首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The gene coding for the subunits of aspartokinase II from Bacillus subtilis has been identified in a B. subtilis DNA library and cloned in a bacterial plasmid (Bondaryk, R. P., and Paulus, H. (1984) J. Biol. Chem. 259, 585-591). The introduction of a plasmid carrying the aspartokinase II gene into an auxotrophic Escherichia coli strain lacking all three aspartokinases restored its ability to grow in the absence of L-lysine, L-threonine, and L-methionine. The B. subtilis aspartokinase gene could thus be functionally expressed in E. coli and substitute for the E. coli aspartokinases. Measurement of aspartokinase levels in extracts of aspartokinaseless E. coli transformed with the B. subtilis aspartokinase II gene revealed an enzyme level comparable to that in a genetically derepressed B. subtilis strain. In spite of the high level of aspartokinase, the growth of the transformed E. coli strain was severely inhibited by the addition of L-lysine but could be restored by also adding L-homoserine. This apparently paradoxical sensitivity to lysine was due to the allosteric inhibition of B. subtilis aspartokinase II by that amino acid, a property which was also observed in extracts of the transformed E. coli strain. The synthesis and degradation of the aspartokinase II subunits were measured by labeling experiments in E. coli transformed with the B. subtilis aspartokinase II gene. In contrast to exponentially growing cells of B. subtilis which contained equimolar amounts of the aspartokinase alpha and beta subunits, the transformed E. coli strain contained a 3-fold molar excess of beta subunit. Pulse-chase experiments showed that the disproportionate level of beta subunit was not due to more rapid turnover of alpha subunit, both subunits being quite stable, but presumably to a more rapid rate of synthesis. After the addition of rifampicin, the synthesis of alpha subunit declined much more rapidly than that of beta subunit, indicating that the two subunits were translated independently from mRNA species that differ in functional stability. In conjunction with the results described in the preceding paper which demonstrated that the aspartokinase subunits are encoded by a single DNA sequence, these observations imply that the alpha and beta subunits of B. subtilis aspartokinase II are the products of in-phase overlapping genes.  相似文献   

3.
The mechanism of expression of the overlapping genes that encode the alpha and beta subunits of aspartokinase II of Bacillus subtilis was studied by specific mutagenesis of the cloned coding sequence. Escherichia coli or B. subtilis VB31 (aspartokinase II-deficient), transformed with plasmids carrying either a deletion of the translation start site and about one-half of the coding region for the larger alpha subunit or a frameshift mutation early in the alpha subunit coding region, produced the smaller beta subunit in the absence of alpha subunit synthesis, indicating that beta subunit is not derived from alpha subunit and that its synthesis does not depend on the alpha subunit translation initiation site. The beta subunit translation start site was identified by oligonucleotide-directed mutagenesis of the putative translation start codon. Modification of the nucleotide sequence encoding methionine residue 247 of the alpha subunit from ATG to either TTA or AAT (but not GTG) abolished beta subunit synthesis but had no effect on the production of alpha subunit. This observation is consistent with peptide chain initiation by N-formylmethionine, which specifically requires an ATG or GTG sequence, and indicates that translation of the beta subunit starts at a site corresponding to Met247 of the alpha subunit. Initial studies on the function of the aspartokinase II subunits, using E. coli as a heterologous host, showed that beta subunit was not essential for the expression of the catalytic function of aspartokinase, measured in vitro and in vivo, nor for its allosteric regulation by L-lysine. Whether the beta subunit has a function specific to B. subtilis needs to be explored in a homologous expression system.  相似文献   

