首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Washed human platelets were not able to convert eicosapentaenoic acid (EPA) to thromboxane B3 (TXB3) and 12-hydroxyeicosapentaenoic acid (AA) to washed human platelets induced conversion of EPA to TXB3 and 12-HEPE. Esculetin, a specific inhibitor of 12-lipoxygenase, prevented the effect of AA, but cyclooxygenase inhibitor did not. The conversion of AA to TXB2 was not affected by the same dose of esculetin. These data suggest that products of AA formed by 12-lipoxygenase in human platelets have stimulatory effects on EPA metabolism. When AA was preincubated with washed human platelets, its effect on EPA conversion was reduced, suggesting that a labile product of AA formed by 12-lipoxygenase is involved in the facilitation of EPA metabolism. Addition of 12-hydroperoxyeicosatetraenoic acid directly to washed human platelets caused dose-dependent synthesis of TXB3 and 12-HEPE, while addition of 12-hydroxyeicosatetraenoic acid had no effect. Thus, 12-hydroperoxyeicosatetraenoic acid formed from AA promotes the metabolism of EPA in washed human platelets.  相似文献   

2.
Dihomogammalinolenic acid (2.5-20 microM) added to suspensions of washed human platelets induces platelet shape change and the formation of 1,2-diacylglycerol and phosphatidic acid, indicating the activation of phospholipase C. It also stimulates the phosphorylation of a 40 kDa protein, indicating the activation of protein kinase C. Dihomogammalinolenic acid is converted mainly to 12-hydroxyheptadecadienoic acid and to a smaller extent to prostaglandin E1 and thromboxane B1. Small quantities of the lipoxygenase product 12-hydroxyeicosatrienoic acid are also observed. Indomethacin, by blocking platelet cyclooxygenase, prevents the activation of phospholipase C, protein kinase C, and platelet shape change induced by dihomogammalinolenic acid. Compound UK 38485, a specific thromboxane synthetase inhibitor, does not block platelet activation induced by dihomogammalinolenic acid. The results indicate that endoperoxides derived from dihomogammalinolenic acid, such as prostaglandin G1 or prostaglandin H1, may be responsible for the stimulation of phospholipase C and protein kinase C, and for the induction of platelet shape change. Eicosapentaenoic acid does not activate platelets and is poorly metabolized by platelet cyclooxygenase and lipoxygenase. Eicosapentaenoic acid is a better inhibitor of platelet activation induced by various agonists in washed platelets than dihomogammalinolenic acid. Eicosapentaenoic acid and dihomogammalinolenic acid are, however, equally effective in inhibiting aggregation induced by collagen in platelet-rich plasma. We suggest that eicosapentaenoic acid might be a better antithrombotic agent than dihomogammalinolenic acid.  相似文献   

3.
Skin aging can be attributed to photoaging (extrinsic) and chronological (intrinsic) aging. Photoaging and intrinsic aging are induced by damage to human skin attributable to repeated exposure to ultraviolet (UV) irradiation and to the passage of time, respectively. In our previous report, eicosapentaenoic acid (EPA) was found to inhibit UV-induced matrix metalloproteinase-1 (MMP-1) expression in human dermal fibroblasts. Therefore, we investigated the effects of EPA on UV-induced skin damage and intrinsic aging by applying EPA topically to young and aged human skin, respectively. By immunohistochemical analysis and Western blotting, we found that topical application of EPA reduced UV-induced epidermal thickening and inhibited collagen decrease induced by UV light. It was also found that EPA attenuated UV-induced MMP-1 and MMP-9 expression by inhibiting UV-induced c-Jun phosphorylation, which is closely related to UV-induced activator protein-1 activation, and by inhibiting JNK and p38 activation. EPA also inhibited UV-induced cyclooxygenase-2 (COX-2) expression without altering COX-1 expression. Moreover, it was found that EPA increased collagen and elastic fibers (tropoelastin and fibrillin-1) expression by increasing transformin growth factor-beta expression in aged human skin. Together, these results demonstrate that topical EPA has potential as an anti-skin-aging agent.  相似文献   

4.
Even though shear-induced platelet activation and aggregation have been studied for about 20 years, there remains some controversy concerning the arachidonic acid metabolites formed during stress activation and the role of thromboxane A2 in shear-induced platelet aggregation. In this study, platelets were labelled with [1-14C]arachidonic acid to follow the metabolism of arachidonic acid in stimulated platelets using HPLC and scintillation counting. Platelets activated by thrombin formed principally thromboxane A2, 12-hydroxy-5,8,10-heptadecatrienoic acid (HHT) and 12-hydroxy-5,8,10,14-eicosatetraenoic acid (12-HETE). In contrast, for platelets activated by shear--though arachidonic acid metabolism was stimulated--only 12-HETE was formed and essentially no cyclooxygenase metabolites were detected. This indicates that physical forces may initiate a different pathway for eicosanoid metabolism than most commonly used chemical stimuli and perhaps also implies that regulation of the cyclooxygenase activity may be a secondary level of regulation in eicosanoid metabolism.  相似文献   

