首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pseudomonas chlororaphis subsp. aurantiaca SR1 was evaluated for control of Macrophomina phaseolina in vitro and in soybean plants, for growth promotion of soybean plants and for production of antifungal compounds. Strain SR1 caused a significant inhibition of M. phaseolina in vitro and reduced damping-off in the in vivo assays. In addition, strain SR1 significantly increased shoot and root length and shoot and root dry weight of soybean plants in M. phaseolina infested soil, as compared to control plants in infested soil. Fragments for the phenazine-1-carboxylic acid, pyrrolnitrin and hydrogen cyanide encoding genes were amplified from the DNA of strain SR1 after polymerase chain reaction (PCR) assays with specific primers. Thus, this study establishes that P. chlororaphis subsp. aurantiaca SR1 provides control of M. phaseolina in vivo and suggests that strain SR1 might be applied as an effective biocontrol agent to protect soybean plants from this phytopathogen.  相似文献   

2.
The gene of tryptophan 7-halogenase was isolated from the Pseudomonas aureofaciens ACN strain producing pyrrolnitrin, a chlorocontaining antibiotic, and sequenced. A high homology degree (over 95%) was established for the genes and the corresponding halogenases from P. aureofaciens ACN and P. fluorescens BL915. The tryptophan 7-halogenase gene was amplified by PCR, and the corresponding enzyme was expressed in Escherichia coli cells using the pBSII SK+ vector.  相似文献   

3.
The O-specific polysaccharide obtained by mild-acid degradation of lipopolysaccharide of Aeromonas bestiarum P1S was studied by sugar and methylation analyses along with 1H and 13C NMR spectroscopy. The sequence of the sugar residues was determined using 1H,1H NOESY and 1H,13C HMBC experiments. The O-specific polysaccharide was found to be a high-molecular-mass polysaccharide composed of tetrasaccharide repeating units of the structureSince small amounts of a terminal Quip3N residue were identified in methylation analysis, it was assumed that the elucidated structure also represented the biological repeating unit of the O-specific polysaccharide.  相似文献   

4.
The effects of Glomus mosseae and Paecilomyces lilacinus on Meloidogyne javanica of tomato were tested in a greenhouse experiment. Chicken layer manure was used as a carrier substrate for the inoculum of P. lilacinus. The following parameters were used: gall index, average number of galls per root system, plant height, shoot and root weights. Inoculation of tomato plants with G. mosseae did not markedly increase the growth of infected plants with M. javanica. Inoculation of plants with G. mosseae and P. lilacinus together or separately resulted in similar shoots and plant heights. The highest root development was achieved when mycorrhizal plants were inoculated with P. lilacinus to control root-knot nematode. Inoculation of tomato plants with G. mosseae suppressed gall index and the average number of galls per root system by 52% and 66%, respectively, compared with seedlings inoculated with M. javanica alone. Biological control with both G. mosseae and P. lilacinus together or separately in the presence of layer manure completely inhibited root infection with M. javanica. Mycorrhizal colonization was not affected by the layer manure treatment or by root inoculation with P. lilacinus. Addition of layer manure had a beneficial effect on plant growth and reduced M. javanica infection.  相似文献   

5.
The O-specific polysaccharide (O-antigen) structure of a Shigella flexneri type 4a strain from the Dysentery Reference Laboratory (London, UK) was elucidated in 1978 and its characteristic feature was found to be α-d-glucosylation of GlcNAc at position 6, which defines O-factor IV. Our NMR spectroscopic studies of the O-specific polysaccharides of two other strains belonging to S. flexneri type 4a (G1668 from Adelaide, Australia, and 1359 from Moscow, Russia) confirmed the carbohydrate backbone structure but revealed in both strains an additional component, ethanolamine phosphate (EtnP), attached at position 3 of one of the rhamnose residues:

Phosphorylation has not been hitherto reported in any S. flexneri O-antigen. Reinvestigation of the O-specific polysaccharide of S. flexneri type 4b showed that it is not phosphorylated and confirmed its structure established earlier.  相似文献   

