首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study used the tremendous biochemical and ecological diversity of macroalgae to assess nitrogen and phosphorus availability at a broad, ecosystem-level scale in the Florida Keys and nearby waters. Spatial variation in tissue nutrients (carbon, C; nitrogen, N; phosphorus, P) of dominant macroalgae were assessed, both as ratios and absolute values, along 12 inshore-offshore transects in the Florida Keys and at 10 stations in nearby Florida Bay. The resulting detailed analysis demonstrated spatial and temporal patterns in macroalgal tissue nutrients. The transect data revealed no universal inshore-offshore patterns in tissue nutrients and no obvious "hotspots" of nutrient enrichment. Similarly, when data were compared among segments, there was no universal geographical pattern in tissue nutrients for all species. The most striking result was that the N and P status of macroalgae in Florida Bay was significantly different than other locations. Macroalgae collected from Florida Bay generally had higher N and lower P levels than algae collected elsewhere. The most common inshore-offshore pattern was higher %N and lower %P availability inshore; however, limited inshore-offshore differences in N:P ratio suggests that both nutrients were generally readily available in proportional amounts required by the various species. Most species in this study had higher %N, and to a lesser extent, higher %P and %C in March than in July. Based on the published literature on other species of macroalgae, it appears that N and P are generally available in sufficient quantities that most macroalgal growth is not limited by either nutrient.  相似文献   

2.
The effects of nitrate (NO3-) supply on shoot morphology, vertical distribution of shoot and root biomass and total nitrogen (N) acquisition by two perennial ryegrass (Lolium perenne L.) cultivars (AberElan and Preference) and two white clover (Trifolium repens L.) cultivars (Grasslands Huia and AberHerald) were studied in flowing nutrient culture. Cultivars were grown from seed as monocultures and the clovers inoculated with Rhizobium. The 6-week measurement period began on day 34 (grasses) and day 56 (clovers) when the NO3- supply was adjusted to either 2 mmol m-3 (low nitrogen, LN) or 50 mmol m-3 (high nitrogen, HN). These treatments were subsequently maintained automatically. Plants were harvested at intervals to measure their morphology and N content. Cultivars of both species differed significantly in several aspects of their response to NO3- supply. In the grasses, the LN treatment increased the root : shoot ratio of AberElan but did not affect the distribution of root length in the root profile. In contrast, this treatment changed the root distribution of Preference compared with HN, resulting in a larger proportion of root length being distributed further down the root profile. The morphology of white clover Grasslands Huia was for the most part unaffected by the level of NO3- supply. In contrast, AberHerald exhibited different growth strategies, with LN plants increasing their stolon weight per unit length at the expense of leaf production, leaf area and stolon length, whereas HN plants showed reduced stolon thickness, greater leaf area production and stolon length per plant. Cultivars with different morphological/physiological strategies in response to NO3- supply may be of value in the construction of 'compatible mixtures' aimed at reducing oscillations in sward clover content by extending the range of conditions that allow balanced coexistence of species to occur.  相似文献   

3.
Maize seedlings were grown for 10 to 20 days in either nutrient solution or in soils with or without fertilizer supply. Air temperature was kept uniform for all treatments, while root zone temperature (RZT) was varied between 12 and 24°C. In some treatments the basal part of the shoot (with apical shoot meristem and zone of leaf elongation) was lifted up to separate the indirect effects of root zone temperature on shoot growth from the direct effects of temperature on the shoot meristem.Shoot and root growth were decreased by low RZT to a similar extent irrespective of the growth medium (i.e. nutrient solution, fertilized or unfertilized soil). In all culture media Ca concentration was similar or even higher in plants grown at 12 as compared to 24°. At lower RZT concentrations of N, P and K in the shoot dry matter decreased in unfertilized soil, whereas in nutrient solution and fertilized soil only the K concentration decreased.When direct temperature effects on the shoot meristem were reduced by lifting the basal part of the shoot above the temperature-controlled root zone, shoot growth at low RZT was significantly increased in nutrient solution and fertilized soil, but not in unfertilized soil. In fertilized soil and nutrient solution at low RZT the uptake of K increased to a similar extent as plant growth, and thus shoot K concentration was not reduced by increasing shoot growth rates. In contrast, uptake of N and P was not increased, resulting in significantly decreased shoot concentrations.It is concluded that shoot growth at suboptimal RZT was limited both by a direct temperature effect on shoot activity and by a reduced nutrient supply through the roots. Nutrient concentrations in the shoot tissue at low RZT were not only influenced by availability in the substrate and dilution by growth, but also by the internal demand for growth.  相似文献   

