首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Cytochromeb 561 (cytb 561) is a trans-membrane cytochrome probably ubiquitous in plant cells. In vitro, it is readily reduced by ascorbate or by juglonol, which in plasma membrane (PM) preparations from plant tissues is efficiently produced by a PM-associated NAD(P)Hquinone reductase activity. In bean hypocotyl PM, juglonol-reduced cytb 561 was not oxidized by hydrogen peroxide alone, but hydrogen peroxide led to complete oxidation of the cytochrome in the presence of a peroxidase found in apoplastic extracts of bean hypocotyls. This peroxidase active on cytb 561 was purified from the apoplastic extract and identified as an ascorbate peroxidase of the cytosolic type. The identification was based on several grounds, including the ascorbate peroxidase activity (albeit labile), the apparent molecular mass of the subunit of 27 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the dimeric native structure, the typical spectral properties of a heme-containing peroxidase, and an N-terminal sequence strongly conserved with cytosolic ascorbate peroxidases of plants. Cytb 561 used in the experiments was purified from bean hypocotyl PM and juglonol was enzymatically produced by recombinant NAD(P)H:quinone reductase. It is shown that NADPH, NAD(P)H:quinone reductase, juglone, cytb 561, the peroxidase interacting with cytb 561, and H2O2, in this order, constitute an artificial electron transfer chain in which cytb 561 is indirectly reduced by NADPH and indirectly oxidized by H2O2.Abbreviations APX ascorbate peroxidase - b 561PX cytochrome 6561 peroxidase - CPX coniferol peroxidase - cyt cytochrome - GPX guaia-col peroxidase - IWF intercellular washing fluid - MDHA monodehydroascorbate - PM plasma membrane  相似文献   

2.
The temperature dependence of the partial reactions leading to turn-over of the UQH2:cyt c 2 oxidoreductase of Rhodobacter sphaeroides have been studied. The redox properties of the cytochrome components show a weak temperature dependence over the range 280–330 K, with coefficients of about 1 m V per degree; our results suggest that the other components show similar dependencies, so that no significant change in the gradient of standard free-energy between components occurs over this temperature range. The rates of the reactions of the high potential chain (the Rieske iron sulfur center, cytochromes c 1 and c 2, reaction center primary donor) show a weak temperature dependence, indicating an activation energy < 8 kJ per mole for electron transfer in this chain. The oxidation of ubiquinol at the Qz-site of the complex showed a strong temperature dependence, with an activation energy of about 32 kJ mole–1. The electron transfer from cytochrome b-566 to cytochrome b-561 was not rate determining at any temperature, and did not contribute to the energy barrier. The activation energy of 32 kJ mole–1 for quinol oxidation was the same for all states of the quinone pool (fully oxidized, partially reduced, or fully reduced before the flash). We suggest that the activation barrier is in the reaction by which ubiquinol at the catalytic site is oxidized to semiquinone. The most economical scheme for this reaction would have the semiquinone intermediate at the energy level indicated by the activation barrier. We discuss the plausibility of this simple model, and the values for rate constants, stability constant, the redox potentials of the intermediate couples, and the binding constant for the semiquinone, which are pertinent to the mechanism of the ubiquinol oxidizing site.Abbreviations (BChl)2 P870, primary donor of the photochemical reaction center - b/c 1 complex ubiquinol: cytochrome c 2 oxidoreductase - cyt b H cytochrome b-561 or higher potential cytochrome b - cyt b L cytochrome b-566, or low potential cytochrome b - cyt c 1, cyt c 2, cyt c t cytochromes c 1 and c 2, and total cytochrome c (cyt c 1 and cyt c 2) - Fe.S Rieske-type iron sulfur center, Q - QH2 ubiquinone, ubiquinol - Qz, QzH2, Qz ubiquinone, ubiquinol, and semiquinone anion of ubiquinone, bound at quinol oxidizing site - Qz-site ubiquinol oxidizing site (also called Qo-(outside) - Qo (Oxidizing) - QP (Positive proton potential) site) - Qc-site uubiquinone reductase site (also called the Qi-(inside) - QR (Reducing), or - QN (Negative proton potential) site) - UHDBT 5-(n-undecyl)-6-hydroxy-4,7-dioxobenzothiazol  相似文献   