6.
The O-specific polysaccharide from the lipopolysaccharide of Cronobacter sakazakii G2592 was studied by sugar analysis along with 1D and 2D 1H and 13C NMR spectroscopy, and the following structure of the pentasaccharide repeating unit was established:This structure is unique among the known bacterial polysaccharide structures, which is in accord with classification of strain G2592 into a new C. sakazakii serotype, O7. It is in agreement with the O-antigen gene cluster of this strain, which was found between the housekeeping genes JUMPStart and gnd and characterized by sequencing and tentative assignment of the gene functions.  相似文献   

7.
To investigate the biocontrol effectiveness of the antibiotic producing bacterium, Pseudomonas aureofaciens 63–28 against the phytopathogen Rhizoctonia solani AG-4 on Petri plates and in soybean roots, growth response and induction of PR-proteins were estimated after inoculation with P. aureofaciens 63–28 (P), with R. solani AG-4 (R), or with P. aureofaciens 63–28 + R. solani AG-4 (P + R). P. aureofaciens 63–28 showed strong antifungal activity against R. solani AG-4 pathogens in Petri plates. Treatment with P. aureofaciens 63–28 alone increased the emergence rate, shoot fresh weight, shoot dry weight and root fresh weight at 7 days after inoculation, when compared to R. solani AG-4; P + R treatment showed similar effects. Peroxidase (POD) and β-1,3-glucanase activity of P. aureofaciens 63–28 treated roots increased by 41.1 and 49.9%, respectively, compared to control roots. POD was 26% greater in P + R treated roots than R. solani treated roots. Two POD isozymes (59 and 27 kDa) were strongly induced in P + R treated roots. The apparent molecular weight of chitinase from treated roots, as determined through SDS-PAGE separation and comparison with standards, was about 29 kDa. Five β-1,3-glucanase isozymes (80, 70, 50, 46 and 19 kDa) were observed in all treatments. These results suggest that inoculation of soybean plants with P. aureofaciens 63–28 elevates plant growth inhibition by R. solani AG-4 and activates PR-proteins, potentially through induction of systemic resistance mechanisms.  相似文献   

8.
We recently reported that a strain of the non-pathogenic bacterial species Pseudomonas chlororaphis was capable of producing the biosurfactant molecule, rhamnolipids. Previous to this report the organisms known to produce rhamnolipids were almost exclusively pathogens. The newly described P. chlororaphis strain produced rhamnolipids at room temperature in static minimal media, as opposed to previous reports of rhamnolipid production which occurred at elevated temperatures with mechanical agitation. The non-pathogenic nature and energy conserving production conditions make the P. chlororaphis strain an attractive candidate for commercial rhamnolipid production. However, little characterization of molecular/biochemical processes in P. chlororaphis have been reported. In order to achieve a greater understanding of the process by which P. chlororaphis produces rhamnolipids, a survey of proteins differentially expressed during rhamnolipid production was performed. Separation and measurement of the bacteria’s proteome was achieved using Beckman Coulter’s Proteome Lab PF2D packed column-based protein fractionation system. Statistical analysis of the data identified differentially expressed proteins and known orthologues of those proteins were identified using an AB 4700 Proteomics Analyzer mass spectrometer system. A list of proteins differentially expressed by P. chlororaphis strain NRRL B-30761 during rhamnolipid production was generated, and confirmed through a repetition of the entire separation process.Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.  相似文献   

9.
绿针假单胞菌(Pseudomonas chlororaphis)是目前研究较多的生防菌种之一.19世纪初被Miguela首次分离,将其鉴定为假单胞菌(Pseudomonas),并将机会性病原菌绿脓杆菌作为其模式菌株,而后Peix于2007年重新将其分类为绿针假单胞菌(P.chlororaphis).目前该菌种已报道有4...  相似文献   

