首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 Monoclonal antibodies were generated against serotonin (5-HT) and the C-terminal portion of the neuronal form of nitric oxide synthase (nNOS), the enzyme producing nitric oxide in neurons. These antibodies were used to compare the distribution of 5-HT- and nNOS-containing neurons in the raphe nuclei of four animal species (rat, mouse, guinea pig, and cat). It was found that the rat was the only species in which the raphe nuclei contain a substantial number of nNOS-immunoreactive (IR) cell bodies. In this species and as observed by other authors, all mesencephalic raphe nuclei contained nNOS-IR cells, the largest group being located in the nucleus raphe dorsalis. The coexistence of nNOS and 5-HT immunoreactivities in these nuclei was visualized by double labeling. In the medulla, the nuclei raphe magnus and obscurus displayed a rather low number of nNOS-IR neurons. In the other species, nNOS-IR cell bodies were found in very low numbers, whatever raphe nucleus was considered. The rostral pole of the nucleus raphe dorsalis and the nuclei raphe magnus and obscurus contained a few nNOS-IR neurons which did not show any coincidence with the 5-HT neurons. In addition, nNOS-IR axons were rare. It is concluded that in the mouse, guinea pig, and cat the involvement of nitric oxide in functions subserved by 5-HT within the raphe nuclei might be minimal. Accepted: 5 May 1998  相似文献   

2.
Cerebellar projection from raphe nuclei were investigated in rabbit by using retrograde transport of HRP and serotonergic mapping by direct fluorescence. A close topographical correlation between the HRP labeled cells and the serotonergic neurons has been observed. The current study has demonstrated the presence of paramedian and lateral cells whose cytoarchitecture is identical with midline cells of many raphe nuclei. All of the raphe nuclei except the linear nuclei, contained serotonergic perikarya. The midline and paramedian portions of the nuclei raphe obscurus, pallidus, magnus, and nucleus raphe dorsalis contained principally serotonergic neurons; the lateral portions of the medullary raphe nuclei and the nuclei raphe pontis and centralis superior contained a significant number of non-fluorescent cells. In these regions, fluorescent sections often revealed the size, shape, and orientation of the perikarya and dendrites; further verification of cytoarchitectural characteristics of these neurons depended heavily upon these clues.  相似文献   

3.
Spontaneous respiratory bursts which begin in the pre-Bötzinger complex were recorded from the hypoglossal (XIIth) nerve rootlets of in vitro slices prepared from newborn mice. First, we examined the respiratory bursts before and after a midline or para-midline transection which spared the caudal raphe nuclei: the raphe obscurus and raphe pallidus. After a midline transection, the respiratory bursts in both half-slices were desynchronized and had slightly decreased amplitudes and frequencies. After a para-midline transection, the bursts continued with similar frequencies in the half slice containing the raphe obscurus and raphe pallidus. Second, to analyze the effects of modulation by the raphe obscurus and raphe pallidus, a dorsal or ventral midline lesion was used to damage either the raphe obscurus or raphe pallidus. After a dorsal lesion, the synchronized respiratory bursts persisted with slightly decreased frequencies. In contrast, after a ventral lesion, the bursts were almost completely abolished, but recovered significantly after the addition of 5-HT. The present results demonstrated that the pre-Bötzinger complex on each side of the medulla can independently generate rhythmic respiratory activity. It is suggested that the 5-HT released from the ventral part of the raphe nuclei (predominantly the raphe pallidus) plays a critical role in sustaining rhythmic respiratory bursts.  相似文献   

4.
大鼠脑内5-HT能神经元对咽肌的支配及调控   总被引:3,自引:0,他引:3  
用PRV和5-HT免疫组织化学双标记方法研究脑内5-HT能神经元对咽肌的神经支配及调控。观察到中缝核群的中缝苍白核、中缝隐核、中缝大核、中缝桥核、中缝正中核、中缝背核、和中缝尾侧线形核等部位有PRV和5-HT双标记细胞,直接证明中缝核群的5-HT能神经元投射到支配咽肌的疑核运动神经元和孤束核中的前运动神经元,调控咽肌的运动。并推测脑干中缝核群中的5-HT能神经元对咽肌运动的调控可能经由5HT3和5HT1A两种受体介导。  相似文献   

