首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From the commercial extract of the leaves of Stevia rebaudiana, two new minor diterpene glycosides having α-glucosyl linkage were isolated besides the known steviol glycosides including stevioside, steviolbioside, rebaudiosides A–F, rubusoside and dulcoside A. The structures of the two compounds were identified as 13-[(2-O-(3-α-O-d-glucopyranosyl)-β-d-glucopyranosyl-3-O-β-d-glucopyranosyl-β-d-glucopyranosyl)oxy] ent-kaur-16-en-19-oic acid β-d-glucopyranosyl ester (1), and 13-[(2-O-β-d-glucopyranosyl-3-O-(4-O-α-d-glucopyranosyl)-β-d-glucopyranosyl-β-d-glucopyranosyl)oxy] ent-kaur-16-en-19-oic acid β-d-glucopyranosyl ester (2), on the basis of extensive NMR and MS spectral data as well as chemical studies.  相似文献   

2.
From the commercial extract of the leaves of Stevia rebaudiana, three new diterpenoid glycosides were isolated besides eight known steviol glycosides including stevioside, rebaudiosides A–F and dulcoside A. The structures of the three compounds were identified as 13-[(2-O-β-d-glucopyranosyl-β-d-glucopyranosyl) oxy]-kaur-16-en-18-oic acid-(6-O-β-d-xylopyranosyl-β-d-glucopyranosyl) ester (1), 13-[(2-O-β-d-glucopyranosyl-β-d-glucopyranosyl) oxy]-17-hydroxy-kaur-15-en-18-oic acid β-d-glucopyranosyl ester (2), and 13-[(2-O-β-d-glucopyranosyl-β-d-glucopyranosyl) oxy]-17-oxo-kaur-15-en-18-oic acid β-d-glucopyranosyl ester (3) on the basis of extensive NMR and MS spectral studies. Another known diterpenoid glycoside, 13-[(2-O-β-d-glucopyranosyl-β-d-glucopyranosyl) oxy]-kaur-15-en-18-oic acid β-d-glucopyranosyl ester (4) was also isolated and its complete NMR spectral assignments were made on the basis of COSY, HSQC and HMBC spectral data.  相似文献   

3.
From the commercial extract of the leaves of Stevia rebaudiana, two new diterpenoid glycosides were isolated besides the known steviol glycosides including stevioside, rebaudiosides A–F, rubusoside, and dulcoside A. The structures of the two new compounds were identified as 13-[(2-O-6-deoxy-β-d-glucopyranosyl-β-d-glucopyranosyl)oxy] ent-kaur-16-en-19-oic acid β-d-glucopyranosyl ester (1), and 13-[(2-O-6-deoxy-β-d-glucopyranosyl-3-O-β-d-glucopyranosyl-β-d-glucopyranosyl)oxy] ent-kaur-16-en-19-oic acid β-d-glucopyranosyl ester (2), on the basis of extensive NMR and MS spectral data as well as chemical studies.  相似文献   

4.
Two new furostanol saponins, 3-O-[α-l-rhamnopyranosyl-(1→4)-β-d-glucopyranosyl]-26-O-β-d-glucopyranosyl-25(R)-furosta-5,22(23)-dien-3β,20α,26-triol (1), 3-O-[β-d-glucopyranosyl-(1→3)-O-α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranosyl]-26-O-β-d-glucopyranosyl-20(R)-methoxyl-25(R)-furosta-5,22(23)-dien-3β,26-diol (2) were isolated from the Dioscorea panthaica along with five known steroidal saponins (37). The structures of the new saponins were determined by detailed analysis of spectral data (including 2D NMR spectroscopy). The inhibitory activities of the saponins against α-glucosidase were investigated, gracillin (4) and 3-O-[α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranosyl]-26-O-β-d-glucopyranosyl-25(R)-furosta-5,20(22)-dien-3β,26-diol (5) were found to exhibit potent activities with IC50 values of 0.11 ± 0.04 mM and 0.09 ± 0.01 mM.  相似文献   

5.
Two new saponins, yuccoside C and protoyuccoside C, have been isolated from the methanolic extract of Yucca filamentosa root and their structures elucidated. Yuccoside C is 3-O-[α-d-galactopyranosyl-(1 → 2)-β-d-glucopyranosyl-(1 → 4)-β-d-glucopyranosyl]-(25S)-5β-spirostan-3β-ol, whereas protoyuccoside C is 3-O-[α-d-galactopyranosyl-(1 → 2)-β-d-glucopyranosyl-(1 → 4)-β-d-glucopyranosyl]-26-O-[β-d-glucopyranosy]-(25S)-5β-furostan-3β,22α,26-triol.  相似文献   