5.
Increased intake of fish oil rich in the omega-3 fatty acids eicosapentaenoic acid (EPA, C20:5 omega-3) and docosahexaenoic acid (DHA, C22:6 omega-3) reduces the incidence of human disorders such as atherosclerotic cardiovascular disease. However, mechanisms that contribute to the beneficial effects of fish oil consumption are poorly understood. Mounting evidence suggests that oxidation products of EPA and DHA may be responsible, at least in part, for these benefits. Previously, we have defined the free radical-induced oxidation of arachidonic acid in vitro and in vivo and have proposed a unified mechanism for its peroxidation. We hypothesize that the oxidation of EPA can be rationally defined but would be predicted to be significantly more complex than arachidonate because of the fact that EPA contains an addition carbon-carbon double bond. Herein, we present, for the first time, a unified mechanism for the peroxidation of EPA. Novel oxidation products were identified employing state-of-the-art mass spectrometric techniques including Ag(+) coordination ionspray and atmospheric pressure chemical ionization mass spectrometry. Predicted compounds detected both in vitro and in vivo included monocylic peroxides, serial cyclic peroxides, bicyclic endoperoxides, and dioxolane-endoperoxides. Systematic study of the peroxidation of EPA provides the basis to examine the role of specific oxidation products as mediators of the biological effects of fish oil.  相似文献   

6.
N-3 trans geometrical isomers of 20:5 n-3 and 22:6 n-3 were isolated from rats fed heated linseed oil. The ability of these acids to inhibit 20:4 n-6 metabolism by human platelets was examined. The concentrations required to inhibit 50% of platelet aggregation (IC50) induced by 2.5 microM 20:4 n-6 were higher for the 20:5 delta 17t isomer compared to all cis 20:5 n-3; means 29.2 and 7.6 microM, respectively (P less than 0.05). There were no significant differences in IC50 between 22:6 delta 19t and all cis 22:6 n-3; means 4.3 and 5.6 microM, respectively (P greater than 0.05). Inhibition of action of cyclooxygenase on 20:4 n-6 was similar for 20:5 delta 17t and 20:5 n-3 when examined at their IC50s, but comparison at equal concentrations indicated that 20:5 n-3 was a significantly better inhibitor (P less than 0.05). The ability to inhibit platelet aggregation was paralleled by cyclooxygenase inhibition as determined by thromboxane B2 and 12-hydroxyheptadecatrienoic acid formation. 22:6 delta 19t appeared to inhibit cyclooxygenase more completely than 22:6 n-3, examined at their IC50s or at similar concentrations (P less than 0.05). Isomers of 20:5 n-3 and 22:6 n-3 having an n-3 cis or trans bond appear to have similar modes of action, although levels required for effectiveness are different for the C20 acids.  相似文献   

7.
A23187 stimulates the metabolism of endogenous as well as exogenous arachidonic acid (AA) and eicosapentaenolc acid (EPA) to their corresponding leukotrienes in human neutrophils. In contrast, conflicting results have been obtained concerning the effect of FMLP on the metabolism of these fatty acids. In the present study we compared the effect of A23187 and FMLP on the release and metabolism of these fatty acids in neutrophils. Stimulation of neutrophils with A23187, but not with FMLP, resulted in detectable levels of AA in the presence or absence of BW755C (a dual inhibitor of cyclooxygenase and lipoxygenase). The absolute amount of nonesterified AA in the extracts of neutrophils exposed to the agonist A23187 in the presence of BW755C was 20% higher than that obtained in the absence of BW755C, indicating that only a small fraction of the released AA was converted to lipoxygenase products. Furthermore, significant quantities of AA and EPA metabolites were detected only after treatment of neutrophils with A23187, but not with FMLP. Both A23187 and FMLP stimulated the conversion of exogenous EPA to 5-lipoxygenase products, with A23187 being somewhat more effective. In addition, significant differences were noted on the effect of EPA and DHA on the conversion of AA to its metabolites in A23187-stimulated neutrophils. Our results provide strong evidence that the amounts of eicosanoid precursors mobilized in response to FMLP are extremely small, if any, and this appears to be the likely explanation for the lack of eicosanoid detection by HPLC in FMLP-stimulated neutrophils.  相似文献   