5.
Abstract: Extracellular 5-hydroxytryptamine (5-HT) in the median raphe and dorsal hippocampus was measured using in vivo microdialysis. Administration of 60 m M K+ through the probe into the median raphe region significantly increased 5-HT output from the median raphe and the right dorsal hippocampus. Local infusion of 10 µ M tetrodotoxin into the median raphe region substantially decreased 5-HT in the median raphe and left and right dorsal hippocampus. Systemic administration (0.3 mg/kg s.c.) of 8-hydroxy-2-(di- n -propylamino)tetralin (8-OH-DPAT) decreased the 5-HT levels in the dialysates from both the median raphe region and dorsal hippocampus. Administration of 30 n M 8-OH-DPAT through the dialysis probe into the median raphe region decreased 5-HT output from the median raphe and dorsal hippocampus significantly, whereas at concentrations from 60 n M to 10 µ M , no significant effects were found in either region. With 100 µ M 8-OH-DPAT, a significant increase was seen in the median raphe region, but not in dorsal hippocampus. Similar findings were obtained following microinjections of different doses of the compound into the median raphe region. The results of this study indicate that the somatodendritic release of 5-HT is impulse flow-dependent. Moreover, the decrease of 5-HT in the median raphe region by low nanomolar concentrations of 8-OH-DPAT supports the notion that somatodendritic 5-HT release is subject to a local negative feedback mechanism through 5-HT1A autoreceptors.  相似文献   

6.
A new taxon Cocconeis hauniensis sp. nov., is described from the bottom deposits of Puck Bay, a shallow water embayment in the southern part of the Baltic Sea. Light and electron microscope studies revealed that C. hauniensis is characterized by a finely silicified raphe valve and a robust araphid valve. The raphe valve possesses a straight to slightly sigmoid raphe, indistinct striae and a submarginal hyaline ring. The araphid valve possesses distinct punctate striae and an irregularly widened axial area. The raphe valve morphology of C. hauniensis shows some similarity to C. placentula Ehrenberg and C. scutellum Ehrenberg. However, the araphid valve of C. hauniensis is quite different.  相似文献   

7.
Origin and evolution of the canal raphe system in diatoms   总被引:1,自引:0,他引:1  
Ruck EC  Theriot EC 《Protist》2011,162(5):723-737
One lineage of pennate diatoms has a slit through the siliceous cell wall, called a "raphe," that functions in motility. Raphid pennate diatoms number in the perhaps tens of thousands of species, with the diversity of raphe forms potentially matching this number. Three lineages-the Bacillariales, Rhopalodiales, and Surirellales-possess a complex and presumably highly derived raphe that is physically separated from the cell interior, most often by a set of siliceous braces. Because the relationship among these three lineages is unclear, the number of origins of the canal raphe system and the homology of it and its constitutive parts among these lineages, is equally unclear. We reconstructed the phylogeny of raphid pennate diatoms and included, for the first time, members of all three canal raphid diatom lineages, and used the phylogeny to test specific hypotheses about the origin of the canal raphe. The canal raphe appears to have evolved twice, once in the common ancestor of Bacillariales and once in the common ancestor of Rhopalodiales and Surirellales, which form a monophyletic group in our analyses. These results recommend careful follow-up morphogenesis studies of the canal raphe in these two lineages to determine the underlying developmental basis for this remarkable case of parallel evolution.  相似文献   

