首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High lipid concentration contained in wastewater inhibits the activity of microorganisms in biological wastewater treatment systems such as activated sludge and methane fermentation. To reduce the inhibitory effects, microorganisms capable of efficiently degrading edible oils were screened from various environmental sources. From Japanese soil, we isolated 2 bacteria strains with high degradation abilities at an alkaline pH without consumption of biological oxygen demand (BOD) constituents. Acinetobacter sp. strain SS-192 and Pseudomonas aeruginosa strain SS-219 degraded 77.5 ± 0.6% and 89.5 ± 1.5%, respectively, of 3,000 ppm of mixed oil consisting of salad oil/lard/beef tallow (1/1/1, w/w/w) at 37°C and pH 9.0 in 24 h. Efficient degradation by the two strains occurred at pH 8–9 and 25–40°C. Strain SS-219 degraded lipids even at pH 3. The degradation rate of 3,000 ppm of salad oil, lard, and beef tallow by strain SS-192 was 79.9 ± 2.6%, 63.6 ± 1.9%, and 70.1 ± 1.2%, respectively, during a 24-h cultivation. The degradation rate of 3,000 ppm of salad oil, lard, and beef tallow by strain SS-219 was 82.3 ± 2.1%, 71.9 ± 2.2%, and 71.0 ± 1.1%, respectively, during a 24-h cultivation. After mixed oil degradation by both strains, the BOD value of the cell culture increased from 2,100 ppm to 3,200–4,000 ppm. The fact that neither strain utilizes BOD ingredients will be beneficial to pretreatment of methane fermentation systems such as upflow anaerobic sludge blanket reactors. In addition, the growth of usual heterotrophic microorganisms utilizing soluble BOD can be suppressed under alkaline pH.  相似文献   

2.
A facultatively anaerobic, thermophilic, xylanolytic bacterium was isolated from a sample collected from the Diyadin Hot Springs, Turkey. According to morphological, biochemical and molecular identification, this new strain was suggested to be representative of the Anoxybacillus pushchinoensis and it was designated as Anoxybacillus pushchinoensis strain A8. It exhibited 97% similarity to 16S rRNA gene sequence of A. pushchinoensis and 77% DNA homology by DNA-DNA hybridization studies. Q-sepharose and CM-sepharose chromatography was used to purify an extracellular xylanase to >90% purity from this species. The enzyme had a molecular mass of approximately 83 kDa. The enzyme showed optimum activity at pH 6.5 and it was 96% stable over a broad pH range of 6.5–11 for 24 hours. The enzyme had optimum activity at 55°C and it was 100% stable at temperature between 50–60°C up to 24 hours. Kinetic characterization of the enzyme was performed at temperature optima (55°C) and Vmax and K m were found to be 59.88 U/mg protein and 0.909 mg/mL, respectively. Oat spelt xylan but not xylooligosaccharides was degraded by the enzyme and xylose was the only product detected from oat xylan degradation. This suggested that the enzyme was an exo-acting xylanase.  相似文献   

3.
Bisphenol A (2,2-bis(4-hydroxyphenyl) propane, BPA), which is used as a synthetic resin material or a plasticizer, is a pollutant that␣possesses endocrine-disrupting activity. Bioremediation of BPA is used to decrease its polluting effects, and here we report a novel bacterial strain AO1, which is able to degrade BPA. This strain was isolated using enrichment cultivation from a soil sample from a vegetable-growing field; the sample was one of 500 soil samples collected across Japan. Strain AO1 degraded 100 mg/l BPA to an undetectable level within 6 h in MYPG medium (containing malt extract, yeast extract, peptone, and glucose) and within 48 h in minimum medium containing 1% glucose at 30°C. Strain AO1 can utilize BPA as a sole source of carbon and as an energy source under aerobic conditions. The estrogenic activity of BPA in MYPG medium was ultimately reduced by strain AO1, although the activity initially increased. Taxonomical analysis showed that strain␣AO1 is closely related to Sphingomonas chlorophenolicum and S. herbicidovorans, neither of which have a capacity for BPA degradation. DNA–DNA hybridization showed that strain AO1 is a novel species of the Sphingomonas genus, and we designated AO1 as S. bisphenolicum.  相似文献   