8.
Galactose transport by human platelets has been studied by measuring the cellular accumulation of the radiolabeled sugar during brief periods of suspension in varying concentrations of galactose. Weighted least-squares regression curves fitted to the measurements (initial velocity versus galactose concentration) indicate that a kinetic model with two saturable components is statistically more consistent with the data than a model based upon a single process (P < 0.001). For the two-component model Km1 = 0.29 mM, V1 = 1.2 mmol/min per 1015platelets, Km2 = 46 mM, V2 = 117 mmol/min per 1015platelets. The fact that galactose metabolites did not accumulate during the initial phase of uptake indicates that the uptake process is not mediated by enzymatic catalysis. Surface binding also appears inadequate to explain the uptake. The most likely basis for the kinetic data, therefore, is membrane transport. The kinetics are consistent with transport by coexistent membrane structures as well as with transport by a single structure manifesting negative cooperativity.  相似文献   

9.
Two fatty acids differing from arachidonic acid in lacking one of the internal double bonds (20:35,8,14 and 20:35,11,14) and their 1-C14 and acetylenic analogues were synthesized. 20:35,8,14 was not metabolized by human platelets but 20:35,11,14 yielded a small amount (1.5% conversion) of two hydroxy fatty acids in a three (11-hydroxy-5,12,14-icosatrienoic acid) to one (15-hydroxy-5,11,13-icosatrienoic acid) proportion. Indomethacin inhibited formation of both hydroxy fatty acids indicating that they are produced via cyclooxygenase. Both ethylenic acids were weak inhibitors of cyclooxygenase (substrate 20 μM arachidonic acid) (ID50: 8.8 μM 20:35,8,14; 11.2 μM 20:35,11,14) but were inactive against lipoxygenase (RD50 > 100 μM). Similarly, both acetylenic analogues were poor inhibitors of lipoxygenase (ID50: 23.4 μM 20:35,8,14; 47.8 μM 20:35,11,14) but although 20:35,8,14 was inactive against cyclooxygenase (ID50 > 100 μM) the 20:35,11,14 was a potent inhibitor (ID50: 0.35 μM). The results are interpreted on the basis that hydrogen removal by the lipoxygenase is from C10 and by the cyclooxygenase from C13 but only in 20:35,11,14 are these hydrogens (C13) located at the center of a 1,4 pentadiene system (ethylenic) or a 1,4 pentadiyne system (acetylenic).  相似文献   

10.
Two fatty acids differing from arachidonic acid in lacking one of the internal double bonds (20:35,8,14 and 20:35,11,14) and their 1-C14 and acetylenic analogues were synthesized. 20:35,8,14 was not metabolized by human platelets but 20:35,11,14 yielded a small amount (1.5% conversion) of two hydroxy fatty acids in a three (11-hydroxy-5,12,14-icosatrienoic acid) to one (15-hydroxy-5,11,13-icosatrienoic acid) proportion. Indomethacin inhibited formation of both hydroxy fatty acids indicating that they are produced via cyclooxygenase. Both ethylenic acids were weak inhibitors of cyclooxygenase (substrate 20 microM arachidonic acid) (ID50: 8.8 microM 20:35,8,14; 11.2 microM 20:35,11,14) but were inactive against lipoxygenase (ID50 greater than 100 microM). Similarly, both acetylenic analogues were poor inhibitors of lipoxygenase (ID50: 23.4 microM 20:35,8,14; 47.8 microM 20:35,11,14) but although 20:35,8,14 was inactive against cyclooxygenase (ID50 greater than 100 microM) the 20:35,11,14 was a potent inhibitor (ID50: 0.35 microM). The results are interpreted on the basis that hydrogen removal by the lipoxygenase is from C10 and by the cyclooxygenase from C13 but only in 20:35,11,14 are these hydrogens (C13) located at the center of a 1,4 cis cis pentadiene system (ethylenic) or a 1,4 pentadiyne system (acetylenic).  相似文献   