6.
Four new and three known oleanane-type saponins have been isolated from the methanolic extract of Phryna ortegioides, a monotypic and endemic taxon of Caryophyllaceae.The structures of the new compounds were determined as gypsogenic acid 28-O-β-d-glucopyranosyl-(1→2)-O-β-d-glucopyranosyl-(1→6)-O-β-d-glucopyranosyl ester (1), 3-O-α-l-arabinofuranosyl-gypsogenic acid 28-O-β-d-glucopyranosyl-(1→3)-O-[β-d-glucopyranosyl-(1→6)]-O-β-d-glucopyranosyl ester (2), 3-O-α-l-arabinofuranosyl-gypsogenic acid 28-O-β-d-glucopyranosyl-(1→3)-O-[β-d-glucopyranosyl-(1→2)-O-β-d-glucopyranosyl-(1→6)-O-]-β-d-glucopyranosyl ester (3), 3-O-α-l-arabinofuranosyl-16α-hydroxyolean-12-en-23,28-dioic acid-28-O-β-d-glucopyranosyl-(1→3)-O-[β-d-glucopyranosyl-(1→2)-O-β-d-glucopyranosyl-(1→6)]-O-β-d-glucopyranosyl ester (4). Their structures were established by a combination of one- and two-dimensional NMR techniques, and mass spectrometry. Noteworthy, none of isolated compounds possesses as aglycone moiety gypsogenin, considered a marker of Caryophyllaceae family.The cytotoxic activity of the isolated compounds was evaluated against three cancer cell lines including A549 (human lung adenocarcinoma), A375 (human melanoma) and DeFew (human B lymphoma) cells. Only compound 6 showed a weak activity against A375 and DeFew cell lines with IC50 values of 77 and 52 μM, respectively. None of the other tested compounds, in a range of concentrations between 12.5 and 100 μM, caused a significant reduction of the cell number.  相似文献   

7.
Two new saponins, agavasaponin E and agavasaponin H have been isolated from the methanolic extract of Agave americana leaves and their structures elucidated. Agavasaponin E is 3-O-[β-d-xylopyranosyl-(1→2glc1)-α-l-rhamnopyranosyl-(1→4)-α-l-rhamnopyranosyl-(1→3glc 1)-β-d-glucopyranosyl-(1→4)-β-d-glucopyranosyl-(1→4)-α-d-galactopyranosyl]-(25R)-5α-spirostan-12-on-3β-ol, whereas agavasaponin H is 3-O-[β-d-xylopyranosyl-(1→2 glc 1)-α-l-rhamnopyranosyl-(1→4)-α-l-rhamnopyranosyl-(1→3 glc 1)-β-d-glucopyranosyl-(1→4)-β-d-glucopyranosyl-(1→4)-β-d-galactopyranosyl]-26-O-[β-d-glucopyranosyl]-(25R)-5α-furostan-12-on-3β,22α,26-triol.  相似文献   

8.
3,28-Di-O-rhamnosylated oleanolic acid saponins, mimicking components of Chinese folk medicine Di Wu, have been designed and synthesized. One-pot glycosylation and ‘inverse procedure’ technologies have been applied thus significantly simplifying the preparation of desired saponins. The cytotoxic activity of compounds 3-O-[α-l-rhamnopyranosyl-(1→2)-β-d-xylopyranosyl]oleanolic acid 28-O-[α-l-rhamnopyranosyl-(1→4)-β-d-glucopyranosyl-(1→6)-β-d-glucopyranosyl] ester (3), 3-O-[α-l-rhamnopyranosyl]oleanolic acid 28-O-[α-l-rhamnopyranosyl- (1→4)-β-d-glucopyranosyl-(1→6)-β-d-glucopyranosyl] ester (4), 3-O-[α-l-rhamnopyranosyl]oleanolic acid 28-O-[α-l-rhamnopyranosyl] ester (5), and 3-O-[α-l-rhamnopyranosyl]oleanolic acid 28-O-[6-O-(α-l-rhamnopyranosyl)hexyl] ester (6) was preliminarily evaluated against HL-60 human promyelocytic leukemia cells. The natural saponin 3 and designed saponin 4 exhibited comparable moderate cytotoxic activity under our testing conditions.  相似文献   