4.
To develop a microbial treatment of edible oil-contaminated wastewater, microorganisms capable of rapidly degrading edible oil were screened. The screening study yielded a yeast coculture comprising Rhodotorula pacifica strain ST3411 and Cryptococcus laurentii strain ST3412. The coculture was able to degrade efficiently even at low contents of nitrogen ([NH4–N] = 240 mg/L) and phosphorus sources ([PO4–P] = 90 mg/L). The 24-h degradation rate of 3,000 ppm mixed oils (salad oil/lard/beef tallow, 1:1 w/w) at 20°C was 39.8% ± 9.9% (means ± standard deviations of eight replicates). The highest degradation rate was observed at 20°C and pH 8. In a scaled-up experiment, the salad oil was rapidly degraded by the coculture from 671 ± 52.0 to 143 ± 96.7 ppm in 24 h, and the degradation rate was 79.4% ± 13.8% (means ± standard deviations of three replicates). In addition, a repetitive degradation was observed with the cell growth by only pH adjustment without addition of the cells.  相似文献   

5.
Large inocula of Stenotrophomonas maltophilia VUN 10,003 were used to investigate bacterial degradation of benzo[a]pyrene and dibenz[a,h]anthracene. Although strain VUN 10,003 was capable of degrading 10–15 mg l−1 of the five-ring compounds in the presence of pyrene after 63 days, further addition of pyrene after degradation of the five-ring polycyclic aromatic hydrocarbons (PAHs) ceased did not stimulate significant decreases in the concentration of benzo[a]pyrene or dibenz[a,h]anthracene. However, pyrene was degraded to undetectable levels 21 days after its addition. The amount of benzo[a]pyrene and dibenz[a,h]anthracene degraded by strain VUN 10,003 was not affected by the initial concentration of the compounds when tested at 25–100 mg l−1, by the accumulation of by-products from pyrene catabolism or a loss of ability by the cells to catabolise benzo[a]pyrene or dibenz[a,h]anthracene. Metabolite or by-product repression was suspected to be responsible for the inhibition: By-products from the degradation of the five-ring compounds inhibited their further degradation. Journal of Industrial Microbiology & Biotechnology (2002) 28, 88–96 DOI: 10.1038/sj/jim/7000216 Received 30 January 2001/ Accepted in revised form 10 October 2001  相似文献   

6.
Pseudomonas aeruginosa, isolated from soil near tannery effluent was able to degrade 8-anilino-1-naphthalenesulfonic acid (ANSA), a sulfonated aromatic amine. The organism degraded this amine up to a concentration of 1,200 mg l−1 using glucose and ammonium nitrate as carbon and nitrogen sources respectively. The degradation started when the organism reached its late exponential growth phase. Salicylic acid and β-ketoadipic acid were identified as intermediate compounds using HPLC and GC–MS and provide evidence for ortho pathway reactions. Further proof for the pathway is obtained from the dioxygenase activity of the strain growing exponentially in medium with ANSA and glucose.  相似文献   

7.
In this study di-2-ethylhexyl phthalate (DEHP)-degradation strain CQ0110Y was isolated from activated sludge. According to the biophysical/biochemical characteristics and analysis of 16S rDNA, the strain was identified as Microbacterium sp. The results of this study showed the optimal pH value and optimal temperature which influenced the degradation rate in wastewater: pH 6.5–7.5, 25–35°C. Kinetics of degradation reaction had been performed at different initial concentrations and different time. Analyzed with SPSS10.0 software, the DEHP degradation can be described as the same exponential model when the initial DEHP concentration was lower than 1,350 mg/l. The kinetics equation was ln C = −0.4087t + A, with the degradation half life of DEHP in wastewater (1.59 days). To the best of our knowledge, this is the first reported case of DEHP degradation by Microbacterium sp. strain. Xiang Li and Ji-an Chen contributed equally to this work.  相似文献   

