TBI plus a single dose of CyP on day +2, all engrafted, except wild-type controls and those defective in production of CD4(+) T cells. Mice lacking both alphabeta- and gammadelta-TCR(+) cells engrafted without conditioning, suggesting that both alphabeta- and gammadelta-TCR T cells in the host play critical and nonredundant roles in preventing engraftment of allogeneic bone marrow. CD8 knockout (KO) mice engrafted without TBI, but only if they received CyP on day +2 relative to the marrow infusion, showing that a CD8(-) cell was targeted by the CyP conditioning. The CD8(+) cell effector function is mechanistically different from that for conventional T cells, and independent of CD4(+) T helper cells because CD4 KO mice require substantially higher levels of conditioning than the other KO phenotypes. These results suggest that a number of cell populations with different mechanisms of action mediate resistance to engraftment of allogeneic marrow. Targeting of specific recipient cellular populations may permit conditioning approaches to allow mixed chimerism with minimal morbidity and could potentially avoid the requirement for myelotoxic agents altogether.  相似文献   

5.
There is an increased risk of failure of engraftment following nonmyeloablative conditioning. Sensitization resulting from failed bone marrow transplantation (BMT) remains a major challenge for secondary BMT. Approaches to allow successful retransplantation would have significant benefits for BMT candidates living with chronic diseases. We used a mouse model to investigate the effect of preparative regimens at primary BMT on outcome for secondary BMT. We found that conditioning with TBI or recipient T cell lymphodepletion at primary BMT did not promote successful secondary BMT. In striking contrast, successful secondary BMT could be achieved in mice conditioned with anti-CD154 costimulatory molecule blockade at first BMT. Blockade of CD154 alone or combined with T cell depletion inhibits generation of the humoral immune response after primary BMT, as evidenced by abrogation of production of anti-donor Abs. The humoral barrier is dominant in sensitization resulting from failed BMT, because almost all CFSE-labeled donor cells were killed at 0.5 and 3 h in sensitized recipients in in vivo cytotoxicity assay, reflecting Ab-mediated cytotoxicity. CD154:CD40 costimulatory blockade used at primary BMT promotes allogeneic engraftment in secondary BMT after engraftment failure at first BMT. The prevention of generation of anti-donor Abs at primary BMT is critical for successful secondary BMT.  相似文献   

6.
Establishing mixed chimerism is a promising approach for inducing donor-specific transplant tolerance. The establishment and maintenance of mixed chimerism may enable long-term engraftment of organ transplants while minimizing the use of immunosuppressants. Several protocols for inducing mixed chimerism have been reported; however, the exact mechanism underlying the development of immune tolerance remains to be elucidated. Therefore, understanding the kinetics of engraftment during early post-transplant period may provide insight into establishing long-term mixed chimerism and permanent transplant tolerance. In this study, we intentionally induced allogeneic mixed chimerism using a nonmyeloablative regimen by host natural killer (NK) cell depletion and T cell-depleted bone marrow (BM) grafts in a major histocompatibility complex (MHC)-mismatched murine model and analyzed the kinetics of donor (C57BL/6) and recipient (BALB/c) engraftment in the weeks following transplantation. Donor BM cells were well engrafted and stabilized without graft-versus-host disease (GVHD) as early as one week post-bone marrow transplantation (BMT). Donor-derived thymic T cells were reconstituted four weeks after BMT; however, the emergence of newly developed T cells was more obvious at the periphery as early as two weeks after BMT. Also, the emergence and changes in ratio of recipient- and donor-derived NKT cells and antigen presenting cells (APCs) including dendritic cells (DCs) and B cells were noted after BMT. Here, we report a longitudinal analysis of the development of donor- and recipient-originated hematopoietic cells in various lymphatic tissues of intentionally induced mixed chimerism mouse model during early post-transplant period. Through the understanding of immune reconstitution at early time points after nonmyeloablative BMT, we suggest guidelines on intentionally inducing durable mixed chimerism.  相似文献   