4.
5.
The nucleotide sequence of the 1.30-kilobase EcoRI/BglII fragment from Vibrio harveyi carrying the majority of the luciferase beta subunit coding region (luxB gene) has been determined. The EcoRI/BglII fragment was derived from a 4.0-kilobase HindIII fragment carrying both luxA and luxB which was detected in a genomic clone bank based on the expression of bioluminescence from colonies of Escherichia coli carrying V. harveyi HindIII fragments in plasmid pBR322 (Baldwin, T. O., Berends, T., Bunch, T. A., Holzman, T. F., Rausch, S. K., Shamansky, L., Treat, M. L., and Ziegler, M. M. (1984) Biochemistry 23, 3663-3667). The entire alpha subunit coding sequence (luxA gene) and the amino-terminal 13 codons of the beta subunit sequence (luxB gene) were contained on a 1.85-kilobase EcoRI fragment, the sequence of which has been reported (Cohn, D. H., Mileham, A. J., Simon, M. I., Nealson, K. H., Rausch, S. K., Bonam, D., and Baldwin, T. O. (1985) J. Biol. Chem. 260, 6139-6146). The beta subunit coding sequence was found to terminate 972 bases past the start of the luxB coding sequence. The beta subunit had a calculated molecular weight of 36,349 and comprised a total of 324 amino acid residues; the alpha beta dimer had a molecular weight (alpha + beta) of 76,457. There were 27 base pairs separating the stop codon of the beta subunit structural gene and a 340-base open reading frame extending to (and beyond) the distal BglII site. Approximately two-thirds of the beta subunit was sequenced by protein chemical techniques. The amino acid sequence predicted from the DNA sequence, with few exceptions, confirmed the chemically determined sequence, and the measured amino acid composition was in excellent agreement with the composition implied from the DNA sequence.  相似文献   

6.
Casein kinase II is a widely distributed protein serine/threonine kinase. The holoenzyme appears to be a tetramer, containing two alpha or alpha' subunits (or one of each) and two beta subunits. Complementary DNA clones encoding the subunits of casein kinase II were isolated from a human T-cell lambda gt10 library using cDNA clones isolated from Drosophila melanogaster [Saxena et al. (1987) Mol. Cell. Biol. 7, 3409-3417]. One of the human cDNA clones (hT4.1) was 2.2 kb long, including a coding region of 1176 bp preceded by 156 bp (5' untranslated region) and followed by 871 bp (3' untranslated region). The hT4.1 clone was nearly identical in size and sequence with a cDNA clone from HepG2 human hepatoma cultured cells [Meisner et al. (1989) Biochemistry 28, 4072-4076]. Another of the human T-cell cDNA clones (hT9.1) was 1.8 kb long, containing a coding region of 1053 bp preceded by 171 bp (5' untranslated region) and followed by 550 bp (3' untranslated region). Amino acid sequences deduced from these two cDNA clones were about 85% identical. Most of the difference between the two encoded polypeptides was in the carboxy-terminal region, but heterogeneity was distributed throughout the molecules. Partial amino acid sequence was determined in a mixture of alpha and alpha' subunits from bovine lung casein kinase II. The bovine sequences aligned with the 2 human cDNA-encoded polypeptides with only 2 discrepancies out of 535 amino acid positions. This confirmed that the two human T-cell cDNA clones encoded the alpha and alpha' subunits of casein kinase II. Microsequence data determined from separated preparations of bovine casein kinase II alpha subunit and alpha' subunit [Litchfield et al. (1990) J. Biol. Chem. 265, 7638-7644] confirmed that hT4.1 encoded the alpha subunit and hT9.1 encoded the alpha' subunit. These studies show that there are two distinct catalytic subunits for casein kinase II (alpha and alpha') and that the sequence of these subunits is largely conserved between the bovine and the human.  相似文献   

7.
8.
DNA polymerase III, the core of the DNA polymerase III holoenzyme, has been purified 28,000-fold to 97% homogeneity from Escherichia coli HMS-83. The enzyme contains subunits: alpha, epsilon, and theta of 140,000, 25,000, and 10,000 daltons, respectively. The alpha subunit has been previously shown to be a component of both DNA polymerase III and the more complex DNA polymerase III holoenzyme (Livingston, D.M., Hinkle, D., and Richardson, C. (1975) J. Biol. Chem. 250, 461-469; McHenry, C., and Kornberg, A. (1977) J. Biol. Chem. 252, 6478-6484). It is demonstrated here that the epsilon and theta subunits are also subunits of the DNA polymerase III holoenzyme. Thus, the DNA polymerase III holoenzyme contains at least six different subunits. Our preparation has both the 3' leads to 5' and 5' leads to 3' exonuclease activities previously assigned to DNA polymerase III (Livingston, D., and Richardson, C. (1975) J. Biol. Chem. 250, 470-478).  相似文献   

