首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Species identification in mulberry (Morus) continues to be a point of great debate among scientists despite the number of criteria such as floral characters, wood, and leaf anatomical and biochemical characters used to identify the species within this genus. However, no consensus system of classification has emerged. Hence, an investigation was undertaken with inter-simple sequence repeat (ISSR) and random amplified polymorphic DNA (RAPD) markers to find out the possibility of using these DNA markers to confirm the identity of genotypes in a particular species. Fifteen ISSR and 15 RAPD primers generated 86% and 78% polymorphism, respectively, among 19 mulberry genotypes. The polymorphism among the species varied from 50% to 57% in ISSR markers and 31% to 53% in RAPD markers. Similarity coefficients were higher among the genotypes of M. latifolia, M. bombycis and M. alba. Cluster analyses separated genotypes of M. laevigata and M. indica from those of the other species. Population structure analysis of these species further showed high genetic differentiation coefficients (GST), high heterozygosity between two species (DST), and total heterozygosity among populations (Ht) coupled with considerably low gene flow (Nm) when M. laevigata was paired with other species. Based on these parameters and the result of cluster analysis it is concluded that M. laevigata can be considered as a separate species of mulberry, whereas the other four species may be grouped together and treated as subspecies.  相似文献   

2.
The objective of this study was to analyze the genetic relationships, using PCR-based ISSR markers, among 70 Indian flax (Linum usitatissimum L.) genotypes actively utilized in flax breeding programs. Twelve ISSR primers were used for the analysis yielding 136 loci, of which 87 were polymorphic. The average number of amplified loci and the average number of polymorphic loci per primer were 11.3 and 7.25, respectively, while the percent loci polymorphism ranged from 11.1 to 81.8 with an average of 63.9 across all the genotypes. The range of polymorphism information content scores was 0.03–0.49, with an average of 0.18. A dendrogram was generated based on the similarity matrix by the Unweighted Pair Group Method with Arithmetic Mean (UPGMA), wherein the flax genotypes were grouped in five clusters. The Jaccard’s similarity coefficient among the genotypes ranged from 0.60 to 0.97. When the omega-3 alpha linolenic acid (ALA) contents of the individual genotypes were correlated with the clusters in the dendrogram, the high ALA containing genotypes were grouped in two clusters. This study identified SLS 50, Ayogi, and Sheetal to be the most diverse genotypes and suggested their use in breeding programs and for developing mapping populations.  相似文献   

3.
Random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) markers were used to study the DNA polymorphism in elite blackgram genotypes. A total of 25 random and 16 ISSR primers were used. Amplification of genomic DNA of the 18 genotypes, using RAPD analysis, yielded 104 fragments that could be scored, of which 44 were polymorphic, with an average of 1.8 polymorphic fragments per primer. Number of amplified fragments with random primers ranged from two (OPA-13) to nine (OPK-4) and varied in size from 200 bp to 2,500 bp. Percentage polymorphism ranged from 16.6% (OPK-7) to a maximum of 66.6% (OPE-5, OPH-2, and OPK-8), with an average of 42.7%. The 16 ISSR primers used in the study produced 101 bands across 18 genotypes, of which 55 were polymorphic. The number of amplified bands varied from two (ISSR 858) to ten (ISSR 810), with a size range of 200–2,200 bp. The average numbers of bands per primer and polymorphic bands per primer were 6.3 and 3.4, respectively. Percentage polymorphism ranged from 25% (ISSR 885) to 100% (ISSR 858), with an average percentage polymorphism of 57.5% across all the genotypes. The 3-anchored primers based on poly(GA) and poly(AG) motifs produced high average polymorphisms of 54.98% and 58.32%, respectively. ISSR markers were more efficient than the RAPD assay, as they detected 57.4% polymorphic DNA markers in Vigna mungo as compared to 42.7% for RAPD markers. The Mantel test between the two Jaccards similarity matrices gave r =0.32, showing low correlation between RAPD- and ISSR-based similarities. Clustering of genotypes within groups was not similar when RAPD and ISSR derived dendrogram were compared, whereas the pattern of clustering of the genotypes remained more or less the same in ISSR and combined data of RAPD and ISSR.  相似文献   