11.
Inositol phospholipid metabolism in human platelets stimulated by ADP   总被引:2,自引:0,他引:2  
ADP-induced changes in inositol phospholipids, phosphatidic acid and inositol phosphates of human platelets have been studied in detail, using not only 32P labelling, but also by examining changes in amounts of the phospholipids, their labelling with [3H]glycerol and their specific radioactivities; changes in the labelling of inositol phosphates in platelets prelabelled with [3H]inositol were also measured. During the early (10 s) stage of reversible ADP-induced primary aggregation in a medium containing fibrinogen and with a concentration of Ca2+ in the physiological range (2 mM), the amounts of phosphatidylinositol 4,5-bisphosphate (PtdInsP2) and phosphatidylinositol 4-phosphate (PtdInsP) decreased (by 11.2 +/- 4.9% and 11.3 +/- 5.3%, respectively) while the labelling, but not the amount, of phosphatidic acid increased. The decreases do not appear to be attributable to the action of phospholipase C because the specific radioactivity of phosphatidic acid labelling with [3H]glycerol was not significantly increased at 10 s (although the initial specific radioactivities of the inositol phospholipids and PtdCho were more than double that of phosphatidic acid), and no increases in the labelling of inositol trisphosphate (InsP3), inositol bisphosphate (InsP2) or inositol phosphate (InsP) were detectable at 10 s. Shifts in the interconversions between PtdInsP2 and PtdInsP, and PtdInsP and PtdIns may occur. By 30 to 60 s, when deaggregation was beginning, the amounts of PtdInsP2, PtdInsP and phosphatidic acid were not different from those in unstimulated platelets, but large increases in the 32P-labelling and [3H]glycerol labelling of phosphatidic acid were observed. Formation of [3H]inositol-labelled InsP3 was not detectable at any time in association with ADP-induced primary aggregation, indicating that degradation of PtdInsP2 by phospholipase C is not appreciably stimulated by ADP. These findings were compared with those obtained when platelets were aggregated by ADP in a medium without added of Ca2+ in which secondary aggregation associated with thromboxane A2 (TXA2) formation and release of granule contents occurs. At 10 s (during primary aggregation) the changes were similar in the two media. At 30 s and 60 s (during secondary aggregation in the low-Ca2+ medium), the increases in PtdInsP2, PtdInsP and phosphatidic acid in platelets suspended in the absence of added Ca2+ were larger than those in platelets suspended in the presence of 2 mM Ca2+. In the absence of added Ca2+, ADP-induced increases in the labelling of InsP3, InsP2 and InsP which were probably due to the effects of TXA2 since they were abolished by aspirin.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
The in vitro effect of trichosanic acid (TCA; C18:3, omega-5), a major component of Trichosanthes japonica, on platelet aggregation and arachidonic acid (AA) metabolism in human platelets was studied. TCA dose-dependently suppressed platelet aggregation of platelet rich plasma and washed platelets. TCA decreased collagen (50 micrograms/ml)-stimulated production of thromboxane B2 (TXB2) and 12-hydroxyhepta-decatrienoic acid (HHT) in a dose-dependent manner, while that of 12-hydroxyeicosatetraenoic acid (12-HETE) was rather enhanced. The conversion of exogenously added [14C]AA to [14C]TXB2 and [14C]HHT in washed platelets was dose-dependently reduced by the addition of TCA, while that to [14C]12-HETE was increased. Similar observations were obtained when linolenic acid (LNA; C18:3, omega-3) was used. These results suggest that TCA may decrease TXA2 formation in platelets, probably due to the inhibition of cyclooxygenase pathway, and thereby reduce platelet aggregation.  相似文献   

13.
A comparative study was made of the metabolism of tritium-labeled corticosterone, cortisol and aldosterone on incubation with minced mammary glands of lactating rats. The yield of total nonpolar (acylated) radiometabolites was highest for [3H]corticosterone, lowest for [3H]cortisol and intermediate for [3H]aldosterone. Unlike [3H]corticosterone, [3H]aldosterone yielded two 21-acyl derivatives (Metabolites I and II) in comparable amounts. Metabolite I (39%) was identified as [3H]aldosterone 21-oleate by isotope dilution analysis. Metabolite II (54%) could not be identified: it is intermediate in polarity between corticosterone 21-oleate and the less polar, corticosterone 21-stearate, and is distinctly less polar than the 21-palmityl, linoleoyl (and presumably also less polar than the arachidonyl) derivatives of aldosterone. The [3H]cortisol metabolites were not further investigated.  相似文献   