8.
Xanthobacter polyaromaticivorans sp. nov. 127W is a bacterial strain that is capable of degrading a wide range of cyclic aromatic compounds such as dibenzothiophene, biphenyl, naphthalene, anthracene, and phenanthrene even under extremely low oxygen [dissolved oxygen (DO)≤0.2 ppm] conditions (Hirano et al., Biosci Biotechnol Biochem 68:557–564, 2004). A major protein fraction carrying dibenzothiophene degradation activity was purified. Based on its partial amino acid sequences, dbdCa gene encoding alpha subunit terminal oxygenase (DbdCa) and its flanking region were cloned and sequenced. A phylogenetic analysis based on the amino acid sequence demonstrates that DbdCa is a member of a terminal oxygenase component of group IV ring-hydroxylating dioxygenases for biphenyls and monocyclic aromatic hydrocarbons, rather than group III dioxygenases for polycyclic aromatic hydrocarbons. Gene disruption in dbdCa abolished almost of the degradation activity against biphenyl, dibenzothiophene, and anthracene. The gene disruption also impaired degradation activity of the strain under extremely low oxygen conditions (DO≤0.2 ppm). These results indicate that Dbd from 127W represents a group IV dioxygenase that is functional even under extremely low oxygen conditions.  相似文献   

9.
A sequential anaerobic–aerobic biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) was studied. The results demonstrated that: (i) a complete degradation of RDX was achieved within 20 days using a consortium of bacteria from a wastewater activated sludge, (ii) RDX degradation did not occur under aerobic conditions alone, (iii) RDX-degrading bacterial strain that was isolated from the activated sludge completely degraded RDX within 2 days, and (iv) RDX- induced protein expressions were observed in the RDX-degrading bacterial strain. Based on fatty acid composition and a confirmation with a 16S rRNA analysis, the RDX-degrading bacterial strain was identified as a Bacillus pumilus—GC subgroup B.  相似文献   

10.
Mycobacterium sp. strain THO100 and Rhodococcus sp. strain TM1 were isolated from a morpholine-containing enrichment culture of activated sewage sludge. Strain THO100, but not strain TM1, was able to degrade alicyclic amines such as morpholine, piperidine, and pyrrolidine. The mixed strains THO100 and TM1 showed a better growth on piperidine as the substrate than the pure strain THO100 because strain TM1 was able to reduce the level of glutaraldehyde (GA) produced during piperidine degradation. GA was toxic to strain THO100 (IC50 = 28.3 μM) but less toxic to strain TM1 (IC50 = 215 μM). Strain THO100 possessed constitutive semialdehyde dehydrogenases, namely Sad1 and Sad2, whose activities toward succinic semialdehyde (SSA) were strongly inhibited by GA. The two isozymes were identified as catalase–peroxidase (KatG = Sad1) and semialdehyde dehydrogenase (Sad2) based on mass spectrometric analyses of tryptic peptides and database searches of the partial DNA sequences of their genes. In contrast, strain TM1 containing another constitutive enzyme Gad1 could oxidize both SSA and GA. This study suggested that strain TM1 possessing Gad1 played a synergistic role in reducing the toxic and inhibitory effects of GA produced in the degradation of piperidine by strain THO100.  相似文献   