4.
Mungbean germplasm characterization, evaluation and improvement are fundamentally based on morpho-agronomic traits. The lack of break-through in mungbean production has been due to non-availability of genetic variability for high yield potential. Forty-four genotypes of mungbean [Vigna radiata (L.)Wilczek] were subjected to random amplified polymorphic DNA (RAPD) analysis to assess the genetic diversity and relationships among the genotypes. Multilocus genotyping by twelve RAPD primers generated 166 markers and detected an average of intraspecific variation amounting to 82% polymorphism in banding patterns. Dendrogram obtained from cluster analysis delineated all the 44 genotypes into six clusters. Higher values of Nei’s gene diversity (h) and Shannon information index (i) and genetic distance analysis validate existence of wide genetic diversity among mungbean genotypes tested. Besides internal transcribed spacer (ITS) length variations, single nucleotide polymorphisms (SNPs) and insertions/deletions (INDELS) were detected at number of sites in nuclear rDNA region and the sequences of representatives of each sub-cluster and all distinct genotypes have been submitted to NCBI database and assigned Gen accession numbers HQ 148136-148147. Multiple sequence alignment revealed further lineages of distinct genotypes with main RAPD clusters. The measures of relative genetic distances among the genotypes of mungbean did not completely correlate the geographical places of their development. The homogeneous phenotypic markers proved insufficient in exhibiting genetic divergence among mungbean genotypes studied. RMG-62, RMG-976, and NDM-56 have been identified as potential source of parents for crop improvement. RAPD primers, OPA-9 and OPA-2 as polymorphic genetic markers and number of pods/plant and number of seeds/plant as dependable phenotypic markers have been identified for improving yield potentials. This genetic diversity will be of significance in developing intraspecific crosses in mungbean crop improvement programme.  相似文献   

5.
In this study, inter-simple sequence repeats (ISSR) ans simple sequence repeat (SSR) markers were used to investigate genetic diversity of 27 mulberry accessions including 19 cultivated accessions (six M. multicaulis, three M. alba, two M. atropurpurea, two M. bombycis, one M. australis, two M. rotundiloba, one M. alba var. pendula, one M. alba var. macrophylla, and one M. alba var. venose) and 8 wild accessions (two M. cathayana, two M. laevigata, two M. wittiorum, one M. nigra and one M. mongolica). ISSRs and SSRs were compared in terms of their informativeness and efficiency in a study of genetic diversity and relationships among 27 mulberry genotypes. SSRs presented a higher level of polymorphism and greater information content. All index values of genetic diversity both markers analyzed using Popgene 32 software indicated that within wild species had higher genetic diversity than within cultivated species. Cultivation may caused the lose of genetic diversity of mulberry compared with wild species revealed by ISSR and SSR markers. The mean genetic similarity coefficients among all mulberry genotypes ascribed by ISSR and SSR matrices were 0.7677 and 0.6131, respectively. For all markers a high similarity in dendrogram topologies was obtained although some differences were observed. Cluster analysis of ISSR and SSR using UPGMA method revealed that the wild species are genetically distant from the domesticated species studied here. The correlation coefficients of similarity were statistically significant for both marker systems used. Principal coordinates analysis (PCA) for ISSR and SSR data also supports their UPGMA clustering. These results have an important implication for mulberry germplasm characterization, improvement, molecular systematics and conservation.  相似文献   