14.
15.
16.
IL-8, a potent neutrophil-activating protein, can be produced by many cell types including monocytes, lymphocytes, fibroblasts, neutrophils, and endothelial cells. Depending on the cell source, the N-terminal amino acid sequence of IL-8 displays heterogeneity that has been shown to confer differences in its neutrophil stimulatory activity in vitro. Despite these observations the relative potency of different IL-8 molecules in vivo is unknown. To address this question we have investigated the biologic activity of the two predominant forms of IL-8, the 72 and the 77 amino acid proteins, in vitro and in vivo. In vitro, human rIL-8(72) and human rIL-8(77) dose dependently induced adherence of rabbit peritoneal neutrophils and human neutrophils to laminin-coated plates and elevated cytoplasmic levels of Ca2+ ([Ca2+]i) in fura-2 loaded neutrophils. In these in vitro assays human rIL-8(72) was more potent than human rIL-8(77) while inducing comparable responses to human rC5a. With respect to enhancing [Ca2+]i, neutrophils desensitized to human rIL-8(72) failed to respond to human rIL-8(77). However, neutrophils fully desensitized to human rIL-8(77) could exhibit a partial response to human rIL-8(72). Further, human rIL-8(72) was approximately 10-fold more effective than human rIL-8(77) in displacing human [125I]rIL-8(72) from rabbit peritoneal neutrophils in a receptor-binding assay. In vivo, intradermally administered human rIL-8(72) and human rIL-8(77) induced 111In-neutrophil accumulation and edema formation in rabbit skin. In contrast to the in vitro studies, the two forms of IL-8 gave identical responses in vivo although they were less potent than human rC5a. Our results demonstrate that, in vitro, human rIL-8(72) is more potent than human rIL-8(77) in stimulating neutrophils. It may be that IL-8)72) has a greater affinity and/or efficacy for the neutrophil IL-8 cell-surface receptors. One possibility for the observation that both forms of IL-8 are equipotent in inducing inflammatory responses in vivo is that the extended form is proteolytically cleaved to the more biologically active IL-8(72).  相似文献   

17.
The 15-hydroperoxyeicosatetraenoic acid (15-HPETE) has been shown to affect platelet aggregation induced by collagen, arachidonic acid (AA), and PGH2-analogue. Furthermore, it also inhibits the platelet cyclooxygenase and lipoxygenase enzymes, and prostacyclin synthase. The present study was designed to test the effect of 15-HPETE on the mobilization of endogenous AA in collagen-stimulated human platelets. For this purpose, human platelets pretreated with BW755C (a dual inhibitor of cyclooxygenase and lipoxygenase) were stimulated with collagen in the presence of varied concentrations of 15-HPETE. We observed a significant inhibition of oxygenases at all concentrations of 15-HPETE. In contrast, our results indicate that 15-HPETE at lower concentrations (10 microM and 30 microM) significantly stimulated the collagen-induced release of AA from phospholipid sources. Although higher concentrations of 15-HPETE (50 microM and 100 microM) caused some inhibition of AA accumulation in the free fatty acid fraction (25% and 60%), the degree of inhibition was significantly lower than the inhibition observed for the oxygenases (65% and 88% for cyclooxygenase and 77% and 94% for lipoxygenase respectively). These results provide support that hydroperoxides also regulate phospholipases presumably by a different mechanism, which may be important in the detoxification of phospholipid peroxides.  相似文献   

18.
19.
Arachidonic Acid (AA) released from membrane phospholipids by phospholipase A2 during cell activation is the major polyunsaturated fatty acid precursor in mammals for the cyclooxygenase and lipoxygenase pathways. Eicosaspentaenoic acid (EPA), a major polyunsaturated fatty acid in fish oils competes with AA for these enzymes. The resulting products from EPa are generally less potent than the corresponding AA metabolites which may explain the beneficial effects of this oil in reducing thrombotic and inflammatory responses. This study compares the incorporation of 14C-AA into leukocyte phospholipids and its release and metabolism by the cyclooxygenase and lipoxygenase pathways in rats fed a ‘Max EPA’ fish oil rich diet (EPA group) and a hydrogenated coconut/safflower oil control diet. More than 75% of radiolabel was incorporated into leukocytes with no difference seen between dietary groups. Upon stimulation with calcium ionophore, the EPA group released significantly more radiolabelled AA than the control group. The EPA diet showed a significant increase in the formation of 5-hydroxyeicosatetraenoic acid and 6-keto-prostaglandin F but no difference was seen in leukotriene B4 formation. The majority of radiolabel released was free AA, this being significantly higher in the EPA grou than in the control. The percentage of radiolabel remaining after stimulation in phosphatidylglycerol, phosphatidylethanolamine and neutral lipids was significantly less in EPA fed rats. As the release and metabolism of endogenous AA may not be the same as 14C-AA, these results do not necessarily indicate that the mass of AA available for eicosanoid biosynthesis has been altered by the EPA diet.  相似文献   

20.
《Insect Biochemistry》1986,16(1):11-16
The metabolism of ecdysone and 20-hydroxyecdysone has been investigated in various animal species, including representatives of arthropods, molluscs, annelids and mammals. Some of the major metabolites have been isolated and characterized by mass spectrometry and two-dimensional proton NMR.It appears that metabolic pathways differ strongly between species and that each class has evolved specific reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号