4.
This study used the tremendous biochemical and ecological diversity of macroalgae to assess nitrogen and phosphorus availability at a broad, ecosystem‐level scale in the Florida Keys and nearby waters. Spatial variation in tissue nutrients (carbon, C; nitrogen, N; phosphorus, P) of dominant macroalgae were assessed, both as ratios and absolute values, along 12 inshore‐offshore transects in the Florida Keys and at 10 stations in nearby Florida Bay. The resulting detailed analysis demonstrated spatial and temporal patterns in macroalgal tissue nutrients. The transect data revealed no universal inshore‐offshore patterns in tissue nutrients and no obvious “hotspots” of nutrient enrichment. Similarly, when data were compared among segments, there was no universal geographical pattern in tissue nutrients for all species. The most striking result was that the N and P status of macroalgae in Florida Bay was significantly different than other locations. Macroalgae collected from Florida Bay generally had higher N and lower P levels than algae collected elsewhere. The most common inshore‐offshore pattern was higher %N and lower %P availability inshore; however, limited inshore‐offshore differences in N:P ratio suggests that both nutrients were generally readily available in proportional amounts required by the various species. Most species in this study had higher %N, and to a lesser extent, higher %P and %C in March than in July. Based on the published literature on other species of macroalgae, it appears that N and P are generally available in sufficient quantities that most macroalgal growth is not limited by either nutrient.  相似文献   

5.
We measured the elemental content (%C, N and P) and ratios (C:N, C:P, N:P) of a diverse assemblage of parasitic helminths to ask whether taxonomy or traits were related to stoichiometric variation among species. We sampled 27 macroparasite taxa, spanning four phyla, infecting vertebrate and invertebrate hosts from freshwater ecosystems in New Jersey. Macroparasites varied widely in elemental content, exhibiting 4.7‐fold variation in %N, 4.6‐fold variation in %P, and 11.5‐fold variation in N:P. Across all species, parasite %P scaled negatively and C:P scaled positively with body size. Similar relationships between parasite P content and body size occurred at the phylum level and within individual species. The allometric scaling of P across species supports the growth rate hypothesis, which predicts that smaller taxa require more P to support relatively higher growth rates. Life cycle stage was related to %N and C:N, with non‐reproductive parasite stages lower in %N and higher in C:N than actively reproducing parasites. Parasite phylum, functional feeding group, and trophic level did not explain elemental variation among species. Organismal stoichiometry is linked to ecological function, and wide variation in macroparasite stoichiometry likely generates diverse patterns in host–parasite nutrient dynamics and variable relationships between parasitism and nutrient cycling.  相似文献   

6.
J. R. Caradus 《Plant and Soil》1983,72(2-3):379-383
Summary Eight semi-natural white clover populations and two cultivars were grown in culture solutions containing 10 ppm and 0.01 ppm phosphorus (P). The rate of P uptake by the intact plants was then measured in solutions containing 10 ppm P.Phosphorus uptake per unit root length was twice as great by plants previously grown at 0.01 ppm P than those grown at 10 ppm P. Large differences in total P uptake were found among populations regardless of the pretreatment; most of this variation was accounted for by differences in root length. Only small differences were found between populations for P uptake per unit root length, and then only after pretreatment with 10 ppm P; this variation was largely accounted for by relative growth rate and shoot %P.  相似文献   