6.
The ISSR fingerprintings of 24 mulberry cultivars were constructed. Totally 80 bands were produced using 17 primers selected from 20 primers. Of them, 40 bands showed polymorphism. From the bands amplified, there were three independent ways to identify the mulberry varieties, such as unique ISSR markers, unique band patterns and a combination of the band patterns provided by different primers. ISSRs were very effective in differentiating the mulberry varieties. The mean genetic similarity coefficient, the mean Nei's gene diversity (h), and the mean Shannon's Information index (I) of mulberry cultivars were 0.8731, 0.1210, and 0.1942, respectively. This suggests that the genetic diversity of mulberry cultivars was low and the genetic base was narrow. Both UPGMA cluster and PCA (Principal Coordinates Analysis) analysis showed clear genetic relationships among the 24 mulberry cultivars. The major clusters were related to known pedigree relationships.  相似文献   

7.
中国桑树选育品种ISSR指纹图谱的构建及遗传多样性分析   总被引:11,自引:1,他引:10  
利用ISSR标记构建了24个选育桑品种的指纹图谱,用3种独立的方法(特殊的标记;特异的谱带类型;不同引物提供的谱带类型组合)可以有效地鉴别桑树选育品种,证明ISSR标记在桑树品种的鉴别方面是一个有效的工具和方法。17个ISSR引物共扩增出80条带,40条带具有多态性,占50.0%。24份选育桑树品种间平均遗传相似系数、Nei’S基因多样性(gene diversity)和Shannon’S信息指数分别为0.8731,0.1210和0.1942。桑树选育品种间的遗传多样性较低,说明中国选育桑品种间遗传距离较小,亲缘关系较近,。遗传基础较狭窄。UPGMA法聚类和PCA分析都清楚地显示了24个桑树选育品种的亲缘关系,聚类结果与桑树品种的系谱基本一致。  相似文献   

8.
Utilizing intersimple sequence repeat (ISSR) markers, 18 mulberry (Morus spp.) germplasm collections were studied for genetic variability, phylogenetic relationship, and association with protein and sugar content. The genetic polymorphism exhibited by ISSR primers was 100%, and the genetic diversity recorded among the mulberry accessions had an average of 0.263 ± 0.094. Dendrogram (unweighted pair group method analysis) clustered the mulberry accessions into two major groups, one comprised the accessions collected from north or northeast regions of India, and the other comprised three subclusters and one isolate, i.e., Assamjati, a collection from Assam. Another subcluster contained accessions collected from Kerala, which belong to Morus indica. These accessions of M. indica from Kerala were found to be genetically diverse from north and northeast India. Multidimensional scaling of the ISSR data clearly separated the mulberry accessions according to their genetic diversity and protein content. Mulberry accessions were arbitrarily grouped into three classes viz. very low, moderate, and high in terms of protein and sugar content using standard statistical programs. Stepwise multiple regression analysis identified four ISSR markers (8351,600, 8355,600, 8222,500, and 8072,500) associated with protein content with highly positive correlation (p < 0.001) with linear curves with high F values (18.055 to 48.674; p < 0.001). In case of sugar content, four ISSR markers viz. 812900, 8171,500, 8261,500, and 8108,000 showed negative correlation. Hence, DNA markers for proteins seem promising and may be used in marker-assisted breeding program.  相似文献   