11.
Degradation of 2,4,5-trichlorophenol (2,4,5-TCP) and 2,3,5,6-tetrachlorophenol (TeCP) was studied using a two-stage approach that utilized efficient pulse electric discharge (PED) followed by biological degradation with a consortium from acclimated return activated sludge. The chlorinated phenols were treated in the PED reactor as an aerosol at a voltage of 55–60 kV, a frequency of 385 Hz, a current of 50–60, and with a 200-ns pulse. As determined by gas chromatography and mass spectrometry (GC/MS), the first stage converted 500 ppm 2,4,5-TCP to 163 ppm 2,4,5-TCP and dimethyldecene, dichloronaphthalenol, octyl acetate, and silyl esters. The total carbon content of 2,4,5-TCP after PED treatment was determined to be 228 ± 35 ppm. The remaining 2,4,5-TCP and the products formed were then mineralized by the acclimated activated sludge in shake flasks; the initial rate of degradation of 2,4,5-TCP was calculated to be 5 nmol min−1 mg protein−1 at 163 ppm initial concentration (three orders of magnitude higher than the only rate found in the literature). By combining the two techniques, a synergistic effect (2.3-fold increase in the concentration of 2,4,5-TCP degraded and 3.3-fold increase in total carbon degraded) was observed, in that bacteria without any treatment degraded a maximum of 70 ppm 2,4,5-TCP but after PED treatment 163 ppm 2,4,5-TCP was degraded. TeCP was also mineralized by the acclimated activated sludge after treatment with PED. This two-stage approach was also evaluated using a continuous 1-l fluidized-bed reactor. Received: 3 November 1998 / Received revision: 28 February 1999 / Accepted: 14 March 1999  相似文献   

12.
The inherent difficulty of expressing clostridial AT-rich genes in a heterologous host has limited their biotechnological application. We previously reported a plasmid for high-level expression of clostridial genes in Clostridium perfringens (Takamizawa et al., Protein Expr Purif 36:70–75, 2004). In this study, we examined the extracellular proteases of C. perfringens strain 13. Zymographic analysis and caseinase assaying of a culture supernatant showed that it contained a protease activated by dithiothreitol and Ca2+, suggesting that clostripain-like protease (Clp) is the most likely candidate for the major extracellular protease. Disruption of the clp gene by homologous recombination markedly decreased the level of caseinase activity in the culture supernatant. Analysis by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) revealed that the Clp mutant but not the wild type strain increased the levels of many polypeptides in the culture supernatant after the late exponential growth phase. Such polypeptides included both cytoplasmic and secretory proteins, suggesting proteins secreted or released into the medium were degraded by Clp. To assess the effects of Clp on the productivity and stability of recombinant proteins, 74-kDa NanI sialidase was expressed in the two strains. The mutant strain produced a higher level of NanI activity than the wild type strain. Furthermore, under the conditions where Clp was activated, NanI was degraded easily in the latter culture but not in the former one. These results indicate that the Clp mutant could serve as a useful strain for efficiently expressing and preparing protease-free clostridial proteins.  相似文献   

13.
It was suggested that the mutant ARF1 of Chlamydomonas reinhardtii is resistant to l-methionine-S-sulfoximine (MSX, an irreversible inhibitor of glutamine synthetase, EC 6.3.1.2) because this strain degraded and utilized this compound as a nitrogen source for growth (A.R. Franco et al., 1996, Plant Physiol 110: 1215–1222). Resistance to MSX has now been characterized in a double mutant of this alga, called MPA1, which is resistant to MSX and lacks l-amino acid oxidase (LAO activity, EC 1.4.3.2). Biochemical and genetic evidence indicate that the mutant MPA1 is altered in the same MSX-resistance locus as mutant ARF1. However, mutant MPA1 neither degraded nor utilized MSX as a nitrogen source. This led us to conclude that (i) resistance to MSX is not linked to its utilization, and (ii) that LAO activity accounts for the degradation of MSX in mutant ARF1. Data indicate that C. reinhardtii possesses a broad-specificity carrier system responsible for the transport of arginine and other amino acids, including MSX. We propose that the alteration of this carrier confers resistance to MSX in mutants ARF1 and MPA1. Received: 6 April 1998 / Accepted: 8 June 1998  相似文献   