7.
SUMMARY. 1. Quantities and the chemical composition of epiphyton on the roots of floating aquatic macrophytes were measured in Lake Calado, an Amazon floodplain lake. Growth of epiphytic algae following physical disturbance and losses of epiphyton due to grazing and storms were investigated.
2. Deposition of silt from invading river water decreased chlorophyll and nutrient content (%C, %N, %P) of epiphyton during rising water. N:P ratios of epiphyton indicated that proximity to the river increased supplies of phosphorus. Attached algal biomass per unit root tissue was higher overall during the falling water period, when light was greater, storms less frequent, and new host plant tissue produced more slowly.
3. Epiphytic algal biomass at the margins of floating meadows exceeded that of the phytoplankton in the open water on a per unit area basis. Increases in attached algal chlorophyll ranged from two- to ten-fold over 1 week. Artificial denudation of roots was followed by rapid regrowth of attached algae, leading, after I week, to four-fold increases in chlorophyll over the pre-denuded state.
4. Wind-blown macrophytes experienced an episodic loss of 70% of epiphytic material in less than 1 h. Particulate material lost from roots grazed by snails included root tissue and contained significantly more carbon than material lost from ungrazed roots.  相似文献   

8.
Fifteen lettuce cultivars representing three different morphological types were grown in a sand alumina system under conditions of low (deficient) and high (sufficient) P supply. An efficient plant was defined as one that produced a large shoot fresh weight under low P conditions. Cultivars within their respective groups varied significantly for some traits that appeared to be important in determining adaptation to P. This led to the conclusion that accumulation of P in shoot tissue or the total plant was the main difference between efficient and inefficient cultivars. Accumlation of P seemed to be due to a greater absorption capability of roots or greater root mass (weight), depending on the different lettuce groups. Differences in internal use of P did not contribute to differences in shoot fresh weight.The butterhead cultivars were the least efficient plants when grown under low P. Compared to the other groups, plants has lower translocation efficiency and a greater root: shoot ratio. Never-the-less, butterhead cultivars as efficient as the best cultivars of other groups were found. There were no differences between Brazilian and American cultivars for any of the traits analysed, probably due to the fact that in both countries vegetables are bred under high fertility levels and grown with heavy applications of fertilizers. The results of this study demonstrate that there were genotypic variability and/or genotype×environment interaction effects for shoot weight (yield) among the lettuce cultivars grown under low P conditions imposed in the sand-alumina system.  相似文献   

9.
J. R. Caradus 《Plant and Soil》1990,123(2):165-167
Genotypes of two morphologically different populations of white clover (Trifolium repens L.) were reciprocally and self-grafted. Ungrafted stolon tips were also grown as controls. Grafting per se had no significant effect on shoot size, root size, leaflet width or shoot and root % P. The scion genotype had a significant effect on shoot and root size, and leaflet width. Neither scion nor rootstock genotype had a significant effect on either shoot or root % P. However, there was a significant scion × rootstock × P level interaction for shoot % P. This along with other evidence suggests that conflicting results regarding effects of scion and rootstock on % P content of plants within species is probaby due to the interaction of scion and rootstock with environment.This work was undertaken at the Department of Agricultural Botany, University of Reading, Reading, England.This work was undertaken at the Department of Agricultural Botany, University of Reading, Reading, England.  相似文献   

10.
磷水平对接种丛枝菌根真菌甜玉米苗期生长的影响   总被引:1,自引:0,他引:1  
研究了不同外源磷水平条件下,接种丛枝菌根真菌根内球囊霉(Glomus intraradices)对寄主植物甜玉米菌根侵染率、地上部和地下部鲜重、氮磷含量、精氨酸含量影响。结果表明:丛枝菌根真菌能够很好的侵染于玉米植株根系。且不同磷水平条件下,菌根侵染率差异较显著。在低磷水平下,菌根侵染率较高。孢子数量随着磷水平提高而增加。菌丝室根外菌丝鲜重在P40时最高。菌根化的甜玉米生物量及氮磷含量显著高于对照组。此外,低磷水平促使甜玉米地上部和地下部鲜重显著提高。甜玉米地上部总氮和地下部总氮含量分别在P40、P80和P20、P40时最高。地上部总磷和地下部总磷含量分别在P80和P160时最高。菌根精氨酸含量在低磷(P20)时最高。研究表明接种丛枝菌根真菌可促进甜玉米幼苗生长并与外源磷水平有关。  相似文献   