7.
Costimulatory blockade can be used to promote allogeneic marrow engraftment and tolerance induction, but on its own is not 100% reliable. We sought to determine whether one or the other of the CD4 or CD8 T cell subsets of the recipient was primarily responsible for resistance to allogeneic marrow engraftment in mice receiving costimulatory blockade, and to use this information to develop a more reliable, minimal conditioning regimen for induction of mixed chimerism and transplantation tolerance. We demonstrate that a single anti-CD40 ligand mAb treatment is sufficient to completely overcome CD4 cell-mediated resistance to allogeneic marrow engraftment and rapidly induce CD4 cell tolerance, but does not reliably overcome CD8 CTL-mediated alloresistance. The data suggest that costimulation, which activates alloreactive CTL, is insufficient to activate alloreactive CD4 cells when the CD40 pathway is blocked. The addition of host CD8 T cell depletion to anti-CD40 ligand treatment reliably allows the induction of mixed chimerism and donor-specific skin graft tolerance in 3 Gy-irradiated mice receiving fully MHC-mismatched bone marrow grafts. Thus, despite the existence of multiple costimulatory pathways and pathways of APC activation, our studies demonstrate an absolute dependence on CD40-mediated events for CD4 cell-mediated rejection of allogeneic marrow. Exposure to donor bone marrow allows rapid tolerization of alloreactive CD4 cells when the CD40 pathway is blocked, leading to permanent marrow engraftment and intrathymic tolerization of T cells that develop subsequently.  相似文献   

8.
We report on the effectiveness of molecular studies regarding Fanconi anemia (FA) for a better selection of bone marrow graft donors and for post-transplant follow up. Ten unrelated FA patients and their families were analyzed by microsatellite markers. In 9 cases, the cytogenetic investigation of potential human leukocyte antigen (HLA)-identical related donors was normal, and the molecular analyses confirmed that they were also either normal or heterozygous carriers. For 1 patient, cytogenetic analysis of an HLA-identical sibling donor yielded ambiguous results with a relatively high number of chromosomal breakages using cross-linking agents. However, genotyping of this potential donor demonstrated his heterozygous state. Nine patients have received allogeneic bone marrow transplantation from HLA-matched related donors. Microsatellite analysis showed complete chimerism (CC) in all cases. The median follow up was 54 months (range 8-144 months). One patient out of 9 with CC rejected her graft without prior detection of a transitional mixed chimerism. Among these patients, 1 died 25 months after the transplantation of a chronic graft-versus-host-disease (GVHD). We conclude that, when the cytogenetic studies are not conclusive, molecular analyses are crucial to distinguish heterozygous carriers from asymptomatic FA Tunisian patients. Molecular analyses also allowed the evaluation of hematopoietic chimerism after allogeneic bone marrow transplantation and might be of value to identify patients with a high risk for graft rejection.  相似文献   

9.
Vascularized allogeneic skeletal tissue transplantation without the need for host immunosuppression would increase reconstructive options for treating congenital and acquired defects. Because the immune system of a fetus or neonate is immature, it may be possible to induce tolerance to allogeneic skeletal tissues by alloantigen injection during this permissive period. Within 12 hours after birth, 17 neonatal Lewis rats were injected through the superficial temporal vein with 3.5 to 5 million Brown Norway bone marrow cells in 0.1 ml normal saline. Ten weeks after the injection, peripheral blood from the Lewis rats was analyzed for the presence of Brown Norway cells to determine hemopoietic chimerism. The Lewis rats then received a heterotopic, vascularized limb tissue transplant (consisting of the knee, the distal femur, the proximal tibia, and the surrounding muscle on a femoral vascular pedicle) from Brown Norway rat donors to determine their tolerance to the allogeneic tissue. A positive control group (n = 6) consisted of syngeneic transplants from Lewis rats into naive Lewis rats to demonstrate survival of transplants. A negative control group (n = 6) consisted of Brown Norway transplants into naive Lewis rats not receiving bone marrow or other immunosuppressive treatment. The animals were assessed for transplant viability 30 days after transplantation using histologic and bone fluorochrome analysis. All the syngeneic controls (Lewis to Lewis) remained viable throughout the experiment, whereas all the Brown Norway to Lewis controls had rejected. Ten of the 17 allografts transplanted into bone marrow recipients were viable at 30 days, with profuse bleeding from the ends of the bone graft and the surrounding graft muscle. The percent of chimerism correlated with survival, with 3.31 percent (SD = 1.9) of peripheral blood, Brown Norway chimerism present in the prolonged survival groups and 0.75 percent (SD = 0.5) of Brown Norway chimerism in the rejected graft group. This study demonstrated prolonged survival of allogeneic skeletal tissue without immunosuppression after early neonatal injection of allogeneic bone marrow in a rat model.  相似文献   