9.
《Phytochemistry》1986,25(6):1419-1422
Two new triterpene glycosides isolated from the root bark Guettarda angelica were proven to be quinovic acid-3β-O-[β-d-glucopyranosyl-(1 → 3)-α-l-rhamnopyranoside] and quinovic acid-3β-O-β-d-glucopyranosyl-(28 → 1)-β-d-glucopyranosyl ester. In addition quinovic acid and two known glycoside derivatives (quinovic acid-3β-O-β-d-glucopyranoside and quinovic acid-3β-O-α-l-rhamnopyranoside) were isolated. The structures were elucidated by spectroscopic analysis of the peracetyl methyl ester derivatives.  相似文献   

10.
Five triterpenoid saponins isolated from the flowers, the mature fruits and the leaves of Fatsia japonica were identified as 3-O-[β-d-glucopyranosyl(1→4)-β-d-glucopyranosyl]-hederagenin (1), 3-O-[β-d-glucopyranosyl-(1→4)-α-l-arabinopyranosyl]-oleanolic acid (2), 3-O-[α-l-arabinopyranosyl]-hederagenin (3), 3-O-[β-d-glucopyranosyl]-hederagenin (4) and 3-O-[β-d-glucopyranosyl(1→4)-α-l-arabinopyranosyl]-hederagenin (5). The saponins 1 and 2 are new, naturally occurring, triterpenoid saponins. The distribution of the five saponins in three parts of the plant was investigated. Saponins 2, 3 and 5 were present in the flowers, saponins 1, 3, 4 and 5 were in the mature fruits and saponins 2, 3, 4 and 5 were in the leaves.  相似文献   

11.
Three spirostanol and two furostanol glycosides were isolated from a methanol extract of the roots of Asparagus curillus and characterized as 3-O-[α-l-arabinopyranosyl (1→4)- β-d-glucopyranosyl]-(25S)-5β-spirostan-3β-ol, 3-O-[{α-l-rhamnopyranosyl (1→2)} {α-l-arabinopyranosyl (1→4)}-β-d-glucopyranosyl]-(25S)-5β-spirostan- 3β-ol, 3-O-[{β-d-glucopyranosyl (1→2)} {α-l-arabinopyranosyl (1→4)}-β- d-glucopyranosyl]-(25S)-5β-spirostan-3β-ol, 3-O-[{β-d-glucopyranosyl (1→2)} {α-l-arabinopyranosyl (1→4)}-β-d-glucopyranosyl]-26-O-[β-d-glucopyranosyl]- 22α-methoxy-(25S)-5β-furostan-3β, 26-diol and 3-O-[{β-d-glucopyranosyl (1→2)} {α-l-arabinopyranosyl (1→4)}-β-d-glucopyranosyl]-26-O-[β-d-glucopyranosyl]- (25S)-5β-furostan-3β, 22α, 26-triol respectively.  相似文献   

12.
A new complex triterpenoid saponin was isolated from the stem bark of Samanea saman by using chromatographic methods. Its structure was established as 3-[(2-O-β-d-glucopyranosyl-β-d-glucopyranosyl)oxy]-2,23-dihydroxy-(2β,3β,4α)-olean-12-en-28-oic acid O-β-d-glucopyranosyl-(1  3)-O-[O-β-d-glucopyranosyl-(1  4)]-O-6-deoxy-α-l-mannopyranosyl-(1  2)-6-O-[4-O-[(2E,6S)-2,6-dimethyl-1-oxo-2,7-octadienyl]-6-deoxy-α-l-mannopyranosyl)oxy]-β-d-glucopyranosyl ester (1). Structural elucidation was performed using detailed analyses of 1H and 13C NMR spectra including 2D NMR spectroscopic techniques and chemical conversions. The haemolytic activity of the saponin was evaluated using in vitro assays, and its adjuvant potential on the cellular immune response against ovalbumin antigen was investigated using in vivo models.  相似文献   

13.
《Carbohydrate research》1985,138(1):17-28
Syntheses are described for methyl 2-acetamido-2-deoxy-4-O-β-d-galactopyranosyl-α-d-glucopyranoside, methyl 2-acetamido-2-deoxy-4-O-β-d-galactopyranosyl-β-d-glucopyranoside, methyl 3-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl-β-d-galactopyranoside, methyl 3-O-(2-acetamido-2-deoxy-4-O-β-d-galactopyranosyl-β-d-glucopyranosyl)-β-d-galactopyranoside, and methyl 4-O-[3-O-(2-acetamido-2-deoxy-4-O-β-d-galactopyranosyl-β-d-glucopyranosyl)-β-d-galactopyranosyl]- β-d-glucopyranoside.  相似文献   