10.
Siunova  T. V.  Kochetkov  V. V.  Validov  Sh. Z.  Suzina  N. E.  Boronin  A. M. 《Microbiology》2002,71(6):670-676
Plasmid pBS501, responsible for the resistance of the wild-type Pseudomonas sp. BS501(pBS501) to cobalt and nickel ions, was conjugatively transferred to the rhizosphere Pseudomonas aureofaciens strain BS1393, which is able to synthesize phenazine antibiotics and to suppress a wide range of phytopathogenic microorganisms. The transconjugant P. aureofaciens BS1393(pBS501) turned out to be resistant to cobalt and nickel with an MIC of 8 mM. When grown in a synthetic medium with 0.25 mM cobalt, the transconjugant accumulated 6 times more cobalt than the wild-type strain BS501(pBS501) (1.2 versus 0.2 g Co/mg protein). Electron microscopic studies showed that cobalt accumulates on the surface of transconjugant cells in the form of electron-opaque granules. In a culture medium with 2 mM cobalt or nickel, strain BS1393 produced phenazine-1-carboxylic acid in trace amounts. The transconjugant P. aureofaciens BS1393(pBS501) produced this antibiotic in still smaller amounts. Unlike the parent strain BS1393, the transconjugant P. aureofaciens BS1393(pBS501) was able to suppress in vitro the growth of the phytopathogenic fungus Gaeumannomyces graminis var. tritici1818 in a medium containing 0.5 mM cobalt or nickel.  相似文献   

11.
The localization of bacterial cell, pattern of colonization, and survival of Methylobacterium suomiense CBMB120 in the rhizosphere of rice and tomato plants were followed by confocal laser scanning, scanning electron microscopy, and selective plating. M. suomiense CBMB120 was tagged with green fluorescent protein (gfp), and inoculation was carried out through seed source. The results clearly showed that the gfp marker is stably inherited and is expressed in planta allowing for easy visualization of M. suomiense CBMB120. The colonization differed in rice and tomato—intercellular colonization of surface-sterilized root sections was visible in tomato but not in rice. In both rice and tomato, the cells were visible in the substomatal chambers of leaves. Furthermore, the strain was able to compete with the indigenous microorganisms and persist in the rhizosphere of tomato and rice, assessed through dilution plating on selective media. The detailed ultra-structural study on the rhizosphere colonization by Methylobacterium put forth conclusively that M. suomiense CBMB120 colonize the roots and leaf surfaces of the plants studied and is transmitted to the aerial plant parts from the seed source.  相似文献   

12.
Saline soils constitute a serious production problem for vegetable crops as they are known to suppress plant growth. One of the possible measures to improve crop health in such conditions is to use salt-tolerant bacterial inoculants which can control diseases and promote plant growth. In the present work the ability of Pseudomonas chlororaphis isolate TSAU13 to promote cucumber and tomato plant growth and to improve fruit yield by protecting these plants against soil-borne pathogens in salinated soil were investigated. The bacterial strain stimulated shoot growth (up to 32%), dry matter (up to 43%), and the fruit yield of tomato and cucumber (up to 16%) compared to the uninoculated control plants under saline conditions. The strain was able to survive on the root of 2-month-old plants. 29% of the cucumber and 27% of the tomato plants which had grown in soil to which no Fusarium solani spores had been added were diseased, whereas in the presence of the pathogenic fungus 58% of the cucumber and 52% tomato plants had disease symptoms. P. chlororaphis TSAU13 showed statistically significant disease reduction in comparison to the Fusarium-uninfected and infected control plants. Those results showed that P. chlororaphis TSAU13 has a great biotechnological potential in improvement of vegetable production in commercial greenhouses under saline conditions.  相似文献   

13.
It was found that atypical R–S dissociation in the type strain A. brasilense Sp7 is not accompanied by drastic changes in the polysaccharide moieties of bacterial lipopolysaccharides but is rather due to different contributions of two O-specific polysaccharides (found in both R and S dissociants) to the age-dependent architectonics of the cell surface.  相似文献   

14.
The production of phenazine-1-carboxylic acid (PCA) and 2-hydroxyphenazine (2-OH-PHZ) makes Pseudomonas chlororaphis GP72 an effective biocontrol agent. In order to understand how production of PCA is regulated by RpoN, an insertional mutation in rpoN has been made in P. chlororaphis GP72. Production of PCA in the rpoN mutant strain GP72N decreased both in King’s B medium and in Pigment Producing Medium. Moreover, the expression of the translational fusion phzA′–′lacZ was reduced about 2-fold in GP72N compared to wild type strain, whatever the growth medium is. Complementation of rpoN gene in mutant GP72N restored its motility and its PCA biosynthesis ability. However, overexpression of RpoN had no major effects on the expression of the RpoN-dependent phenotypes described in this study for P. chlororaphis GP72. These results suggest that RpoN is involved as a positive regulator in the regulation of PCA biosynthesis in P. chlororaphis GP72.  相似文献   