10.
Cell-free supernatants of rabbit bone marrow were fractionated, separated, and purified by Ultrogel and Superose chromatography. A single fraction promoted engraftment of allogeneic bone marrow and enduring hemopoietic chimerism across the H-2 barrier in lethally irradiated mice. This "bio-active" fraction, analyzed by reducing SDS-PAGE electrophoresis, and transblotted on PVDF membrane, and purified by reverse-phase HPLC and SDS-PAGE electrophoresis yielded a main prealbumin band that when examined for primary structure by Edman degradation, proved to be rabbit transferrin. This was also attested by highly specific precipitation of the prealbumin band with polyclonal antibodies to rabbit transferrin. Iron-saturated human transferrin, lactotransferrin, and egg transferrin (conalbumin) were assayed in irradiated C57BL/6 mice infused with bone marrow from histoincompatible BALB/c donors. Mice treated with iron-loaded transferrins survive and develop enduring allogeneic chimerism with no discernible signs of graft-versus-host disease. Iron carrier proteins thus provide an unique means of achieving successful engraftment of allogeneic bone marrow in immunologically hostile murine H-2 combinations.  相似文献   

11.
Allogeneic chimeras are valuable tools for studies of complex immune cell interactions in vivo. Mice with severe combined immune deficiency (scid) should be ideal hosts for chimerism with allogeneic bone marrow cells as these animals lack mature T and B lymphocytes capable of reacting against donor alloantigens. However, it has been difficult to achieve full reconstitution of adult scid mice even using coisogenic bone marrow grafts without prior irradiation of the recipient. We explored ways to generate complete reconstitution of scid mice with allogeneic bone marrow. Unirradiated adult scid recipients of allogeneic bone marrow were only marginally reconstituted. Adult scid mice pretreated with 250 R were reconstituted with allogeneic bone marrow as measured by serum IgM concentration, peripheral lymphoid cellularity, and mitogen responses, but a potentially important immunologic deficit was found in these mice: 250 R caused a 70% loss of scid macrophages and dendritic cells which persisted at least 5 months. By contrast, when scid mice were injected i.p. with allogeneic bone marrow within the first 24 h after birth, rapid and complete reconstitution of both T and B cell lineages was achieved, and the animals had APC that were both donor and host in origin. Considering the extent and duration of engraftment (43 wk) by allogeneic cells in neonatally transplanted scid mice, it was anticipated that their bone marrow would be chimeric. However, the bone marrow contained very few donor-derived cells, suggesting that lymphopoiesis may be taking place in other organs in these chimeras.  相似文献   

12.
Y Wang  Z Zheng  Y Wang  J Liu  N Li  X Hu  F Han  Y Liu  D Hu 《PloS one》2012,7(8):e43825

Background

Vascularized bone marrow transplantation (VBMT) is widely accepted as an efficient means of establishing chimerism and inducing tolerance. However, the mechanism underlying is poorly understood. Recently, regulatory T cells (Tregs) have been shown to play an important role in regulating immune responses to allogeneic antigens. In this study, we explored the role of Tregs in the induction of tolerance in an allogeneic hind limb transplantation model.