3.
Summary The plasma membrane (PM) of higher plants contains a major ascorbate-reducible, high-potentialb-type cytochrome, named cytochromeb 561 (cytb 561). In this paper a rapid purification protocol for the cytb 561 of bean hypocotyls PM is described. An almost 200-fold increase of cytb 561 specific concentration was achieved with respect to the PM fraction, which contained about 0.2 nmol of ascorbate-reducible heme per mg protein. The procedure can be performed in one day starting from purified PMs obtained by the phase-partitioning procedure. However, cytb 561 proved to be unstable during chromatographic purification and the amount of protein finally recovered was low. Purified cytb 561 eluted as a 130,000 Da protein-detergent complex from gel-filtration columns. It was completely reduced by ascorbate and reduced-minus-oxidized spectra showed -, - and -bands at 561, 530, and 429 nm respectively, not unlike the spectra of whole PMs. This work represents an initial approach to the biochemical characterization of the cytb 561 of higher plants, formerly suggested to be related to cytb 561 of animal chromaffin granules.Abbreviations cytb 561 cytochromeb 561 - PM plasma membrane - UPV upper-phase vesicles - GSII glucan synthase II - CCR NADH-dependent cytochromec reductase - CCO cytochromec oxidase - TX-100R reduced Triton X-100  相似文献   

4.
A. Bérczi  S. Lüthje  H. Asard 《Protoplasma》2001,217(1-3):50-55
Summary The plasma membrane of higher plants contains more than one kind ofb-type cytochromes. One of these has a high redox potential and can be fully reduced by ascorbate. This component, the cytochromeb 561 (cytb 561), has its characteristic -band absorbance close to 561 nm wavelength at room temperature. Cytb 561 was first isolated from etiolated bean hook plasma membranes by two consecutive anion exchange chromatography steps. During the first step performed at pH 8, cytb 561 did not bind to the anion exchange column, but otherb-type cytochromes did. In the second step performed at pH 9.9, cytb 561 was bound to the column and was eluted from the column at an ionic strength of about 100 mM KCl. However, when the same protocol was applied to the solubilized plasma membrane proteins fromArabidopsis thaliana leaves and maize roots, the ascorbate-reducible cytb 561 bound already to the first anion exchange column at pH 8 and was eluted also at an ionic strength of about 100 mM KCl. Otherb-type cytochromes than the ascorbate-reducible cytb 561 from the plasma membranes of Arabidopsis leaves and maize roots showed similar Chromatographic characteristics to that of bean hypocotyls. These results demonstrate particular differences in the Chromatographic behavior of cytb 561 from different sources.Abbreviations cyt b 561 cytochromeb 561 - PM plasma membrane - PAGE polyacrylamide gel electrophoresis  相似文献   

5.
Eduard Hurt  Günter Hauska   《BBA》1982,682(3):466-473
(1) Oxidant-induced reduction of cytochrome b6 is completely dependent on a reduced component within the isolated cytochrome b6-f complex. This component can be reduced by dithionite or by NADH/N-methylphenazonium methosulfate. It is a 2H+/2e carrier with a midpoint potential of 100 mV at pH 7.0, which is very similar to the midpoint potential of the plastoquinone pool in chloroplasts. (2) Oxidant-induced reduction of cytochrome b6 is stimulated by plastoquinol-1 as well as by plastoquinol-9. The midpoint potential of the transient reduction of cytochrome b6, however, was not shifted by added plastoquinol. (3) Quinone analysis of the purified cytochrome b6-f complex revealed about one plastoquinone per cytochrome f. The endogenous quinone is heterogeneous, a form more polar than plastoquinone-A, probably plastoquinone-C, dominating, This is different from the thylakoid membrane where plastoquinone-A is the main quinone. (4) The endogenous quinone can be extracted from the lyophilized cytochrome b6-f complex by acetone, but not by hydrocarbon solvents. Oxidant-induced reduction of cytochrome b6 was observed in the lyophilized and hexane-extracted complex, but was lost in the acetone-extracted complex. Reconstitution was achieved either with plastoquinol-1 or plastoquinol-9, suggesting that a plastoquinol molecule is involved in oxidant-induced reduction of cytochrome b6.  相似文献   