15.
Summary Pseudomonas fluorescens strain CHA0 produces hydrogen cyanide (HCN), a secondary metabolite that accounts largely for the biocontrol ability of this strain. In this study, we examined the role of HCN production by CHA0 as an antagonistic factor that contributes to biocontrol of Meloidogyne javanica, the root-knot nematode, in situ. Culture filtrate of CHA0, resulting from 1/10-strength nutrient broth yeast extract medium amended with glycine, inhibited egg hatch and caused mortality of M. javanica juveniles in vitro. The bacterium cultured under high oxygen-tension conditions exhibited better inhibitory effects towards nematodes, compared to its cultivation under excess oxygen situation. Growth medium amended with 0.50 or 1.0 mM FeEDDHA further improved hatch inhibition and nematicidal activity of the strain CHA0. Strain CHA77, an HCN-negative mutant, failed to exert such toxic effects, and in this strain, antinematode activity was not influenced by culture conditions. Exogenous cyanide also inhibited egg hatch and caused mortality of M. javanica juveniles in vitro. Strains CHA0 or CHA77 applied in unsterilized sandy-loam soil as drench, caused marked suppression of root-knot disease development incited by M. javanica in tomato seedlings. However, efficacy of CHA77 was noticeably lower compared to its wild type counterpart CHA0. An increased bioavailability of iron following EDTA application in soil substantially improved nematode biocontrol potential of CHA0 but not that of CHA77. Soil infestation with M. javanica eggs resulted in significantly lower nematode population densities and root-knot disease compared to the juveniles used as root-knot disease-inducing agents. Strain CHA0 significantly suppressed nematode populations and inhibited galling in tomato roots grown in soil inoculated with eggs or juveniles and treated with or without EDTA. Strain CHA0 exhibited greater biocontrol potential in soil inoculated with eggs and treated with EDTA. To demonstrate that HCN synthesis by the strain CHA0 acts as the inducing agent of systemic resistance in tomato, efficacy of the strain CHA0 was compared with CHA77 in a split root trial. The split-root experiment, guaranteeing a spatial separation of the inducing agent and the challenging pathogen, showed that HCN production by CHA0 is not crucial in the induction of systemic resistance in tomato against M. javanica, because the HCN-negative-mutant CHA77 induced the same level of resistance as the wild type but exogenous cyanide in the form of KCN failed to trigger the resistance reaction. In the root section where both nematode and the bacterium were present, strain CHA0 reduced nematode penetration to a greater extent than CHA77, suggesting that for effective control of M. javanica, a direct contact between HCN-producing CHA0 and the nematode is essential.  相似文献   

16.
Bacteria belonging to the genus Aeromonas are Gram-negative mesophilic and essentially ubiquitous in the microbial biosphere; moreover they are considered very important pathogens in fish and responsible for a great variety of human infections.The virulence of Gram-negative bacteria is often associated with the structure of lipopolysaccharides, which consist of three regions covalently linked: the glycolipid (lipid A), the oligosaccharide region (core region) and the O-specific polysaccharide (O-chain, O-antigen).The O-chain region seems to play an important role in host-pathogen interaction. In the case of Aeromonas hydrophila the majority of pathogenic strains belongs to serogroups O:11, O:16, O:18 and O:34. In this paper, we report the complete structure of the O-chain of A. hydrophila strain A19 (serogroup O:14), a pathogenic strain isolated from European eels, which showed high virulence when tested in trout or mice. Dried cells were extracted by the PCP (phenol/chloroform/petroleum ether) method obtaining the lipopolysaccharide. After mild acid hydrolysis the lipid A was removed by centrifugation and the obtained polysaccharide was fully characterized by means of chemical analysis and one- and two-dimensional NMR spectroscopy. All the data collected are directed towards the following structure:  相似文献   