9.
A previous paper described the purification of a lectin induced in the hemolymph of larvae of Sarcophaga peregrina (flesh-fly) on injury of their body wall (Komano, H., Mizuno, D., and Natori, S. (1980) J. Biol. Chem. 255, 2919-2924). This paper describes cDNA cloning and the complete nucleotide sequence of the gene for Sarcophaga lectin. Although active lectin consists of alpha and beta subunits in a molar ratio of 2:1, the fat body of injured larvae was found to contain only mRNA for the alpha subunit, suggesting that these two subunits are derived from a common gene and that the alpha subunit is converted to the beta subunit post-translationally. The alpha subunit was found to consist of 260 amino acid residues with an additional signal sequence of 19 or 23 amino acid residues.  相似文献   

10.
11.
Human choriogonadotropin (hCG) is a placental glycoprotein hormone composed of a 92-amino acid alpha subunit noncovalently linked to a 145-amino acid beta subunit. We report here the expression of biologically active hCG in mouse C127 cells transfected with expression vectors containing the DNA coding for both subunits. In addition, the same cell line was used to express the alpha subunit alone. The expression products were purified by affinity chromatography using specific monoclonal antibodies to hCG or its subunits. The system secreting biologically active hCG also produced a 10-fold or greater molar excess of free beta subunit. The dimeric hormone, as well as the excess beta subunit, resembles the standard urinary hCG and beta subunit by chemical and biological criteria. In contrast, when the vector encoding for the alpha subunit was expressed alone, the alpha subunit had a higher molecular weight than both standard alpha and the alpha found in the expressed dimeric hormone. The molecular weight difference between expressed alpha subunit and standard alpha was found to reside in the alpha peptide consisting of residues 52-91 which contained all of the carbohydrate of the alpha subunit. The N-asparagine-linked carbohydrate moieties in the recombinant alpha were found to be triantennary in contrast to biantennary in urinary alpha, and this hyperglycosylation was responsible for the higher molecular weight of the alpha subunit when it was expressed alone. We found no evidence of O-threonine glycosylation at position alpha 39 reported to be present in free forms of the alpha subunit; however, the companion paper (Corless, C.L., Bielinska, M., Ramabhadran, T. V., Daniels-McQueen, S. Otani, T., Reitz, B. A., Tiemeier, D. C., and Boime, I. (1987) J. Biol Chem. 262, 14197-14203) finds a small quantity of O-glycosylation. Since the excess beta subunit appears to be of normal size and contains the expected complement of sugars, only free alpha subunit seems to be a potential substrate for addition of extra sugar moieties. No large beta subunit forms have been found by others, while large alpha subunits have been described both clinically and in tissue culture systems. These observations imply that the conformation of the free alpha subunit, in the regions of the glycosylation recognition sites, allows easier access for glycosyltransferases than those same sites in the beta subunit. When alpha is combined with beta, the local structures around the alpha glycosylation sites are apparently altered so as to make the synthesis of triantennary chains less favorable.  相似文献   