14.
Substantial metabolism of 2,3,4,5-tetrachlorobiphenyl (2,3,4,5-tetraCB) and 2,3′,4′,5-tetraCB by axenic cultures of Ralstonia sp. SA-5 and Pseudomonas sp. SA-6 was observed in the presence of biphenyl supplementation, although, the strains were unable to utilize tetrachlorobiphenyls as growth substrate. The former was more amenable to aerobic degradation (∼70% degradation) than the latter (22–45% degradation). Recovery of 2,5-chlorobenzoic acid and chloride from 2,3′,4′,5-tetraCB assay is an indication of initial dioxygenase attack on the 3,4-dichlorophenyl ring. The PCB-degradative ability of both strains was also investigated by GC analysis of individual congeners in Aroclor 1242 (100 ppm) following 12-day incubation with washed benzoate-grown cells. Results revealed two different catabolic properties. Whereas strain SA-6 required biphenyl as inducer of the degradation activity, such induction was not required by strain SA-5. Nearly all the detectable congeners in the mixture were extensively degraded (% reduction in ECD area counts for individual congeners ranged from 50.0 to 100% and 14.2 to 100%, respectively, for SA-5 and SA-6). The two strains exhibited no noticeable specificity for congeners with varying numbers of chlorine substitution and positions. The degradative competence of these isolates most especially SA-5 makes them among the most versatile PCB-metabolizing organisms yet reported.  相似文献   

15.
Arthrobacter sp. strain G1 is able to grow on 4-fluorocinnamic acid (4-FCA) as sole carbon source. The organism converts 4-FCA into 4-fluorobenzoic acid (4-FBA) and utilizes the two-carbon side-chain for growth with some formation of 4-fluoroacetophenone as a dead-end side product. We also have isolated Ralstonia sp. strain H1, an organism that degrades 4-FBA. A consortium of strains G1 and H1 degraded 4-FCA with Monod kinetics during growth in batch and continuous cultures. Specific growth rates of strain G1 and specific degradation rates of 4-FCA were observed to follow substrate inhibition kinetics, which could be modeled using the kinetic models of Haldane–Andrew and Luong–Levenspiel. The mixed culture showed complete mineralization of 4-FCA with quantitative release of fluoride, both in batch and continuous cultures. Steady-state chemostat cultures that were exposed to shock loadings of substrate responded with rapid degradation and returned to steady-state in 10–15 h, indicating that the mixed culture provided a robust system for continuous 4-FCA degradation.  相似文献   

16.
Degradation of 2-Chloro-4-nitrophenol (2C4NP) was studied by Arthrobacter sp. SJCon, isolated from the soil of a pesticide contaminated site. This strain utilized 2C4NP as sole source of carbon and energy and degraded 2C4NP with stoichiometric release of nitrite and chloride ions. A metabolite was detected during the study of 2C4NP degradation and identified as chlorohydroquinone (CHQ) by thin layer chromatography (TLC), high performance liquid chromatography (HPLC), and gas chromatography-mass spectrometry (GC–MS). Inhibition study using 2,2′-dipyridyl showed that CHQ is a terminal aromatic compound in degradation pathway of 2C4NP. CHQ dioxygenase activity was observed in the crude extract of 2C4NP induced cells of the strain SJCon that suggested the cleavage of the CHQ to maleylacetate (MA). Our study clearly showed that Arthrobacter sp. SJCon degraded 2C4NP via formation of CHQ that further cleaved to MA by CHQ dioxygenase. This mechanism of degradation of 2C4NP differs from previously reported degradation pathways of 2C4NP.  相似文献   

17.
The role played by a bacterial community composed ofPseudomonas putida, strain 21;Pseudomonas stutzeri, strain 18; andPseudomonas sp., strain 5, and by physical and chemical factors in the degradation of CN and SCN was studied. It was shown that the degradation of CN is determined both by the action of bacteria and by abiotic physical and chemical factors (pH, O2, temperature, the medium agitation rate, etc.). The contribution of chemical degradation was found to increase drastically at pH below 9.0; when air was blown through the medium (irrespective of the pH value); under active agitation of the medium; and when the medium surface interfacing air was increased. Even at elevated pH values (9.0-9.2), suboptimal for bacterial growth, the microbial degradation could account for at most 20–25 mg/1 of CN, regardless of its initial concentration. When CN and SCN were concurrently present in the medium, the former compound was the first to be degraded by microorganisms. The rate of bacterial degradation of SCN under continuous cultivation in a chain of reactors was found to depend on its concentration, the medium flow rate, agitation rate, and the pattern of carbon source supply and could exceed 1 g/(l day). CN and SCN are utilized by bacteria solely as nitrogen sources. The mechanism of CN and SCN degradation by the microbial community is discussed. Deceased.  相似文献   