8.
The median raphe nucleus and dorsal raphe nucleus together are the major source of ascending 5-HT projections. Here, using in vitro extracellular single unit electrophysiology we examined the responses of individual neurones in the rat median raphe nucleus and dorsal raphe nucleus to alpha(1)-adrenoceptor and 5-HT(1A) receptor activation and made comparisons between the two nuclei. In the presence of the alpha(1)-adrenoceptor agonist phenylephrine (1microM) all spontaneously active neurones recorded in the median and dorsal raphe nuclei fired slowly (<5Hz) and regularly. Most were inhibited by 5-HT (10-50microM), although a few were excited by 5-HT. 5-HT-induced inhibition was attenuated by the 5-HT(1A) receptor antagonist, WAY100635 (100nM). Compared to those in the dorsal raphe nucleus, the neurones in the median raphe nucleus which were inhibited by 5-HT had: (1) lower basal firing rates in the continuous presence of phenylephrine (1microM), (2) smaller excitatory responses to higher concentrations of phenylephrine (3-10microM), (3) smaller excitatory responses to brief application of norepinephrine (10-100microM) and (4) smaller inhibitory responses to 5-HT (10-50microM). The lower sensitivity of median raphe neurones to alpha(1)-adrenoceptor excitation and 5-HT(1A) receptor inhibition will have consequences for 5-HT neurotransmission in forebrain regions innervated by the two nuclei.  相似文献   

9.
The present study was undertaken to examine the effects of electrical stimulation of the medullary raphe nuclei on respiration in rats anesthetized with ketamine and xylazine. Train pulse stimuli (100 Hz, 10–30 μA) were applied in the regions of the caudal raphe nuclei: the raphe magnus (RM), raphe pallidus (RP) and raphe obscurus (RO). Stimulation of the RM depressed inspiratory movements measured by means of an abdominal pneumograph, whereas stimulation of the RP augmented inspiratory movements. It was revealed that stimulation of the RO induced either inhibitory or facilitatory effects on respiratory movements depending on the stimulation sites. These findings confirm and extend previous studies concerning the effects of raphe stimulation on respiratory activity in cats. The present results demonstrate that in rats the caudal raphe nuclei are involved in respiratory control.An erratum to this article can be found at  相似文献   

10.
The spontaneous activity of single neurons in the nucleus raphe dorsalis was recorded in vitro in mouse brain slices. The neurons displayed the slow and regular discharge pattern characteristic of raphe neurons recorded in vivo. When magnesium ion was added to increase the medium concentration to 20-30 mM for the purpose of inhibiting all synaptic transmission, raphe neurons continued to display the same discharge pattern and rate. The data suggest that the steady rhythmic firing of nucleus raphe dorsalis neurons is generated by an intracellular pacemaker mechanism.  相似文献   

11.
The dorsal and median raphe nuclei in rats were electrically stimulated and blood pressure and heart rate were recorded. Stimulation of each raphe nucleus caused an increase in blood pressure without affecting heart rate. The size of the increase in blood pressure depended upon the stimulus-intensity.Significant increases were already obtained with 5 sec. trains of 0.3 msec., 200 μA stimuli given at a frequency of 50 Hz. The increases in blood pressure could be obtained with electrodes within the raphe nuclei.Pretreating rats with para-chlorophenylalanine (pCPA, 100 mg/kg.day for 3 days) significantly diminished the increases in blood pressure obtained during electrical stimulation of the median raphe nucleus. However, similar pretreatment did not affect blood pressure rises induced by dorsal raphe stimulation.These data are discussed in relation to the role of central serotoninergic mechanisms in cardiovascular control.  相似文献   

12.
大白鼠中缝核一氧化氮合酶阳性神经元的组织化学观察   总被引:2,自引:1,他引:1  
中脑和脑桥部中缝核被认为与睡眠有直接和间接关系的重要脑结构。本文用一氧化氮合酶(NOS)组织化学结合荧光组织化学方法证实在中缝核群中,NOS阳性神经元主要定位于这两个脑部的中缝核内,NOS产生的NO能使脑血管扩张,参与脑血流的调节。提示这二个脑部中缝核内的NOS阳性神经元可能作为多种因素之一,参于睡眠状态下基本脑血流的维持  相似文献   