6.
Summary During the past twenty years evidence has accumulated on the presence of a specific high-potential, ascorbate-reducibleb-type cytochrome in the plasma membrane (PM) of higher plants. This cytochrome is named cytochromeb 561 (cytb 561) according to the wavelength maximum of its -band in the reduced form. More recent evidence suggests that this protein is homologous to ab-type cytochrome present in chromaffin granules of animal cells. The plant and animal cytochromes share a number of strikingly similar features, including the high redox potential, the ascorbate reducibility, and most importantly the capacity to transport electrons across the membrane they are located in. The PM cytb 561 is found in all plant species and in a variety of tissues tested so far. It thus appears to be a ubiquitous electron transport component of the PM. The cytochromesb 561 probably constitute a novel class of transmembrane electron transport proteins present in a large variety of eukaryotic cells. Of particular interest is the recent discovery of a number of plant genes that show striking homologies to the genes coding for the mammalian cytochromesb 561. A number of highly relevant structural features, including hydrophobic domains, heme ligation sites, and possible ascorbate and monodehydroascorbate binding sites are almost perfectly conserved in all these proteins. At the same time the plant gene products show interesting differences related to their specific location at the PM, such as potentially N-linked glycosylation sites. It is also clear that at least in several plants cytb 561 is represented by a multigene family. The current paper presents the first overview focusing exclusively on the plant PM cytb 561, compares it to the animal cytb 561, and discusses the possible physiological function of these proteins in plants.Abbreviations Asc ascorbate - cyt cytochrome - DHA dehydroascorbate - E0 standard redox potential - EST expressed sequence tag - His histidine - MDA monodehydroascorbate - Met methionine - PM plasma membrane  相似文献   

7.
The arrangement and function of the redox centers of the mammalianbc 1 complex is described on the basis of structural data derived from amino acid sequence studies and secondary structure predictions and on the basis of functional studies (i.e., EPR data, inhibitor studies, and kinetic experiments). Two ubiquinone reaction centers do exist—a QH2 oxidation center situated at the outer, cytosolic surface of the cristae membrane (Q0 center), and a Q reduction center (Q i center) situated more to the inner surface of the cristae membrane. The Q0 center is formed by theb-566 domain of cytochromeb, the FeS protein, and maybe an additional small subunit, whereas the Q i center is formed by theb-562 domain of cytochromeb and presumably the 13.4kDa protein (QP-C). The Q binding proteins are proposed to be protein subunits of the Q reaction centers of various multiprotein complexes. The path of electron flow branches at the Q0 center, half of the electrons flowing via the high-potential cytochrome chain to oxygen and half of the electrons cycling back into the Q pool via the cytochromeb path connecting the two Q reaction centers. During oxidation of QH2, 2H+ are released to the cytosolic space and during reduction of Q, 2H+ are taken up from the matrix side, resulting in a net transport across the membrane of 2H+ per e flown from QH2 to cytochromec, the H+ being transported across the membrane as H (H+ + e) by the mobile carrier Q. The authors correct their earlier view of cytochromeb functioning as a H+ pump, proposing that the redox-linkedpK changes of the acidic groups of cytochromeb are involved in the protonation/deprotonation processes taking place during the reduction and oxidation of Q. The reviewers stress that cytochromeb is in equilibrium with the Q pool via the Q i center, but not via the Q0 center. Their view of the mechanisms taking place at the reductase is a Q cycle linked to a Q-pool where cytochromeb is acting as an electron pump.  相似文献   

8.
Depletion of endogenous ubiquinone by pentane extraction of mitochondrial membranes lowered succinate-ferricyanide reductase activity, whereas quinone reincorporation restored the enzymatic activity as well as antimycin sensitivity. The oxidant-induced cytochromeb extrareduction, normally found upon ferricyanide pulse in intact mitochondria in the presence of antimycin, was lost in ubiquinone-depleted membranes, even if cytochromec was added. Readdition of ubiquinone-2 restored the oxidant-induced extrareduction with an apparent half saturation at 1 mol/molbc 1 complex saturating at about 5 mol/mol. These findings demonstrate a requirement for the ubiquinone pool of the cytochromeb extrareduction. Since the initial rates of cytochromeb reoxidation upon ferricyanide addition, in the presence of antimycin, did not saturate by any ferricyanide concentration in ubiquinone-depleted mitochondria, a direct chemical reaction between ferricyanide and reduced cytochromeb was postulated. The fact that such direct reaction is much faster in ubiquinone-depleted mitochondria may explain the lower antimycin sensitivity of the succinate ferricyanide reductase activity after removal of endogenous ubiquinone.  相似文献   