Methodology/Principal Findings

Forty-eight Lewis rats were divided into 6 groups. They received isografts and allografts from Brown-Norway hind limbs. Recipients in groups 1 and 2 received isografts and those in the other groups received allografts. The bone components of donor limbs were kept intact in groups 1, 3, and 5 but removed before transplantation into groups 2, 4, and 6. Tapered cyclosporin A (CsA) was administered to recipients in groups 5 and 6 after transplantation. During the 100-day observation period, all isografts survived, but the allografts in groups 3 and 4 were rejected within 8 to 12 days. CsA-treated intact allografts survived rejection-free for more than 100 days, and CsA-treated allografts lacking bone elements were rejected within 2 months. Stable peripheral chimerism and myeloid chimerism were observed in group 5. Declining peripheral chimerism and a lack of myeloid chimerism were observed in group 6. Donor-specific Tregs were exclusively detected in both peripheral blood and in the spleens of long-term recipient rats in group 5, with an increased FoxP3 mRNA expression in the allografts. This was further demonstrated to be responsible for donor-specific hyporeactivity by in vitro one-way mixed lymphocyte reaction (MLR).

Conclusion/Significance

Bone components in the allogeneic hind limbs can induce myeloid chimerism and donor-specific Tregs may be essential to tolerance induction. The bone-removal hind limb model may be a suitable counterpart to the induction of tolerance in the study of limb transplantation.  相似文献   

13.
Creation of stable hemopoietic chimerism has been considered to be a prerequisite for allograft tolerance after bone marrow transplantation (BMT). In this study, we demonstrated that allogeneic BMT with bone marrow cells (BMC) prepared from either knockout mice deficient in both CD4 and CD8 T cells or CD3E-transgenic mice lacking both T cells and NK cells maintained a high degree of chimerism, but failed to induce tolerance to donor-specific wild-type skin grafts. Lymphocytes from mice reconstituted with T cell-deficient BMC proliferated when they were injected into irradiated donor strain mice, whereas lymphocytes from mice reconstituted with wild-type BMC were unresponsive to donor alloantigens. Donor-specific allograft tolerance was restored when donor-type T cells were adoptively transferred to recipient mice given T cell-deficient BMC. These results show that donor T cell engraftment is required for induction of allograft tolerance, but not for creation of continuous hemopoietic chimerism after allogeneic BMT, and that a high degree of chimerism is not necessarily associated with specific allograft tolerance.  相似文献   

14.
H Heit  W Heit  E Kohne  T M Fliedner  P Hughes 《Blut》1977,35(2):143-153
In the present communication the beneficial effect of long term antimicrobial treatment with poorly absorbable antiboitics on the survival of allogeneic bone marrow chimeras was investigated. The combination of C57Bl mice as bone marrow donors and CBA/CA mice as irradiated recipients (800 rad) was used because of their strong histoincompatibility on the H-2 loci. All allografted recipients received 10 X 10(6) bone marrow cells. The majority of the recipients, which were rendered gnotobiotic by an antimicrobial treatment, achieved stable long term chimerism. In contrast, the conventional chimeras died from secondary disease within 9 weeks after transplantation. As early as 14 days after allogeneic bone marrow grafting the gnotobiotic recipients tolerated the reassociation with a conventional microflora without a change in the rate of mortality. Bone marrow cells (8 X 10(6) i.v.) and spleen cells (2 X 10(6) i.v.) collected from allogeneic chimeras failed to induce graft-versus-host-reaction (GVH) in a second lethally irradiated host. The data indicate, that the high rate of mortality in murine allogeneic bone marrow chimeras results from delayed GVH-reaction and systemic infection. The marrow graft, once established seems to exert tolerance against the allogeneic host. The pathogenesis of the systemic infection has not yet been worked out. It is assumed that it originates from bacteremia, induced by radiation dependent lesions of the epithelial integrity and defected lymphatic tissue in the gut.  相似文献   