18.
Molecular characterization based on 16s rDNA gene sequence analysis of bacterial colonies isolated from endosulfan contaminated soil showed the presence of Ochrobacterum sp, Burkholderia sp, Pseudomonas alcaligenes, Pseudomonas sp and Arthrobacter sp which degraded 57–90% of α-endosulfan and 74–94% of β-endosulfan after 7days. Whole cells of Pseudomonas sp and Pseudomonas alcaligenes showed 94 and 89% uptake of α-isomer and 86 and 89% of β-endosulfan respectively in 120 min. In Pseudomonas sp, endosulfan sulfate was the major metabolite detected during the degradation of α-isomer, with minor amount of endosulfan diol while in Pseudomonas alcaligenes endosulfan diol was the only product during α-endosulfan degradation. Whole cells of Pseudomonas sp also utilized 83% of endosulfan sulfate in 120 min. In situ applications of the defined consortium consisting of Pseudomonas alcaligenes and Pseudomonas sp (1:1) in plots contaminated with endosulfan showed that 80% of α-endosulfan and 65% of β-endosulfan was degraded after 12 weeks of incubation. Endosulfan sulfate formed during endosulfan degradation was subsequently degraded to unknown metabolites. ERIC-PCR analysis indicated 80% survival of introduced population of Pseudomonas alcaligenes and Pseudomonas sp in treated plots.  相似文献   

19.
A thermophilic Bacillus strain NG80-2 growing within the temperature range of 45–73°C (optimum at 65°C) was isolated from a deep subterranean oil-reservoir in northern China. The strain was able to utilize crude oil and liquid paraffin as the sole carbon sources for growth, and the growth with crude oil was accompanied by the production of an unknown emulsifying agent. Further examination showed that NG80-2 degraded and utilized only long-chain (C15–C36) n-alkanes, but not short-chain (C8–C14) n-alkanes and those longer than C40. Based on phenotypic and phylogenic analyses, NG80-2 was identified as Geobacillus thermodenitrificans. The strain NG80-2 may be potentially used for oily-waste treatment at elevated temperature, a condition which greatly accelerates the biodegradation rate, and for microbial enhancing oil recovery process.Lei Wang, Yun Tang and Shuo Wang contributed equally to this study.  相似文献   

20.
C-Terminal truncation mutagenesis was used to explore the functional and structural significance of the C-terminal region of Aeromonas caviae D1 chitinase (AcD1ChiA). Comparative studies between the engineered full-length AcD1ChiA and the truncated mutant (AcD1ChiAK606) included initial rate kinetics, fluorescence and circular dichroism (CD) spectrometric properties, and substrate binding and hydrolysis abilities. The overall catalytic efficiency, k cat/K M, of AcD1ChiAK606 with the 4MU-(GlcNAc)2 and the 4MU-(GlcNAc)3 chitin substrates was 15–26% decreased. When compared with AcD1ChiA, the truncated mutant AcD1ChiAK606 maintained 80% relative substrate-binding ability and about 76% of the hydrolyzing efficiency against the insoluble α-chitin substrate. Both fluorescence and CD spectroscopy indicated that AcD1ChiAK606 retained the same conformation as AcD1ChiA. These results indicated that removal of the C-terminal 259 amino acid residues, including the putative chitin-binding motif and the A region (a motif of unknown function) of AcD1ChiA, did not seriously affect the enzyme structure integrity as well as activity. The present study provided evidences illustrating that the binding and hydrolyzing of insoluble chitin substrates by AcD1ChiA were not absolutely dependent on the putative C-terminal chitin-binding domain and the function-unknown A region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号