9.
The kinetics of oxidation and reduction of P700, plastocyanin, cytochrome f and cytochrome b-563 were studied in a reconstituted system consisting of Photosystem I particles, cytochrome bf complex and plastocyanin, all derived from pea leaf chloroplasts. Decyl plastoquinol was the reductant of the bf complex. Turnovers of the system were initiated by laser flashes. The reaction between oxidised P700 and plastocyanin was non-homogeneous in that a second-order rate coefficient of c. 5×10–7 M–1 s–1 applied to 80% of the P700+ and c. 0.7×107 M–1 s–1 to the remainder. In the presence of bf complex, but without quinol, the electron transfer between cytochrome f and oxidised plastocyanin could be described by a second-order rate coefficient of c. 4×107 M–1 s–1 (forward), and c. 1.6×107 M–1 s–1 (reverse). The equilibrium coefficient was thus 2.5. Unexpectedly, there was little reduction of cytochrome f + or plastocyanin+ by electrons from the Rieske centre. With added quinol, reduction of cytochrome b-563 occurred. Concomitantly, electrons appeared in the oxidised species. It was inferred that either the Rieske centre was not involved in the high-potential chain of electron transfer events, or that, only in the presence of quinol, electrons were quickly passed from the Rieske centre to cytochrome f +. Additionally, the presence of quinol altered the equilibrium coefficient for the cyt f/PC interaction from 2.5 to c. 5. The reaction between quinol and the bf complex was describable by a second-order rate coefficient of about 3×106 M–1 s–1. The pattern of the redox reactions around the bf complex could be simulated in detail with a Q-cycle model as previously found for chloroplasts.Abbreviations AQS anthraquinone sulphonate - cyt cytochrome - cyt b-563(H) high-potential cyt b-563 - cyt b-563(L) low potential cyt b-563 - FeS(R) the Rieske protein of the cyt bf complex, containing an Fe2S2 centre - PC plastocyanin - PS photosystem - P700 reaction centre in PS I  相似文献   

10.
An improved procedure for the isolation of the cytochromeb 6/f complex from spinach chloroplasts is reported. With this preparation up to tenfold higher plastoquinol-plastocyanin oxidoreductase activities were observed. Like the complex obtained by our previous procedure, the complex prepared by the modified way consisted of five polypeptides with apparent molecular masses of 34, 33, 23, 20, and 17 kD, which we call Ia, Ib, II, III, and IV, respectively. In addition, one to three small components with molecular masses below 6 kD were now found to be present. These polypeptides can be extracted with acidic acetone. Cytochromef, cytochromeb 6, and the Rieske Fe-S protein could be purified from the isolated complex and were shown to be represented by subunits Ia + Ib, II, and III, respectively. The heterogeneity of cytochromef is not understood at present. Estimations of the stoichiometry derived from relative staining intensities with Coomassie blue and amido black gave 1:1:1:1 for the subunits Ia + Ib/II/III/IV, which is interesting in of the presence of two cytochromesb 6 per cytochromef. Cytochromef titrated as a single-electron acceptor with a pH-independent midpoint potential of +339 mV between pH 6.5 and 8.3, while cytochromeb 6 was heterogeneous. With the assumption of two components present in equal amounts, two one-electron transitions withE m(1)=–40 mV andE m(2)=–172 at pH 6.5 were derived. Both midpoint potentials were pH-dependent.Abbreviation Tris tris(hydroxymethyl)aminomethane - SDS sodium dodecylsulfate - SDS-PAGE SDS polyacrylamide gel electrophoresis - MES 2-(N-morpholino)ethanesulfonic acid  相似文献   