15.
Xenotransplantation has been suggested as a potential solution to the critical shortage of donor organs. However, success has been limited by the vigorous rejection response elicited against solid organs transplanted across species barriers. Mixed xenogeneic bone marrow chimeras resulting from the transplantation of a mixture of host and donor marrow (B10 mouse + F344 rat --> B10 mouse) results in donor-specific cross-species transplantation tolerance for subsequent nonvascularized skin and islet grafts. Furthermore, compared with fully xenogeneic chimeras (rat --> mouse), mixed xenogeneic chimeras exhibit superior immunocompetence for infectious agents in vivo and in vitro, suggesting that the immune system is intact. The ability to establish long-term humoral and cellular tolerance for primarily vascularized xenografts in vivo, in the setting of both recipient and donor Ig and effector cell production, has not previously been characterized. Mixed xenogeneic chimeras exhibit donor-specific humoral tolerance as evident by the absence of anti-donor Ab and Ab-dependent donor-specific cytotoxicity in vitro and intravascular IgM deposition within donor-strain (F344) cardiac xenografts in vivo. F344 cardiac xenografts are accepted (median > or =180 days) without clinical or histologic evidence of rejection, suggesting cellular tolerance. In contrast, MHC-disparate third-party mouse (B10.BR) and rat (ACI or WF) grafts are rejected (median of 23 and 41 days, respectively) in association with extensive mononuclear cell infiltration and vascular deposits of mouse IgM. These results demonstrate that mixed xenogeneic chimerism establishes donor-specific humoral and cellular tolerance and permits the successful transplantation of even primarily vascularized xenografts in the setting of intact Ab production.  相似文献   

16.
An ultrafiltration fraction of MW > 100,000 separated from the original medium in which bone marrow had been suspended (supernatant) stimulated incorporation of [3H]thymidine by marrow in vitro and was designated marrow regulating factor (MRF). The administration of MRF to F1 hybrid mice transplanted with parental bone marrow resulted in lasting chimerism of the surviving mice. A few of the hybrids receiving parental marrow but no MRF survived: however, none were chimeric. Administration of MRF after irradiation in C57BL/ 6 mice transplanted with bone marrow from DBA/2 and BALB/c donors resulted in endogenous reconstitution. However, administration of MRF before (preconditioning) and again after irradiation resulted in survival of the majority of mice. These C57BL/6 mice were chimeras of DBA/2 or BALB/c marrow but showed no sign of secondary disease. Thus the use of MRF abrogates resistance to and promotes engraftment of foreign marrow and enduring chimerism when the recipients (F1 hybrids) appear to be nonreactive to the donor (parental marrow) and also when alloreactivity is bidirectional (allogeneic combinations).  相似文献   

17.
The beta crystallin gene Cryb (betaA3/A1) has been assigned to mouse Chromosome 2 region B-->Cl by in situ hybridisation to metaphase chromosomes from mouse foetal liver and bone marrow preparations of Rb(2.17)4H mice using a murine cDNA (pMbeta23Crl) probe.  相似文献   