9.
Assefa K  Merker A  Tefera H 《Hereditas》2003,139(3):174-183
The DNA polymorphism among 92 selected tef genotypes belonging to eight origin groups was assessed using eight inter simple sequence repeat (ISSR) primers. The objectives were to examine the possibility of using ISSR markers for unravelling genetic diversity in tef, and to assess the extent and pattern of genetic diversity in the test germplasm with respect to origin groups. The eight primers were able to separate or distinguish all of the 92 tef genotypes based on a total of 110 polymorphic bands among the test lines. The Jaccard similarity coefficient among the test genotypes ranged from 0.26 to 0.86, and at about 60 % similarity level the clustering of this matrix using the unweighted pair-group method based on arithmetic average (UPGMA) resulted in the formation of six major clusters of 2 to 37 lines with further eight lines remaining ungrouped. The standardized Nei genetic distance among the eight groups of origin ranged between 0.03 and 0.32. The UPGMA clustering using the standardized genetic distance matrix resulted in the identification of three clusters of the eight groups of origin with bootstrap values ranging from 56 to 97. The overall mean Shannon Weaver diversity index of the test lines was 0.73, indicating better resolution of genetic diversity in tef with ISSR markers than with phenotypic (morphological) traits used in previous studies. This can be attributed mainly to the larger number of loci generated for evaluation with ISSR analysis as compared to the few number of phenotypic traits amenable for assessment and which are further greatly affected by environment and genotype x environment interaction. Analysis of variance of mean Shannon Weaver diversity indices revealed substantial (P < or = 0.05) variation in the level of diversity among the eight groups of origin. In conclusion, our results indicate that ISSR can be useful as DNA-based molecular markers for studying genetic diversity and phylogenetic relationships, DNA fingerprinting for the identification of varieties or cultivars, and also for genome mapping in tef.  相似文献   

10.
Genetic diversity and interrelationships among 31 lentil genotypes were evaluated using 10 Inter-Simple Sequence Repeat (ISSR) and 10 directed amplification of minisatellite DNA region (DAMD) primers. A total of 43 and 48 polymorphic bands were amplified by ISSR and DAMD markers, respectively. Average polymorphism information content (PIC) for ISSR and DAMD markers were 0.37 and 0.41, respectively. All 31 lentil genotypes could be distinguished by ISSR markers into three groups and by DAMD markers into two groups. Various molecular markers show a different efficiency for evaluating DNA polymorphism in lentil and indicate that the patterns of variation are clearly influenced by the genetic marker used. Comparatively, the genetic diversity of examined lentil genotypes by two different marker techniques (ISSR and DAMD) was high and indicated that ISSR and DAMD are effective and promising marker systems for fingerprinting in lentil and give useful information on its genetic relationships.  相似文献   

11.
Shisham (Dalbergia sissoo) is one of the most preferred timber tree species of South Asia. Two DNA-based molecular marker techniques, intersimple sequence repeat (ISSR) and random amplified polymorphism DNA (RAPD), were compared to study the genetic diversity in this species. A total of 30 polymorphic primers (15 ISSR and 15 random) were used. Amplification of genomic DNA of 22 genotypes, using ISSR analysis, yielded 117 fragments, of which 64 were polymorphic. Number of amplified fragments with ISSR primers ranged from five to ten and varied in size from 180 to 1,900 bp. Percentage polymorphism ranged from 0 to 87.5. The 15 RAPD primers produced 144 bands across 22 genotypes, of which 84 were polymorphic. The number of amplified bands varied from five to 13, with size range from 180 to 2,400 bp. Percentage polymorphism ranged from 0 to 100, with an average of 58.3 across. RAPD markers were relatively more efficient than the ISSR assay. The mental test between two Jaccard’s similarity matrices gave r ≥ 0.90, showing very good fit correlation in between ISSR- and RAPD-based similarities. Clustering of isolates remained more or less the same in RAPD and combined data of RAPD and ISSR. The similarity coefficient ranged from 0.734 to 0.939, 0.563 to 0.946, and 0.648 to 0.920 with ISSR, RAPD, and combined dendrogram, respectively.  相似文献   

12.
Abstract

Identifying germplasm is an important component for efficient and effective management of plant genetic resources. This investigation was undertaken for the identification and analysis of genetic variation within 9 species of Albizzia through 33 morphological parameters, and 15 Random Amplified Polymorphic DNA (RAPD) and 17 Inter Simple Sequence Repeat (ISSR) primers. The use of selected RAPD and ISSR primers generated a total of 163 and 201 amplified DNA fragments, respectively. High frequencies of polymorphism, 95.05% for RAPD and 96.02% for ISSR, were detected. Statistical approaches were employed to construct genetic relationships by RAPD, ISSR and morphological analysis. Cluster analysis by the unweighted pair-group method (UPGMA) of Nei's similarity generated dendograms with similar topology that gave a better reflection of the diversity and affinities between species. These molecular results were comparable to main morphological characteristics. The correlation matrices generated by RAPD and ISSR markers were highly correlated (r = 0.843 at p = 1.0), thereby indicating congruence between these two marker systems. Both morphometric data and molecular markers have the potential to analyse genetic variation among the nine species of Albizzia, thus providing a major input for management strategy of plant genetic resources.  相似文献   