13.
损毁中缝大核对大鼠胃酸排出量及血清胃泌素水平的影响   总被引:1,自引:0,他引:1  
本实验观察了损毁中缝大核对大鼠胃酸排出量和血清胃泌素水平的影响。实验表明:损毁中缝大核可增加胃酸排出量和血清胃泌素水平。切断双侧膈下迷走神经干可以消除这种作用,去除腹腔交感神经节及肠系膜上交感神经节只能部分减弱这种作用。  相似文献   

14.
研究用荧光金(FG)逆行追踪与免疫荧光组化染色相结合的双标技术对大鼠脑干向延髓网状背侧亚核(SRD)的5┐羟色胺(5┐HT)能、P物质(SP)能和亮氨酸┐脑啡肽(L┐ENK)能投射进行了观察。将FG注入SRD后,FG逆标神经元主要见于中脑导水管周围灰质、脑干中缝核簇(中缝背核、中缝正中核、中缝桥核、中缝大核、中缝隐核和中缝苍白核)、巨细胞网状核α部、延髓网状结构的内侧部和外侧部、延髓外侧网状核、三叉神经脊束核尾侧亚核和孤束核。5┐羟色胺(5┐HT)样、P物质(SP)样和亮氨酸脑啡肽(L┐ENK)样阳性神经元主要见于中脑导水管周围灰质、脑干中缝核簇和巨细胞网状核α部;此外,SP样和L┐ENK样阳性神经元还见于臂旁核、背外侧被盖核和孤束核。FG逆标并呈5┐HT样、SP样或L┐ENK样阳性的双标神经元也主要见于中脑导水管周围灰质、脑干中缝核簇和巨细胞网状核α部,尤其是位于延髓中缝核团内的双标神经元数量较多。本研究的结果说明SRD内的5┐HT样、SP样和L┐ENK样阳性终末主要来自中脑导水管周围灰质、脑干中缝核簇和巨细胞网状核α部,向SRD发出5┐HT能、SP能和L┐ENK能投射的上述核团对SRD发挥“弥漫性伤害抑  相似文献   

15.
An uptake system on the serotonin neuronal membrane apparently functions to inactivate serotonin that has been released into the synaptic cleft. Various inhibitors of this active transport system on serotonin neurons are known, and some are specific in the sense that they do not inhibit the active uptake system on norepinephrine neurons. The most widely studied specific inhibitor of the serotonin neuron pump is fluoxetine, 3-(p-trifluoromethylphenoxy-N-methyl-3-phenyl propylamine (Lilly 110140). When fluoxetine or other effective but less specific serotonin uptake inhibitors are given, a rapid decrease in serotonin turnover occurs and the rate of firing of single neural units in the serotonin rich raphe area of brain is reduced. This decrease in serotonin turnover and release may be a compensatroy mechanism in response to an enhanced action of serotonin on synaptic receptors. Through the use of fluoxetine and other serotonin uptake inhibitors, the role of serotonin neurons in various brain functions--behavior, sleep, regulation of pituitary hormone release, thermoregulation, pain responsiveness, and so on--can be studied.  相似文献   

16.
Immunohistochemical techniques were employed to study the distribution of serotonin (5-HT) immunoreactive neurons in the brainstem of the hamster, guinea pig, rabbit and rat. 5-HT neurons were principally found to be concentrated in the midline raphe nuclei, particularly, the raphe pallidus, raphe obscurus, raphe magnus, raphe median, raphe pontis and raphe dorsalis nuclei. Characteristically, these cell bodies are displayed in bands or wing-like patterns which extend laterally from the raphe into reticular formations. The formations often appear to blend with the catecholamine system. They are particularly evident in the brainstems of the rabbit and hamster which contain wider and more lateral extensions of the serotonergic (5-HT) neurons than those observed in the brainstems of the rat and guinea pig. The widespread distribution of 5-HT immunoreacted cell bodies in the brainstem shows that there are significant prospects of 5-HT in neuronal activities.  相似文献   