11.
In order to improve the basis for utilising nitrogen (N) fixed by white clover (Trifolium repens L.) in northern agriculture, we studied how defoliation stress affected the N contents of major plant organs in late autumn, N losses during the winter and N accumulation in the following spring. Plants were established from stolon cuttings and transplanted to pots that were dug into the field at Apelsvoll Research Centre (60°42′ N, 10°51′ E) and at Holt Research Centre (69°40′ N, 18°56′ E) in spring 2001 and 2002. During the first growing season, the plants were totally stripped of leaves down to the stolon basis, cut at 4 cm height or left undisturbed. The plants were sampled destructively in late autumn, early spring the second year and after 6 weeks of new spring growth. The plant material was sorted into leaves, stolons and roots. Defoliation regime did not influence the total amount of leaf N harvested during and at the end of the first growing season. However, for intensively defoliated plants, the repeated leaf removal and subsequent regrowth occurred at the expense of stolon and root development and resulted in a 61–85% reduction in the total plant N present in late autumn and a 21–59% reduction in total accumulation of plant N (plant N present in autumn + previously harvested leaf N). During the winter, the net N loss from leaf tissue (N not recovered in living nor dead leaves in the spring) ranged from 57% to 74% of the N present in living leaves in the autumn, while N stored in stolons and roots was much better conserved. However, the winter loss of stolon N from severely defoliated plants (19%) was significantly larger than from leniently defoliated (12%) and non-defoliated plants (6%). Moreover, the fraction of stolon N determined as dead in the spring was 63% for severely defoliated as compared to 14% for non-defoliated plants. Accumulation in absolute terms of new leaf N during the spring was highly correlated to total plant N in early spring (R2 = 0.86), but the growth rates relative to plant N present in early spring were not and, consequently, were similar for all treatments. The amount of inorganic N in the soil after snowmelt and the N uptake in plant root simulator probes (PRSTM) during the spring were small, suggesting that microbial immobilisation, leaching and gas emissions may have been important pathways for N lost from plant tissue.  相似文献   

12.
This paper describes an integrated model for calculating the interactive effects of N, P and K fertilizers on crop response by combining routines from separate N, P and K models which used readily available inputs. The new model uses the principle of the ‘Law of the Minimum’ to calculate actual daily increments in plant weight and uptake of each nutrient based on the nutrient least able to meet the plant requirements, although account is also taken of soil factors such as the dependence of soil solution K on the level of mineral N. The validity of the model was tested against the results of 4 field experiments with different combinations of crop species, times of harvest, and levels of N, P and K fertilizers. The integrated model gave good overall predictions of the plant dry weight (excluding fibrous roots) and %N of the dry weight. However, predictions of its %P and %K in the dry weight were less satisfactory, especially in the luxury range. Simulation studies with low levels of nutrients showed that, while most interactive effects on final yield conformed to the Law of the Minimum type of response, the inter-dependence of K and nitrate concentrations in the soil solution resulted in responses to K at different levels of N that were better represented by the Mitscherlich equation or the Multiple Limitation Hypothesis. Thus the adaptability of the model allowed it to reproduce crop responses predicted by three quite different non-mechanistic static equations previously used in the literature to summarise nutrient interaction data. This suggests that the model has the potential to provide a mechanistic basis for interpreting factorial NPK fertilizer trials. Opportunities for improving the model were provided by the experimental findings that %P was strongly correlated with %N throughout the entire range of treatments; that K fertilizers failed to increase %K when %N was low; that fertilizer N increased plant %K when the level of K fertilizer was substantial but not otherwise; and that fertilizer-P depressed plant %K. The model validation also showed that there is a need to improve the parameterization for major crops.  相似文献   