12.
13.
We have cloned and sequenced the Saccharomyces cerevisiae gene for S-adenosylmethionine decarboxylase. This enzyme contains covalently bound pyruvate which is essential for enzymatic activity. We have shown that this enzyme is synthesized as a Mr 46,000 proenzyme which is then cleaved post-translationally to form two polypeptide chains: a beta subunit (Mr 10,000) from the amino-terminal portion and an alpha subunit (Mr 36,000) from the carboxyl-terminal portion. The protein was overexpressed in Escherichia coli and purified to homogeneity. The purified enzyme contains both the alpha and beta subunits. About half of the alpha subunits have pyruvate blocking the amino-terminal end; the remaining alpha subunits have alanine in this position. From a comparison of the amino acid sequence deduced from the nucleotide sequence with the amino acid sequence of the amino-terminal portion of each subunit (determined by Edman degradation), we have identified the cleavage site of the proenzyme as the peptide bond between glutamic acid 87 and serine 88. The pyruvate moiety, which is essential for activity, is generated from serine 88 during the cleavage. The amino acid sequence of the yeast enzyme has essentially no homology with S-adenosylmethionine decarboxylase of E. coli (Tabor, C. W., and Tabor, H. (1987) J. Biol. Chem. 262, 16037-16040) and only a moderate degree of homology with the human and rat enzymes (Pajunen, A., Crozat, A., J?nne, O. A., Ihalainen, R., Laitinen, P. H., Stanley, B., Madhubala, R., and Pegg, A. E. (1988) J. Biol. Chem. 263, 17040-17049); all of these enzymes are pyruvoyl-containing proteins. Despite this limited overall homology the cleavage site of the yeast proenzyme is identical to the cleavage sites in the human and rat proenzymes, and seven of the eight amino acids adjacent to the cleavage site are identical in the three eukaryote enzymes.  相似文献   

14.
Heterotrimeric guanine nucleotide-binding proteins are composed of alpha and beta gamma subunits and couple a variety of cell-surface receptors to intracellular enzymes or ion channels. The heterotrimer dissociates into alpha and beta gamma subunits when the alpha subunit is activated by guanine nucleoside triphosphates. Several lines of evidence show that the amino terminus of the alpha subunit is important for the interaction with the beta gamma subunit (Neer, E. J., Pulsifer, L., and Wolf, L. G. (1988) J. Biol. Chem. 263, 8996-9000; Fung, B. K.-K., and Nash, C. R. (1983) J. Biol. Chem. 258, 10503-10510). We have mutagenized the amino terminus of alpha o to dissect the relative contributions of amino-terminal myristoylation and specific amino acid sequences to subunit interaction. Wild-type and mutant alpha o cDNAs were translated in vitro in a rabbit reticulocyte lysate. All proteins were able to bind guanosine 5'-(gamma-thio)triphosphate and to achieve the necessary conformation for protection from tryptic digestion. Two assays of alpha o beta gamma interactions were used: sucrose density gradients to look for stable heterotrimer formation and ADP-ribosylation by pertussis toxin to detect weak or transient alpha o beta gamma interactions. Our results indicate that myristoylation is essential for stable heterotrimer formation, but that nonmyristoylated proteins are also capable of interacting with the beta gamma subunit. Amino acids 7-10 have an important role in alpha o beta gamma interactions whether alpha o is myristoylated or not. Deletion of this region diminishes the ability of alpha o to interact with the beta gamma subunit, but substitutions at this position indicate that other amino acids can be tolerated without affecting subunit interaction.  相似文献   

15.
The structural genes for the two major subunits of the mitochondrial ATPase were isolated among genomic clones from the yeast Schizosaccharomyces pombe by transformation and complementation of mutants unable to grow on glycerol and lacking either the alpha or the beta subunits. The plasmid pMa1 containing a 2.3-kilobase genomic insert transformed the mutant A23-13 lacking a detectable alpha subunit. The transformant grew on glycerol and contained an alpha subunit of normal electrophoretic mobility. The plasmid pMa2 containing a 5.4-kilobase genomic insert transformed the mutant B59-1 lacking the beta subunit. The transformant grew on glycerol and contained a beta subunit of normal mobility. The structural gene for the beta ATPase subunit for the fission yeast S. pombe was localized within the pMa2 insert by hybridization to a probe containing the beta ATPase gene from the budding yeast Saccharomyces cerevisiae (Saltzgaber, J., Kunapuli, S., and Douglas, M. G. (1983) J. Biol. Chem. 258, 11465-11470). The mRNAs which hybridized to pMa1 and pMa2 were translated by a reticulocyte lysate into polypeptides of Mr = 59,000 and 54,000, respectively. These genes products reacted with an anti-F1-ATPase serum and therefore correspond most probably to precursors of the alpha and beta subunits.  相似文献   