17.
The nociceptive response latencies increased significantly after intra-nucleus raphe magnus administration of 0.1 or 0.4 nmol of neuropeptide Y, but not 0.04 nmol, in rats. The neuropeptide Y-induced increases in hindpaw withdrawal latency were reversed by following injection of 0.42 nmol of the Y1 antagonist, NPY(28-36). The results indicate that NPY plays an antinociceptive role in nucleus raphe magnus in rats, which is mediated by the Y1 receptor. Furthermore, the neuropeptide Y-induced increases in hindpaw withdrawal latency were attenuated by following intra-nucleus raphe magnus injection of 6 nmol of the opioid antagonist naloxone, indicating that there is an interaction between NPY and opioids in nucleus raphe magnus.  相似文献   

18.
损毁中缝大核对在鼠胃酸排出量及血清胃泌素水平的影响   总被引:2,自引:0,他引:2  
王林嵩  伍忍 《生理学报》1992,44(2):164-169
Medullary raphe nucleus complex plays an important role in the regulation of visceral function. The effects of electrical damage of the nucleus raphe magnus on gastric acid output and serum gastrin level in anesthetized rats were observed. The experiments showed that damage of nucleus raphe magnus increased gastric acid output and serum gastrin level, which could be prevented by vagotomy but not by coeliac and superior mesenteric ganglionectomy.  相似文献   

19.
The possible existence of tryptamine-containing neurons originating in the midbrain raphe is suggested by several reports of tryptamine-mediated responses to electrical stimulation of the raphe nuclei. To assess this hypothesis, we have investigated the effects of electrolytic lesions of the median and dorsal raphe nuclei on striatal, hypothalamic, and hippocampal concentrations of tryptamine, 5-hydroxytryptamine (5-HT), and 5-hydroxyindoleacetic acid. In addition, the rat striatal tryptophan concentrations were also determined. No changes in the concentrations of tryptamine were observed at 1 or 2 weeks after lesioning the dorsal and median raphe nuclei, at which time the other 5-hydroxyindoles were markedly reduced; furthermore, no reductions were observed in tryptamine concentrations in the striatum, hypothalamus, or hippocampus of rats pretreated with a monoamine oxidase inhibitor. The only change observed in these rats was a limited increase in striatal tryptamine and tryptophan observed at 1 day after lesioning. The results indicate that tryptamine concentration is independent of the integrity of 5-HT-containing neurons of the midbrain raphe nuclei. Furthermore, if tryptamine-containing neurons that have terminal projections to the striatum, hypothalamus, and hippocampus exist, their cell bodies are located in regions outside the dorsal and median raphe nuclei. Another possibility could be that tryptamine is located in glial cells.  相似文献   

20.
Previous studies have suggested that serotonergic neurons in the midbrain raphe complex have a functional topographic organization. Recent studies suggest that stimulation of a bed nucleus of the stria terminalis-dorsal raphe nucleus pathway by stress- and anxiety-related stimuli modulates a subpopulation of serotonergic neurons in the dorsal part of the dorsal raphe nucleus (DRD) and caudal part of the dorsal raphe nucleus (DRC) that participates in facilitation of anxiety-like responses. In contrast, recent studies suggest that activation of a spinoparabrachial pathway by peripheral thermal or immune stimuli excites subpopulations of serotonergic neurons in the ventrolateral part of the dorsal raphe nucleus/ventrolateral periaqueducal gray (DRVL/VLPAG) region and interfascicular part of the dorsal raphe nucleus (DRI). Studies support a role for serotonergic neurons in the DRVL/VLPAG in inhibition of panic-like responses, and serotonergic neurons in the DRI in antidepressant-like effects. Thus, data suggest that while some subpopulations of serotonergic neurons in the dorsal raphe nucleus play a role in facilitation of anxiety-like responses, others play a role in inhibition of anxiety- or panic-like responses, while others play a role in antidepressant-like effects. Understanding the anatomical and functional properties of these distinct serotonergic systems may lead to novel therapeutic strategies for the prevention and/or treatment of affective and anxiety disorders. In this review, we describe the anatomical and functional properties of subpopulations of serotonergic neurons in the dorsal raphe nucleus, with a focus on those implicated in symptoms of anxiety and affective disorders, the DRD/DRC, DRVL/VLPAG, and DRI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号