13.
We examined effects of external supplies of nitrogen (N) and phosphorus (P) from the environment and internal supplies of N and P from within litter tissue on wild rice shoot and root litter decomposition and N and P dynamics. To investigate the effects of external supplies, wild rice shoot and root litterbags were decayed in mesocosms in the field over 115 days with either added N or P or a control in ambient conditions. To investigate the effects of the internal nutrient supply, wild rice plants were grown with added N, P, both N and P, or no supplemental nutrient, to produce enriched litters, which were then decayed for 168 days under controlled temperature in the laboratory. Both external and internal N and P supplies affected shoot litter decay more than decay of root litter. Increased external P supply significantly increased the rate of wild rice shoot decay and P mineralization but adding N had no effect on decay rates through time. Neither adding N nor P influenced root decay. Enrichment of P internally in the litter through fertilization increased the concentration of P (0.16%) and water-soluble compounds (28.7% WS) in shoot litter compared to control shoot litter (0.11% P, 19.8% WS), which likely caused the significant increase in shoot decay rates, particularly in the labile pool. In contrast, N enrichment not only increased plant growth but also increased lignin concentrations (7.5%) compared to control shoot litter (2.7% lignin) for added structural support. This significantly inhibited decay and nearly doubled the amount of mass remaining after 168 days (42.1% OM) when compared to control shoots (22.4% OM). Increased lignin likely overrides a concomitant increase in nitrogen concentration in shoot litter and appears to control wild rice decomposition. Lignin and phosphorus appear to play a key role in driving wild rice decay through the effects on litter quality.  相似文献   

14.
Changes in plant diversity have consequences for higher trophic levels, e.g., higher plant diversity can enhance the reproduction and fitness of plant-associated insects. This response of higher trophic levels potentially depends on diversity-related changes in both resource quantity (abundance) and quality (nutritional content). The availability of elemental nutrients in plant resources is one aspect of nutritional quality, but has rarely been addressed as a pathway relating plant diversity to associated insects. Using the experimental plant diversity gradient of a large biodiversity grassland project, the Jena-Experiment, we analysed the %C, %N and %P and the molar ratios of those elements (C:N, C:P and N:P) in a pollinating bee, Chelostoma distinctum, and an herbivorous grasshopper, Chorthippus parallelus, reared on plots of different plant diversity. Insects showed higher content of C, N and P (% dry mass), and lower C:N and C:P ratios than plants. C:N ratios were significantly higher in grasshoppers than in bees and higher in females than in males of both species. Increasing plant species richness increased the C:N ratio of male bees and female grasshoppers. In both groups, stoichiometry was positively related to plant stoichiometry (male bees: C:P and N:P; grasshoppers: C:N and N:P). Path analysis revealed that diversity-driven changes in plant elemental composition can have consequences for abundance and chemical composition of higher trophic levels, with different responses of the two functional groups.  相似文献   

15.
Wang  Z. Y.  Kelly  J. M.  Kovar  J. L. 《Plant and Soil》2007,270(1-2):213-221
In situ sampling of rhizosphere solution chemistry is an important step in improving our understanding of soil solution nutrient dynamics. Improved understanding will enhance our ability to model nutrient dynamics and on a broader scale, to develop effective buffers to minimize nutrient movement to surface waters. However, only limited attention has been focused on the spatial heterogeneity and temporal dynamics of rhizosphere solution, and still less is known about how rhizosphere solution chemistry varies among plant species. Nutrients in rhizosphere soil solution and changes in root morphology of juvenile corn (Zea mays L. cv. Stine 2250), cottonwood (Populus deltoids L.), and switchgrass (Panicum virgatum L.) were monitored using mini-rhizotron technology. Plants were grown for 10 days in a fine-silty, mixed, superactive, mesic Cumulic Hapludoll (Kennebec series). Micro-samples (100–200 μL) of rhizosphere and bulk soil solution were collected at 24-h intervals at a tension of −100 kPa and analyzed for P, K, Ca, and Mg concentration using Capillary Electrophoresis techniques. Plants were harvested at the end of the 10-day period, and tissue digests analyzed for nutrient content by Inductively Coupled Plasma Spectroscopy. Corn plants produced roots that were 1.3 times longer than those of cottonwood, and 11.7 times longer than those of switchgrass. Similar trends were observed in number of root tips and root surface area. At the end of 10 days, rhizosphere solution P and K concentrations in the immediate vicinity of the roots (<1 mm) decreased by approximating 24 and 8% for corn, and 15 and 5% for cottonwood. A rhizosphere effect was not found for switchgrass. After correction for initial plant nutrient content, corn shoot P, K, and Mg were respectively 385, 132, and 163% higher than cottonwood and 66, 37, and 10% higher than switchgrass. Cottonwood shoot Ca concentration, however, was 68 to 133% higher than that of corn or switchgrass. There was no difference in root P concentration among the three species. Nutrient accumulation efficiency (μg nutrient mm−1 root length) of cottonwood was 26 to 242% higher for P, 25 to 325% higher for Ca, and 41 to 253% higher for Mg than those of corn and switchgrass. However, K accumulation efficiency of corn was four to five times higher than that of the cottonwood and switchgrass. Nutrient utilization efficiency (mg of dry weight produced per mg nutrient uptake) of P, K, and Mg was higher in cottonwood than in corn and switchgrass. These differences are element-specific and depend on root production and morphology as well as plant nutrient status. From a practical perspective, the results of this study indicate that potentially significant differences in rhizosphere solution chemistry can develop quickly. Results also indicate that cottonwood would be an effective species to slow the loss of nutrients in buffer settings. An erratum to this article can be found at  相似文献   