13.
Genetic diversity among 31 genotypes of field and garden pea including primitive cultivated forms and widely cultivated varieties of India was studied using 40 random decamer and 9 ISSR primers. A total of 274 amplicons were detected using both types of markers, which amplified 192 RAPD and 82 ISSR amplicons. Average number of bands amplified per primer was higher in case of ISSR (9.1) as compared to RAPDs (4.8). ISSR primers also exhibited higher average polymorphism (89.0%) and resolving power (4.50) than RAPDs (72.4%, 1.87, respectively). Genetic similarity estimates based on the pooled data of both types of markers using Jaccard??s coefficient ranged from 0.58 to 0.85 delineating considerable diversity among the pea genotypes studied. The 31 genotypes clustered in two major groups based on pooled data. Popular cultivars of garden and field pea of the region exhibited high similarities among themselves. However, primitive cultivated forms collected from the higher Indian Himalayas were diverse from the current varieties and hold potential in pea breeding programmes.  相似文献   

14.
Mulberry (Morus spp, Moraceae) is an important horticultural crop in Turkey, which is one of the main world producers of mulberry fruit. We evaluated the genetic relationships among 26 mulberry genotypes selected for agronomic characteristics, using RAPD markers. A total of 367 DNA markers were generated with 34 random primers. The highest genetic similarity (0.80) was observed between Oltu58 (M. nigra) and Olur90 (M. nigra) genotypes. The genotypes Oltu3 (M. alba) and Oltu18 (M. rubra) were the most distant (0.36). We found that the RAPD technique is a useful tool to discriminate mulberry genotypes at both the intra- and interspecific level. This type of information will aid in accurate identification of useful genotypes for breeding programs.  相似文献   

15.
The determination of genetic differences among crop genotypes has become the primary need to grant patent and the protection of Plant Breeder Rights (PBR). In the present study RAPD and ISSR markers were employed for the characterization of 16 sesame genotypes. Twenty six RAPD and 17 ISSR primers that generated clear and reproducible banding patterns amplified 194 and 163 bands, respectively among 16 sesame genotypes. Both RAPD and ISSR primers showed maximum discrimination power, and produced putative variety specific bands, which could be used for the identification of all the sesame genotypes, individually. However, only AG and CA based ISSR primers were found effective in the discrimination of genotypes. A poor correlation was observed between the matrices produced by RAPD and ISSR primers, which might be due to the array of different sites of the genome. Though, there was greater similarity among sesame genotypes (0.78 for RAPD and 0.71 for ISSR), the observed genetic diversity (0.22 for RAPD and 0.29 for ISSR), was found effective for the characterization of sesame genotypes. It is suggested that putative variety specific RAPD and ISSR markers could be converted to Codominant sequence characterized amplified region/sequence tagged site (SCAR /STS) markers to develop robust variety specific markers.  相似文献   

16.
Biochemical and molecular markers have been used on eleven species of Cucurbitaceae collected from lower Gangetic plains. Six enzyme systems were selected. Among 40 primers examined, 14 random amplified polymorphic DNA (RAPD) and 10 inter-simple sequence repeat (ISSR) primers were selected for the analysis. Generated RAPD (100) and ISSR (100) fragments showed high variations among the species. Jaccard similarity coefficients were used for the evaluation of pairwise genetic divergence; cluster analysis of the similarity matrices was performed to estimate interspecific diversity. Further, principal coordinate analysis was performed to evaluate the resolving power of the three marker systems to differenciate among the species.  相似文献   