11.
(1) The electron transport system of heterotrophically dark-grown Rhodobacter capsulatus was investigated using the wild-type strain MT1131 and the phototrophic non-competent (Ps-) mutant MT-GS18 carrying deletions of the genes for cytochrome c 1 and b of the bc 1 complex and for cytochrome c 2. (2) Spectroscopic and thermodynamic data demonstrate that deletion of both bc 1 complex and cyt. c 2 still leaves several haems of c- and b-type with Em7.0 of +265 mV and +354 mV at 551–542 nm, and +415 mV and +275 mV at 561–575 nm, respectively. (3) Analysis of the oxidoreduction kinetic patterns of cytochromes indicated that cyt. b 415 and cyt. b 275 are reduced by either ascorbate-diaminodurene or NADH, respectively. (4) Growth on different carbon and nitrogen sources revealed that the membrane-bound electron transport chain of both MT1131 and MT-GS18 strains undergoes functional modifications in response to the composition of the growth medium used. (5) Excitation of membrane fragments from cells grown in malate minimal medium by a train of single turnover flashes of light led to a rapid oxidation of 32% of the membrane-bound c-type haem complement. Conversely, membranes prepared from peptone/yeast extract grown cells did not show cyt. c photooxidation. These results are discussed within the framework of an electron transport chain in which alternative pathways bypassing both the cyt. c 2 and bc 1 complex might involve high-potential membrane bound haems of b- and c-type.Abbreviations AA antimycin A - CCCP carbonylcyanide m-chlorophenyl hydrazone - CN- cyanide - DAD diaminodurene - Q2H2 ubiquinol-2 - Q-pool ubiquinone-10 pool - RC photochemical reaction center  相似文献   

12.
A chlorophyll b-less mutant of Chlamydomonas reinhardtii (Pg 27) was isolated after UV irradiation of the wild type cells. This photosynthetically competent mutant totally lacks chlorophyll b and the CP2 chlorophyll-protein complex. However, SDS-PAGE, proteolytic digestions and immunodetections demonstrated that the 24–25 Kd apoproteins of the lacking CP2 complex are still present in thylakoids of the Pg27 mutant. It is concluded that this CP2-less mutant is affected in the biosynthesis pathway of chlorophyll b.This CP2-less mutant was crossed with a CP1-less mutant (Fl5) Fluorescence emission spectra and fluorescence inductions in the presence of DCMU were analysed in the resulting (cp 2 , cp 1 + ), (cp 2 + , cp 1 ), (cp 2 + , cp 1 + ), cp 2 , cp 1 )tetratype. Differences in PS 2 optical cross section and in the relative amplitude or localisation of fluorescence emission peaks fit well with a quadripartite model where PS1 and PS2 would each correspond to a reaction centre core complex (CP1 and CP2 respectively) associated to a light harvesting antenna (LHC1 and LHC2 respectively). The occurrence of energy transfers from PS1 peripheral antenna to PS2 in the Fl 5 mutant shows that, in absence of CP1, at least a part of its associated PS1 light harvesting antenna migrates in the PS2 containing appressed thylakoids.Abbreviations Chl Chlorophyll - LHC Light harvesting chl a/b complex - CP2 Predominant form of LHC or SDS polyacrylamide gels - WT Wild type - DM Double mutant (cp 1 , cp 2 ) - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis - DOC-PAGE Deoxycholate polyacrylamide gel electrophoresis  相似文献   

13.
The Q cycle mechanism of thebc 1 complex requires two quinone reaction centers, the hydroquinone oxidation (QP) and the quinone reduction (QN) center. These sites can be distinguished by the specific binding of inhibitors to either of them. A substantial body of information about the hydroquinone oxidation site has been provided by the analysis of the binding of QP site inhibitors to thebc 1 complex in different redox states and to preparations depleted of lipid or protein components as well as by functional studies with mutantbc 1 complexes selected for resistance toward the inhibitors. The reaction site is formed by at least five protein segments of cytochromeb and parts of the iron-sulfur protein. At least two different binding sites for QP site inhibitors could be detected, one for the methoxyacrylate-type inhibitors binding predominantly to cytochromeb, the other for the chromone-type inhibitors and hydroxyquinones binding predominantly to the iron-sulfur protein. The interactions with the protein segments, between different protein segments, and between protein and ligands (substrate, inhibitors) are discussed in detail and a working model of the QP pocket is proposed.  相似文献   