16.
Liu  A.  Hamel  C.  Hamilton  R. I.  Smith  D. L. 《Plant and Soil》2000,221(2):157-166
A study was conducted to evaluate the effect of N and P supply levels on mycorrhizal formation and nutrient uptake in corn hybrids with different architectures and to determine arbuscular mycorrhizal fungal (AMF) development in relation to shoot N/P ratio and shoot:root ratio. Corn pot cultures with a pasteurized medium of two parts sand and one part sandy loam soil were grown in the greenhouse. Marigold plants inoculated or not with Glomus intraradices Schenck & Smith were used to establish an AMF hyphal network in the designated soil pots. Corn hybrids were seeded after removal of the marigold plant. Mycorrhizal colonization of corn hybrids and the quantity of extraradical hyphae produced in soil were greatest at the lowest P level and at the intermediate N level. Root colonization was correlated with shoot N/P ratio only at the intermediate N level. The shoot concentrations of P, Mg, Zn and Cu were significantly higher in mycorrhizal plants than in non-mycorrhizal plants. The corn phenotype with the highest shoot:root ratio had the highest root colonization. The corn hybrid with a leafy normal stature architecture had a greater mycorrhizal colonization than that of other two corn hybrids. This experiment showed that N level in soil influenced shoot N/P ratio, root colonization and extraradical hyphal production, which in turn influenced uptake of other nutrients. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
In the 'F' horizons of acid mor-humus soils of heathland ecosystems, mycorrhizal roots of the dominant ericaceous species form a large fraction of the soil biomass. Rapid turnover of these roots provides the potential for recycling of substantial amounts of nitrogen contained in their fungal and plant components. Here, we first determine the amount of N in the biomass of ericoid roots growing in heathland and show it to constitute a large proportion of total soil N. In order to assess the accessibility of this N to ericaceous plants, experiments were then conducted using aseptically produced shoot and root necromass of Vaccinium macrocarpon Ait., the roots being grown with or without mycorrhizal colonization. These materials were provided as sole nitrogenous substrates in growth experiments using the ericoid mycorrhizal fungus Hymenoscyphus ericae (Read) Korf & Kernan in pure culture and V. macrocarpon in the mycorrhizal (M) or non-mycorrhizal (NM) condition as test organisms. The experiments were designed to test the hypothesis that the N contained in these substrates can be mobilized by the mycorrhizal endophyte. The ability of the endophyte to utilize the substrates was determined by measuring fungal yields and by assessing the presence of its extra-cellular protease and chitinase enzymes. Transfer of N to the host by the endophyte was determined through measurements of plant yield and tissue N contents. H. ericae produced a significantly greater yield on shoot and mycorrhizal root necromass than on non-mycorrhizal root necromass. The extra-cellular enzymes protease and chitinase were produced by the fungus when grown on the M root necromass. The fungus also transferred N to the host plant, up to 76% of N contained in the substrate being found in M plants whereas less than 5% was present in their NM counterparts.  相似文献   