16.
Phosphatidylserine decarboxylase of Escherichia coli is one of a small group of pyruvoyl-dependent enzymes (Satre, M., and Kennedy, E.P. (1978) J. Biol. Chem. 253, 479-483). The DNA sequence of the structural gene (psd) and partial protein sequence studies demonstrate that the enzyme contains two nonidentical subunits, alpha (Mr = 7,332) and beta (Mr = 28,579), which are derived from a single proenzyme. These two subunits are blocked at their respective amino termini. Reduction of the enzyme with NaCNBH3 in the presence of radiolabeled phosphatidylserine resulted in association of the label with the alpha subunit. Similar reduction in the presence of ammonium ions exposed a new amino terminus for the alpha subunit beginning with alanine. Therefore, the pyruvate prosthetic group is in amide linkage to the amino terminus of the alpha subunit. The amino terminus of the beta subunit was determined to be formylmethionine. The carboxyl terminus of the beta subunit was determined to be glycine as predicted by the DNA sequence. Comparison of the DNA sequence and protein sequence information revealed that the decarboxylase is made as a proenzyme (Mr = 35,893), and the predicted amino acid at the position of the pyruvate within the open reading frame of the proenzyme is serine. Therefore, as with other pyruvoyl-dependent decarboxylases, the prosthetic group is derived from serine through a post-translational cleavage of a proenzyme.  相似文献   

17.
Recently, an open reading frame which has a deduced amino acid sequence that shows 38% homology to Escherichia coli UvrC protein was found upstream of the aspartokinase II gene (ask) in Bacillus subtilis (Chen, N.-Y., Zhang, J.-J., and Paulus, H. (1989) J. Gen. Microbiol. 135, 2931-2940). We found that plasmids containing this open reading frame complement the uvrC mutations in E. coli. We joined the open reading frame to a tac promoter to amplify the gene product in E. coli and purified the protein to near homogeneity. The apparent molecular weight of the gene product is 69,000, which is consistent with the calculated molecular weight of 69,378 fro the deduced gene product of the open reading frame. The purified gene product causes the nicking of DNA at the 8th phosphodiester bond 5' and the 5th phosphodiester bond 3' to a thymine dimer when mixed with E. coli UvrA and UvrB proteins and a DNA substrate containing a uniquely located thymine dimer. We conclude that the gene product of the open reading frame is the B. subtilis UvrC protein. Our results suggest that the B. subtilis nucleotide excision repair system is quite similar to that of E. coli. Furthermore, complementation of the UvrA and UvrB proteins from a Gram-negative bacterium with the UvrC protein of Gram-positive B. subtilis indicates a significant evolutionary conservation of the nucleotide excision repair system.  相似文献   

18.
Tubulin, the 100-kDa subunit protein of microtubules, is a heterodimer of two 50-kDa subunits, alpha and beta. Both alpha and beta subunits exist as numerous isotypic forms. There are four isotypes of beta-tubulin in bovine brain tubulin preparations; their designations and relative abundances in these preparations are as follows: beta I, 3%; beta II, 58%; beta III, 25%; and beta IV, 13%. We have previously reported the preparation of monoclonal antibodies specific for beta II and beta III (Banerjee, A., Roach, M. C., Wall, K. A., Lopata, M. A., Cleveland, D. W., and Luduena, R. F. (1988) J. Biol. Chem. 263, 3029-3034; Banerjee, A., Roach, M. C., Trcka, P., and Luduena, R. F. (1990) J. Biol. Chem. 265, 1794-1799). We here report the preparation of a monoclonal antibody specific for beta IV. By using this antibody together with those specific for beta II and beta III, we have prepared isotypically pure tubulin dimers with the composition alpha beta II, alpha beta III, and alpha beta IV. We have found that, in the presence of microtubule-associated proteins, all three dimers assemble into microtubules considerably faster and to a greater extent than does unfractionated tubulin. More assembly was noted with alpha beta II and alpha beta III than with alpha beta IV. When assembly is measured in the presence of taxol (10 microM), little difference is seen among the isotypically purified dimers or between them and unfractionated tubulin. These results indicate that the assembly properties of a tubulin preparation are influenced by its isotypic composition and raise the possibility that the structural differences among tubulin isotypes may have functional significance.  相似文献   