14.
Phytochemical investigation of the underground parts of Liriope graminifolia (Linn.) Baker resulted in the isolation of two new steroidal saponins lirigramosides A (1) and B (2) along with four known compounds. The structures were determined by extensive spectral analysis, including two-dimensional (2D) NMR spectroscopy and chemical methods, to be 3-O-{β-d-xylopyranosyl-(1→3)-α-l-arabinopyranosyl-(1→2)-[α-l-rhamnopyranosyl-(1→4)]-β-d-glucopyranosyl-(25S)-spirost-5-ene-3β,17α-diol (1), 1-O-[α-l-rhamnopyranosyl-(1→2)-β-d-xylopyranosyl]-(25R)-ruscogenin (2), 1-O-β-d-xylopyranosyl-3-O-α-l-rhamnopyranosyl-(25S)-ruscogenin (3), 3-O-α-l-rhamnopyranosyl-1-O-sulfo-(25S)-ruscogenin (4), methylophiopogonanone B (5), and 5,7-dihydroxy-3-(4-methoxybenzyl)-6-methyl-chroman-4-one, (ophiopogonanone B, 6), respectively. Compound 1 has a new (25S)-spirost-5-ene-3β,17α-diol ((25S)-pennogenin) aglycone moiety. The isolated compounds were evaluated for their cytotoxic activities against Hela and SMMC-7721 cells.  相似文献   

15.
Three new triterpenoid saponins, elucidated as 3-O-β-d-glucopyranosyloleanolic acid 28-O-β-d-xylopyranosyl-(1→4)-α-l-rhamnopyranosyl-(1→2)-β-d-xylopyranoside (parkioside A, 1), 3-O-[β-d-apifuranosyl-(1→3)-β-d-glucopyranosyl]oleanolic acid 28-O-[β-d-apifuranosyl-(1→3)-β-d-xylopyranosyl-(1→4)-[α-l-rhamnopyranosyl-(1→3)]-α-l-rhamnopyranosyl-(1→2)β-d-xylopyranoside (parkioside B, 2) and 3-O-β-d-glucuronopyranosyl-16α-hydroxyprotobassic acid 28-O-α-l-rhamnopyranosyl-(1→3)-β-d-xylopyranosyl-(1→4)-α-l-rhamnopyranosyl-(1→2)-β-d-xylopyranoside (parkioside C, 3), were isolated from the n-BuOH extract of the root bark of Butyrospermum parkii, along with the known 3-O-β-d-glucopyranosyloleanolic acid (androseptoside A). The structures of the isolated compounds were established on the basis of chemical and spectroscopic methods, mainly 1D and 2D NMR data and mass spectrometry. The new compounds were tested for both radical scavenging and cytotoxic activities. Compound 2 showed cytotoxic activity against A375 and T98G cell lines, with IC50 values of 2.74 and 2.93 μM, respectively. Furthermore, it showed an antioxidant activity comparable to that of Trolox or butylated hydroxytoluene (BHT), used as controls, against 2,2-diphenyl-1-picryl hydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), oxygen and nitric oxide radicals.  相似文献   

16.
A new steroidal saponin was isolated from the bulbs of Allium ampeloprasum var. porrum. On the basis of chemical conversions and detailed analyses of 1H and 13C NMR spectra including 2D NMR spectroscopic techniques, its structure was established as 3-[(O-β-d-glucopyranosyl-(1 → 3)-β-d-glucopyranosyl-(1 → 2)-O-[O-β-d-glucopyranosyl-(1 → 3)]-O-β-d-glucopyranosyl-(1 → 4)-β-d-galactopyranosyl)oxy]-2,6-dihydroxy-(2α,3β,5α,6β,25R)-spirostane. Results of the present study indicated that the steroidal saponin showed haemolytic effects in the in vitro assays and demonstrated antiinflammatory activity and gastroprotective property using in vivo models.  相似文献   

17.
The two purple-membrane glycolipids O-β-d-glucopyranosyl- and O-β-d-galactopyranosyl-(1→6)-O-α-d-mannopyranosyl-(1→2)-O-α-d-glucopyranosyl-(1→1)-2, 3-di-O-phytanyl-sn-glycerol were prepared by coupling O-(2,3,4-tri-O-acetyl-α-d-mannopyranosyl)-(1→2)-O-(3,4,6-tri-O-acetyl-α-d-glucopyranosyl)-(1→1)-2, 3-di-O-phytanyl-sn-glycerol (9) with 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl bromide or 2,3,4,6-tetra-O-acetyl-α-d-mannopyranosyl bromide, respectively, followed by deacetylation. The glycolipid sulfate O-(β-d-glucopyranosyl 3-sulfate)-(1→6)-O-α-d-mannopyranosyl-(1→2)-O-α-d-glucopyranosyl-(1→1)-2,3-di-O-phytanyl-sn-glycerol was prepared by coupling of 9 with 2,4,6-tri-O-acetyl-3-O-trichloroethyloxycarbonyl-α-d-glucopyranosyl bromide in the presence of Hg(CN)2/HgBr2 followed by selective removal of the 3?-trichloroethyloxycarbonyl group, sulfation of HO-3?, and deacetylation. The suitably protected key-intermediate 9 could be prepared by two distinct approaches.  相似文献   