14.
DNA topoisomerase II (topo II) is the target of many anticancer drugs and is often altered in drug-resistant cell lines. In some tumor cell lines truncated isoforms of topo IIα are localized to the cytoplasm. To study the localization and function of individual enzyme domains, we have epitope-tagged several fragments of human topo IIα and expressed them by retroviral infection of rodent and human cells. We find that fusion of the topo II fragments to the hydrophobic tail of human liver cytochrome b5 anchors the fusion protein to the outer face of cytoplasmic membranes, as determined by colocalization with calnexin and selective detergent permeabilization. Moreover, whereas the minimal ATPase domain (aa 1–266) is weakly and diffusely expressed, addition of the cytb5 anchor (1–266-b5) increases its steady-state level 16-fold with no apparent toxicity. Similar results are obtained with the complete ATPase domain (aa 1–426). A C-terminal domain (aa 1030–1504) of human topo IIα containing an intact dimerization motif is stably expressed and accumulates in the nucleus. Fusion to the cytb5 anchor counteracts the nuclear localization signal and relocalizes the protein to cytoplasmic membranes. In conclusion, we describe a technique that stabilizes and targets retrovirally expressed proteins such that they are exposed on the cytoplasmic surface of cellular membranes. This approach may be of general use for regulating the nuclear accumulation of drugs or proteins in living cells.  相似文献   

15.
The article reviews the enzymatic and electron transfer properties of a low-potential FAD-dependent flavoprotein that is a component of the NADPH-dependent O 2 · -generating respiratory burst oxidase of phagocytes. Current methods available for isolation of the respiratory burst oxidase and the flavo-protein component of the complex are also reviewed. These studies and data obtained from affinity-labeling of respiratory burst oxidase components, suggest that the flavoprotein has a molecular weight of 65–67 kD. The prevailing evidence suggests that the flavoprotein functions as a dehydrogenase/electron transferase and can directly catalyse NADPH-dependent O 2 · formation when isolated. However, in neutrophil plasma membranes, the prevailing evidence suggests that the flavoprotein functions primarily to transfer electrons from NADPH to cytochromeb –245 and that this latter redox component is the catalytic side of O 2 · formation. A working model for the arrangement of the flavorprotein and cytochromeb –245 components of the respiratory burst oxidase in neutrophil membranes is proposed.  相似文献   

16.
Eric Lam  Richard Malkin   《BBA》1982,682(3):378-386
Photoreactions of cytochrome b6 have been studied using resolved chloroplast electron-transfer complexes. In the presence of Photosystem (PS) II and the cytochrome b6-f complex, photoreduction of the cytochrome can be observed. No soluble components are required for this reaction. Cytochrome b6 photoreduction was found to be inhibited by quinone analogs, which inhibit at the Rieske iron-sulfur center of the cytochrome complex, by the addition of ascorbate and by depletion of the Rieske center and bound plastoquinone from the cytochrome complex. Photoreduction of cytochrome b6 can also be demonstrated in the presence of the cytochrome complex and PS I. This photoreduction requires plastocyanin and a low-potential electron donor, such as durohydroquinone. Cytochrome b6 photoreduction in the presence of PS I is inhibited by quinone analogs which interact with the Rieske iron-sulfur center. These results are discussed in terms of a Q-cycle mechanism in which plastosemiquinone serves as the reductant for cytochrome b6 via an oxidant-induced reductive pathway.  相似文献   

17.
Raul Covian 《BBA》2008,1777(9):1079-1091
The dimeric cytochrome bc1 complex catalyzes the oxidation-reduction of quinol and quinone at sites located in opposite sides of the membrane in which it resides. We review the kinetics of electron transfer and inhibitor binding that reveal functional interactions between the quinol oxidation site at center P and quinone reduction site at center N in opposite monomers in conjunction with electron equilibration between the cytochrome b subunits of the dimer. A model for the mechanism of the bc1 complex has emerged from these studies in which binding of ligands that mimic semiquinone at center N regulates half-of-the-sites reactivity at center P and binding of ligands that mimic catalytically competent binding of ubiquinol at center P regulates half-of-the-sites reactivity at center N. An additional feature of this model is that inhibition of quinol oxidation at the quinone reduction site is avoided by allowing catalysis in only one monomer at a time, which maximizes the number of redox acceptor centers available in cytochrome b for electrons coming from quinol oxidation reactions at center P and minimizes the leakage of electrons that would result in the generation of damaging oxygen radicals.  相似文献   