17.
The genetic diversity of 13 local Palestinian fig genotypes was investigated using RAPD markers. Among the 30 tested primers, 28 revealed various banding patterns and 2 generated no polymorphic bands. In addition, 13 primers (46.4%) produced good amplification products with high intensity and pattern stability. A total of 94 DNA fragments (loci), separated by electrophoresis on agarose gel were detected, ranging in size from 190 to 1300 bp. Of these fragments, 72 (76.6%) were polymorphic and 22 (23.4%) were monomorphic. A minimum of three and a maximum of eight DNA fragments were obtained using (OPH-02 and OPT-10) as well as (OPA-13, OPA-18 and OPY-07) primers respectively. The maximum percentage of polymorphic markers was 100.0 (Z-5, Z-12, and OPT-10) and the minimum was 60.0 (OPH-02). Primers OPY-07 and OPA-13 revealed high collective resolving power (Rp) values with 4.640 and 4.760 respectively and therefore, they were the most useful RAPD primers to assess the genetic diversity in the Palestinian figs. Genetic distance matrix showed an average distance range from 0.186 to 0.559 with a mean of 0.373. Thus, the cultivars tested in this study were characterized by large divergence at the DNA level. To our knowledge, this is the first report using RAPD marker to assess genetic diversity of Palestinian figs.  相似文献   

18.
Inter simple sequence repeat (ISSR) markers were used to analyse genetic diversity of Swertia chirayita genotypes collected from the temperate Himalayas of India. Allied species of Swertia chirayita were used in the study as outliers. Nineteen UBC primers generated a total of 315 ISSR bands, revealing 98.7 % polymorphism among the genotypes assayed. This was reduced to 42.5 % when the outliers were excluded. The results revealed a high genetic diversity within the genotypes.  相似文献   

19.
Genetic characterization of germplasm resources is necessary for their effective management and efficient utilization, especially for species like mulberry in which the available germplasm exhibits rich phenotypic diversity with almost no information about its genetic base. Here we present the first report on the isolation of six novel microsatellite markers of mulberry, developed from an enriched genomic library of Morus indica. These markers revealed a high degree of polymorphism (14–26 alleles per locus; polymorphic information content, 0.85–0.90) and a broad cross‐species affinity when tested on a set of 43 elite genotypes including 13 related Morus species. The data thus demonstrate their utility as potentially efficient genetic markers for germplasm characterization, crop improvement and molecular systematics of mulberry.  相似文献   

20.
Forty-two genotypes representing oilseed Brassica species were analyzed for the level of genetic diversity and molecular identity using Random Amplified Polymorphic DNA (RAPD), Inter-Simple Sequence Repeat (ISSR) and 5'-Anchored Simple Sequence Repeat (ASSR) markers. DNA profiles revealed high degree of interspecific polymorphism, while the level was considerably low within a species, particularly in B. juncea. The UPGMA clusters clearly delineated genotypes of the respective Brassica species. Comparison of cophenetic matrices indicated a high degree of correspondence between dendrograms generated by different marker systems. A minimum of 10 random primers (approximately 105 bands) were required for the RAPD profiles to generate the expected cluster. Comparatively less number of primers was required to do the same in case of ISSR (4 primers) and ASSR (3 primers). The principal component analysis revealed similar genetic relationship among the genotypes as in cluster analysis. Although none of the DNA profiles could individually identify all the B. juncea genotypes, a combined DNA profile consisting 125 markers from the informative primers of all the three DNA marker systems could do the same. A positive correlation was found among the marker utility parameters (calculated for individual primers of different marker systems) such as marker index (MI), resolving power (Rp) and discrimination coefficient (D) with the number of genotypes identified by each primer with a few exceptions. Single plant analysis for a set of five B. juncea varieties revealed absence of intra-varietal heterogeneity in case of ASSR profiles, thereby suggesting its utility in varietal identification and differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号