18.
Microbial immobilization of nitrogen (N) in litter from one year’s production may cause oscillations in biomass production if it delays N availability the following year. We tested whether shoot and root litter and plant density affect biomass and seed production of populations of wild rice (Zizannia palustris L.) grown in 378 l stock tank mesocosms over four consecutive years. Half the tanks were thinned to a uniform seedling density whereas density in the remaining tanks was allowed to fluctuate ad libitum. Litter treatments included both shoot litter removal, leaving only root litter, and retaining shoot litter intact with root litter. A separate greenhouse fertilizer experiment tested whether N and/or phosphorus (P) limited productivity. Responses to N additions were much stronger than to P additions. Annual production and N availability in the tanks were correlated with each other and followed a concurrent cycle from 2004 to 2008. Furthermore, production in tanks with shoot + root litter did not fluctuate more than tanks with only root litter. Root litter immobilized more nitrogen and for a longer period than shoot litter. Neither litter immobilized P. Density did not affect mean seed weight, total seed production, or mean plant weight, but total seed production declined in years following productive years and was high only following years of low litter production. Root litter may therefore be primarily responsible for the delays in N availability that cause cycles in biomass and seed production. Consequently, both wild rice litter quantity and quality play central roles in production and population dynamics of wild rice stands.  相似文献   

19.
Summary Studies examined net photosynthesis (Pn) and dry matter production of mycorrhizal and nonmycorrhizalPinus taeda at 6 intervals over a 10-month period. Pn rates of mycorrhizal plants were consistently greater than nonmycorrhizal plants, and at 10 months were 2.1-fold greater. Partitioning of current photosynthate was examined by pulse-labelling with14CO2 at each of the six time intervals. Mycorrhizal plants assimilated more14CO2, allocated a greater percentage of assimilated14C to the root systems, and lost a greater percentage of14C by root respiration than did nonmycorrhizal plants. At 10 months, the quantity of14CO2 respired by roots per unit root weight was 3.6-fold greater by mycorrhizal than nonmycorrhizal plants. Although the stimulation of photosynthesis and translocation of current photosynthate to the root system by mycorrhiza formation was consistent with the source-sink concept of sink demand, foliar N and P concentrations were also greater in mycorrhizal plants.Further studies examined Pn and dry matter production ofPinus contorta in response to various combinations of N fertilization (3, 62, 248 ppm), irradiance and mycorrhizal fungi inoculation. At 16 weeks of age, 6 weeks following inoculation with eitherPisolithus tinctorius orSuillus granulatus, Pn rates and biomass were significantly greater in mycorrhizal than nonmycorrhizal plants. Mycorrhizal plants had significantly greater foliar %P, but not %N, than did nonmycorrhizal plants. Fertilization with 62 ppm N resulted in greater mycorrhiza formation than either 3 or 248 ppm. Increased irradiance resulted in increased mycorrhiza formation.  相似文献   

20.
Arbuscular mycorrhizas (AM) can increase plant acquisition of P and N. No published studies have investigated the impact of P and AM on the allocation of N to the plant defence, cyanogenic glucosides. We investigated the effects of soil P and AM on cyanogenic glucoside (dhurrin) concentration in roots and shoots of two forage sorghum lines differing in cyanogenic potential (HCNp). Two harvest times allowed plants grown at high and low P to be compared at the same age and the same size, to take account of known ontogenetic changes in shoot HCNp. P responses were dependent on ontogeny and tissue type. At the same age, P‐limited plants were smaller and had higher shoot HCNp but lower root HCNp. Ontogenetically controlled comparisons showed a P effect of lesser magnitude, and that there was also an increase in the allocation of N to dhurrin in shoots of P‐limited plants. Colonization by AM had little effect on shoot HCNp, but increased root HCNp and the allocation of N to dhurrin in roots. Divergent responses of roots and shoots to P, AM and with ontogeny demonstrate the importance of broadening the predominantly foliar focus of plant defence studies/theory, and of ontogenetically controlled comparisons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号