19.
Mammalian NAD-dependent isocitrate dehydrogenase is an allosteric enzyme, activated by ADP and composed of 3 distinct subunits in the ratio 2alpha:1beta:1gamma. Based on the crystal structure of NADP-dependent isocitrate dehydrogenases from Escherichia coli, Bacillus subtilis, and pig heart, and a comparison of their amino acid sequences, alpha-Arg88, beta-Arg99, and gamma-Arg97 of human NAD-dependent isocitrate dehydrogenase were chosen as candidates for mutagenesis to test their roles in catalytic activity and ADP activation. A plasmid harboring cDNA that encodes alpha, beta, and gamma subunits of the human isocitrate dehydrogenase (Kim, Y. O., Koh, H. J., Kim, S. H., Jo, S. H., Huh, J. W., Jeong, K. S., Lee, I. J., Song, B. J., and Huh, T. L. (1999) J. Biol. Chem. 274, 36866-36875) was used to express the enzyme in isocitrate dehydrogenase-deficient E. coli. Wild type (WT) and mutant enzymes (each containing 2 normal subunits plus a mutant subunit with alpha-R88Q, beta-R99Q, or gamma-R97Q) were purified to homogeneity yielding enzymes with 2alpha:1beta:1gamma subunit composition and a native molecular mass of 315 kDa. Specific activities of 22, 14, and 2 micromol of NADH/min/mg were measured, respectively, for WT, beta-R99Q, and gamma-R97Q enzymes. In contrast, mutant enzymes with normal beta and gamma subunits and alpha-R88Q mutant subunit has no detectable activity, demonstrating that, although beta-Arg99 and gamma-Arg97 contribute to activity, alpha-Arg88 is essential for catalysis. For WT enzyme, the Km for isocitrate is 2.2 mm, decreasing to 0.3 mm with added ADP. In contrast, for beta-R99Q and gamma-R97Q enzymes, the Km for isocitrate is the same in the absence or presence of ADP, although all the enzymes bind ADP. These results suggest that beta-Arg99 and gamma-Arg97 are needed for normal ADP activation. In addition, the gamma-R97Q enzyme has a Km for NAD 10 times that of WT enzyme. This study indicates that a normal alpha subunit is required for catalytic activity and alpha-Arg88 likely participates in the isocitrate site, whereas the beta and gamma subunits have roles in the nucleotide functions of this allosteric enzyme.  相似文献   

20.
BslI is a thermostable type II restriction endonuclease with interrupted recognition sequence CCNNNNN/NNGG (/, cleavage position). The BslI restriction-modification system from Bacillus species was cloned and expressed in Escherichia coli. The system is encoded by three genes: the 2,739-bp BslI methylase gene (bslIM), the bslIRalpha gene, and the bslIRbeta gene. The alpha and beta subunits of BslI can be expressed independently in E. coli in the absence of BslI methylase (M.BslI) protection. BslI endonuclease activity can be reconstituted in vitro by mixing the two subunits together. Gel filtration chromatography and native polyacrylamide gel electrophoresis indicated that BslI forms heterodimers (alphabeta), heterotetramers (alpha(2)beta(2)), and possibly oligomers in solution. Two beta subunits can be cross-linked by a chemical cross-linking agent, indicating formation of heterotetramer BslI complex (alpha(2)beta(2)). In DNA mobility shift assays, neither subunit alone can bind DNA. DNA mobility shift activity was detected after mixing the two subunits together. Because of the symmetric recognition sequence of the BslI endonuclease, we propose that its active form is alpha(2)beta(2). M.BslI contains nine conserved motifs of N-4 cytosine DNA methylases within the beta group of aminomethyltransferase. Synthetic duplex deoxyoligonucleotides containing cytosine hemimethylated or fully methylated at N-4 in BslI sites in the first or second cytosine are resistant to BslI digestion. C-5 methylation of the second cytosine on both strands within the recognition sequence also renders the site refractory to BslI digestion. Two putative zinc fingers are found in the alpha subunit of BslI endonuclease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号