17.
苏云金芽胞杆菌幕虫亚种T02菌株的伴胞晶体在芽胞外壁内侧形成,呈现晶胞粘连的现象。在此菌株中克隆了cry26Aacry28Aa两个基因,并对晶胞粘连现象与质粒的相关性做了系统研究。通过消除幕虫亚种T02菌株的质粒,得到了仅消除cry26Aa所在质粒的菌株BMB1151和无质粒的菌株BMB1152。通过穿梭载体将cry26Aacry28Aa两个基因分别和同时转化无质粒突变株BMB1152并表达,形成的晶体与芽胞独立存在不能粘连,表明在幕虫亚种染色体背景下仅仅cry的表达不能形成晶胞粘连现象,从而推断晶胞粘连现象可能与幕虫亚种两个基因所在的质粒有关;进一步的研究发现将cry26Aa在仅消除cry26Aa所在质粒的突变株BMB1151中表达,形成的晶体与芽胞也分别独立存在不能粘连,从而进一步推断幕虫亚种晶胞粘连现象与cry26Aa所在质粒有关。  相似文献   

18.
Strains of Enterobacter cloacae show promise as biological control agents for Pythium ultimum-induced damping-off on cucumber and other crops. Enterobacter cloacae M59 is a mini-Tn5 Km transposon mutant of strain 501R3. Populations of M59 were significantly lower on cucumber roots and decreased much more rapidly than those of strain 501R3 with increasing distance from the soil line. Strain M59 was decreased or deficient in growth and chemotaxis on most individual compounds detected in cucumber root exudate and on a synthetic cucumber root exudate medium. Strain M59 was also slightly less acid resistant than strain 501R3. Molecular characterization of strain M59 demonstrated that mini-Tn5 Km was inserted in cyaA, which encodes adenylate cyclase. Adenylate cyclase catalyzes the formation of cAMP and cAMP levels in cell lysates from strain M59 were approximately 2% those of strain 501R3. Addition of exogenous, nonphysiological concentrations of cAMP to strain M59 restored growth (1 mM) and chemotaxis (5 mM) on synthetic cucumber root exudate and increased cucumber seedling colonization (5 mM) by this strain without serving as a source of reduced carbon, nitrogen, or phosphorous. These results demonstrate a role for cyaA in colonization of cucumber roots by Enterobacter cloacae.  相似文献   

19.
From Pseudomonas chlororaphis D-TR133 a pyoverdine was isolated and its primary structure were elucidated by spectroscopic methods and degradation reactions. Despite some structural differences, its Fe(III) complex and that of the pyoverdine from Pseudomonas fluorescens CHA0 were taken up by either strain with a high rate. This is explained by a structural similarity between the two pyoverdines which were shown to differ in their structures only by the replacement of Lys by Ala in the C-terminal part of the molecules. An unexpected feature is that the main pyoverdine of P. chlororaphis D-TR133 is accompanied by a minor one where specifically one Ala is replaced by Gly. So far amino acid variations in the peptide chain of pyoverdines produced by a given strain had not been observed amongst the producers of the about fifty pyoverdines reported in the literature.  相似文献   

20.
Local beneficial rhizobacteria were selected based upon their ability to control the fungus Fusarium oxysporum f. sp. radicis-lycopersici which causes crown and root rot of tomato. Seven out of 384 strains prevailed in multiple and dual cultures and were identified as Pseudomonas chlororaphis (one strain), Bacillus cereus (one strain), Serratia marcescens (three strains) and Serratia rubidaea (two strains), by sequencing the 16S rRNA or the 16S and 23S rRNA inter-spacer region. The seven selected rhizobacteria were tested for their biocontrol and growth-promoting effects in planta, and their antifungal properties in vitro. All strains significantly reduced disease severity under controlled conditions, in a gnotobiotic system and in pots. Moreover, one P. chlororaphis and one S. marcescens strain significantly decreased disease severity to the level of the healthy control under natural conditions in pots experiments. The inhibitory activity of bacterial liquid cultures' metabolites on the fungus was demonstrated for all strains in vitro, using filter paper, thin layer chromatography and microtiter bioassays. Genes encoding phenazines were tentatively detected by PCR in the P. chlororaphis strain and chitinase-encoding genes were detected in one S. rubidaea and all three S. marcescens strains. Production of phenazine-1-carboxamide and hydrogen cyanide was evidenced for the P. chlororaphis strain while protease activity and production of siderophore-like compounds was confirmed in all bacterial strains. Possible use of these strains as biological control agents and their impact on natural biocontrol of pathogens in soils is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号