18.
Two oligofurostanosides and two spirostanosides, isolated from a methanol extract of Asparagus adscendens (leaves), were characterized as 3-O-[{α-l-rhamnopyranosyl (1 → 4)} {α-l-rhamnopyranosyl (1 → 6)}-β-d-glucopyranosyl]-26-O-[β-d-glucopyranosyl]-22α-methoxy-(25S)-furost-5-en-3β,26-diol (Adscendoside A), 3-O-[{α-l-rhamnopyranosyl (1 → 4)} {α-l-rhamnopyranosyl (1 → 6)}-β-d-glucopyranosyl]-26-O-[β-d-glucopyranosyl]-(25S)-furost-5-en-3β,22α,26-triol-(Adscendoside B), 3-O-[{α-l-rhamnopyranosyl (1 → 6)}-β-d-glucopyranosyl]-(25S)-spirostan-5-en-3β-ol (Adscendin A) and 3-O-[{α-l-rhamnopyranosyl (1 → 4)} {α-l-rhamnopyranosyl (1 → 6)}-β-d-glucopyr anosyl]-(25S)-spirostan-5-en-3β-ol (Adscendin B), respectively. Adscendin B and Adscendoside A are the artefacts of Adscendoside B formed through hydrolysis and methanol extraction respectively.bl]  相似文献   

19.
Gao L  Zhang L  Li N  Liu JY  Cai PL  Yang SL 《Carbohydrate research》2011,346(18):2881-2885
Phytochemical investigation of the methanol extract from the whole plants of Patrinia scabiosaefolia Fisch. resulted in the isolation of four new triterpenoid saponins (14) along with six known compounds (510). On the basis of spectroscopic and chemical methods, the structures of the new compounds were established as 3-O-β-d-xylopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-β-d-xylopyranosyl-12β,30-dihydroxy-olean-28,13β-olide (1), 3-O-α-l-rhamnopyranosyl-(1→2)-β-d-xylopyranosyl-12β,30-dihydroxy-olean-28,13β-olide (2), 3-O-β-d-xylopyranosyl-(1→2)-β-d-glucopyranosyl-12β, 30-dihydroxy-olean-28,13β-olide (3), and 3-O-β-d-glucopyranosyl-(1→4)-β-d-xylopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-β-d-xylopyranosyl-oleanolic acid 28-O-β-d-glucopyranoside (4), respectively. Compounds 1–3 possess a novel 12β,30-dihydroxy-olean-28,13β-lactone aglycone and a 12β-hydroxy substituent that is rarely found in this kind of triterpenoid saponin.  相似文献   

20.
《Carbohydrate research》1987,165(2):207-227
8-Methoxycarbonyloctyl 2-azido-4,6-O-benzylidene-2-deoxy-β-d-mannopyranoside reacted with 2,3,4-tri-O-acetyl-α-l-rhamnopyranosyl bromide to give a disaccharide from the which the glycosyl-acceptor 8-methoxycarbonyloctyl 2-azido-4,6-O-benzylidene-2-deoxy-3-O-(2,4,-di-O-acetyl-α-l-rhamnopyranosyl)-β-d-manno pyranoside (19) was obtained. This glycosyl-acceptor with 2,3,4,6-tetra-O-benzyl-α-d-glucopyranosyl chloride to give trisaccharide derivative 22 and with 2,3,6-tri-O-(α-2H2)benzyl-4-O-(2,3,4,6-tetra-O-(α-2H2)benzyl-α-d-glucopyranosyl)-α-d-glucopyranosyl chloride to give tetrasaccharide derivative 29. Deblocking of 22 yielded 8-methoxycarbonyloctyl O-(α-d-glucopyranosyl)-(1→3)-O-α-l-rhamnopyranosyl-(1→3)-2-acetamido-2-deoxy-β-d-mannopyranoside and deblocking of 29 8-methoxycarbonyloctyle O-α-d-glucopyranosyl-(1→4)-O-α-d-glucopyranosyl-(1→3)-O-α-l-rhamnopyranosyl- (1→3)-2-acetamido-2-deoxy-β-d-mannopyranoside. Both oligosaccharides represent the “repeating unit” of the O-specific chain of the lipopolysaccharide from Aeromonas salmonicida.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号