18.
The effect of different anions on the steady-state proton translocation in bovine bc 1 complex reconstituted in liposomes was studied. The H+/e ratio for vectorial proton translocation is at the steady state definitely lower than that measured at level flow, (0.3 vs. 1.0). The presence of azide or arachidonate at micro- and submicromolar concentrations, respectively, gave a substantial reactivation of the proton pumping activity at the steady state, without any appreciable effect on respiration-dependent transmembrane pH difference. Addition of azide to turning-over bc 1 vesicles also caused a transition of b cytochromes toward oxidation. The results are discussed in terms of possible involvement of an acidic residue in the protonation of the semiquinone/quinol couple at the N side of the membrane.  相似文献   

19.
Cytochrome P450 2B4 is a microsomal protein with a multi-step reaction cycle similar to that observed in the majority of other cytochromes P450. The cytochrome P450 2B4-substrate complex is reduced from the ferric to the ferrous form by cytochrome P450 reductase. After binding oxygen, the oxyferrous protein accepts a second electron which is provided by either cytochrome P450 reductase or cytochrome b5. In both instances, product formation occurs. When the second electron is donated by cytochrome b5, catalysis (product formation) is ∼10- to 100-fold faster than in the presence of cytochrome P450 reductase. This allows less time for side product formation (hydrogen peroxide and superoxide) and improves by ∼15% the coupling of NADPH consumption to product formation. Cytochrome b5 has also been shown to compete with cytochrome P450 reductase for a binding site on the proximal surface of cytochrome P450 2B4. These two different effects of cytochrome b5 on cytochrome P450 2B4 reactivity can explain how cytochrome b5 is able to stimulate, inhibit, or have no effect on cytochrome P450 2B4 activity. At low molar ratios (<1) of cytochrome b5 to cytochrome P450 reductase, the more rapid catalysis results in enhanced substrate metabolism. In contrast, at high molar ratios (>1) of cytochrome b5 to cytochrome P450 reductase, cytochrome b5 inhibits activity by binding to the proximal surface of cytochrome P450 and preventing the reductase from reducing ferric cytochrome P450 to the ferrous protein, thereby aborting the catalytic reaction cycle. When the stimulatory and inhibitory effects of cytochrome b5 are equal, it will appear to have no effect on the enzymatic activity. It is hypothesized that cytochrome b5 stimulates catalysis by causing a conformational change in the active site, which allows the active oxidizing oxyferryl species of cytochrome P450 to be formed more rapidly than in the presence of reductase.  相似文献   

20.
Frederik A.J. Rotsaert 《BBA》2008,1777(3):239-249
We have examined the pre-steady-state kinetics and thermodynamic properties of the b hemes in variants of the yeast cytochrome bc1 complex that have mutations in the quinone reductase site (center N). Trp-30 is a highly conserved residue, forming a hydrogen bond with the propionate on the high potential b heme (bH heme). The substitution by a cysteine (W30C) lowers the redox potential of the heme and an apparent consequence is a lower rate of electron transfer between quinol and heme at center N. Leu-198 is also in close proximity to the bH heme and a L198F mutation alters the spectral properties of the heme but has only minor effects on its redox properties or the electron transfer kinetics at center N. Substitution of Met-221 by glutamine or glutamate results in the loss of a hydrophobic interaction that stabilizes the quinone ligands. Ser-20 and Gln-22 form a hydrogen-bonding network that includes His-202, one of the carbonyl groups of the ubiquinone ring, and an active-site water. A S20T mutation has long-range structural effects on center P and thermodynamic effects on both b hemes. The other mutations (M221E, M221Q, Q22E and Q22T) do not affect the ubiquinol oxidation kinetics at center P, but do modify the electron transfer reactions at center N to various extents. The pre-steady reduction kinetics suggest that these mutations alter the binding of quinone ligands at center N, possibly by widening the binding pocket and thus increasing the distance between the substrate and the bH heme. These results show that one can distinguish between the contribution of structural and thermodynamic factors to center N function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号