18.
Lethally irradiated C3Hf mice reconstituted with a relatively low dose (2 × 106) of B6C3F1 bone marrow cells (B6C3F1 → C3Hf chimeras) frequently manifest immunohematologic deficiencies during the first month following injection of bone marrow cells. They show slow recovery of antibody-forming potential to sheep red blood cells (SRBC) as compared to that observed in syngeneic (C3Hf → C3Hf or B6C3F1 → B6C3F1) chimeras. They also show a deficiency of B-cell activity as assessed by antibody response to SRBC following further reconstitution with B6C3F1-derived thymus cells 1 week after injection of bone marrow cells. A significant fraction of B6C3F1 → C3Hf chimeras was shown to manifest a sudden loss of cellularity of spleens during the second week following injection of bone marrow cells even though cellularity was restored to the normal level within 1 week. The splenic mononuclear cells recovered from such chimeras almost invariably showed strong cytotoxicity against target cells expressing donor-type specific H-2 antigens (H-2b) when assessed by 51Cr-release assay in vitro. The effector cells responsible for the observed anti-donor specific cytotoxicity were shown to be residual host-derived T cells. These results indicate strongly that residual host T cells could develop anti-donor specific cytotoxicity even after exposure to a supralethal dose (1050 R) of radiation and that the immunohematologic disturbances observed in short-term F1 to parent bone marrow chimeras (B6C3F1 → C3Hf) were due to host-versus-graft reaction (HVGR) initiated by residual host T cells. The implication of these findings on the radiobiological nature of the residual T cells and the persistence of potentially anti-donor reactive T-cell clones in long-surviving allogeneic bone marrow chimeras was discussed.  相似文献   

19.
Regulatory CD4(+) CD25(+) FoxP3(+) T cells (T(regs) ) suppress immunological reactions. However, the effect of adding T(regs) to hematopoietic stem cell grafts on recovery and graft versus host disease (GvHD) is unknown. T(regs) from splenocytes of C57Bl/6 and Balb/c wild-type mice were isolated by MACS separation and analyzed by flow cytometry. Using a murine syngeneic transplantation model that clearly distinguishes between donor and host hematopoiesis, we showed that co-transplantation of bone marrow cells (BMCs) with high levels of T(regs) leads to a 100% survival of the mice and accelerates the hematopoietic recovery significantly (full donor chimerism). In allogeneic transplantation, bone marrow and T(regs) co-transplantation were compared to allogeneic bone marrow transplantation with or without the addition of splenocytes. Survival, leukocyte recovery, chimerism at days -2, 19, 33, and 61 for murine CD4, human CD4, HLA-DR3, murine CD3, murine CD8, murine Balb/c-H2K(d) , murine C57Bl/6-H2K(b) , and GvHD appearance were analyzed. Allogeneic bone marrow transplantation requires the addition of splenocytes to reach engraftment. Mice receiving grafts with bone marrow, splenocytes and high levels of allogeneic T(regs) died within 28 days (hematopoietic failure). Here, we show also detailed flow cytometric data reagarding analysis of chimerism after transplantation in unique murine hematopoietic stem cell transplantation models. Our findings showed that the syngeneic co-transplantation of CD4(+) , CD25(+) , FoxP3(+) T-cells and BMCs induced a stimulating effect on reconstitution of hematopoiesis after irradiation. However, in the allogeneic setting the co-transplantation of T(regs) aggravates the engraftment of transplanted cells.  相似文献   

20.
Induction of molecular chimerism following reconstitution of mice with autologous bone marrow cells expressing a retrovirally encoded allogeneic MHC class I Ag results in donor-specific tolerance. To investigate the mechanism by which CD4 T cells that recognize allogeneic MHC class I through the indirect pathway of Ag presentation are rendered tolerant in molecular chimeras, transgenic mice expressing a TCR on CD4 T cells specific for peptides derived from K(b) were used. CD4 T cells expressing the transgenic TCR were detected in mice reconstituted with bone marrow cells transduced with retroviruses carrying the gene encoding H-2K(b), albeit detection was at lower levels than in mice receiving mock-transduced bone marrow. Despite the presence of CD4 T cells expressing an alloreactive TCR, mice receiving H-2K(b)-transduced bone marrow permanently accepted K(b) disparate skin grafts. CD4+CD25+ T cells from mice reconstituted with H-2K(b)-transduced bone marrow prevented rejection of K(b) disparate skin grafts when adoptively transferred into immunodeficient mice along with effector T cells, suggesting that induction of molecular chimerism leads to the generation of donor specific regulatory T cells, which may be involved in preventing alloreactive CD4 T cell responses that lead to rejection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号