首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In the bioconversion of lignocellulosic materials to ethanol, pretreatment of the material prior to enzymatic hydrolysis is essential to obtain high overall yields of sugar and ethanol. In this study, steam pretreatment of fast-growing Salix impregnated with sulfuric acid has been investigated by varying the temperature (180-210 degrees C), the residence time (4, 8 or 12 min), and the acid concentration (0.25% or 0.5% (w/w) H(2)SO(4)). High sugar recoveries were obtained after pretreatment, and the highest yields of glucose and xylose after the subsequent enzymatic hydrolysis step were 92% and 86% of the theoretical, respectively, based on the glucan and xylan contents of the raw material. The most favorable pretreatment conditions regarding the overall sugar yield were 200 degrees C for either 4 or 8 min using 0.5% sulfuric acid, both resulting in a total of 55.6g glucose and xylose per 100g dry raw material. Simultaneous saccharification and fermentation experiments were performed on the pretreated slurries at an initial water-insoluble content of 5%, using ordinary baker's yeast. An overall theoretical ethanol yield of 79%, based on the glucan and mannan content in the raw material, was obtained.  相似文献   

2.
Xie R  Tu M  Wu Y  Adhikari S 《Bioresource technology》2011,102(7):4938-4942
5-Hydroxymethylfurfural (HMF) and furfural could be separated by the Aminex HPX-87H column chromatography, however, the separation and quantification of acetic acid and levulinic acid in biomass hydrolysate have been difficult with this method. In present study, the HPLC separation of acetic acid and levulinic acid on Aminex HPX-87H column has been investigated by varying column temperature, flow rate, and sulfuric acid content in the mobile phase.The column temperature was found critical in resolving acetic acid and levulinic acid. The resolution for two acids increased dramatically from 0.42 to 1.86 when the column temperature was lowered from 60 to 30 °C. So did the capacity factors for levulinic acid that was increased from 1.20 to 1.44 as the column temperature dropped. The optimum column temperature for the separation was found at 45 °C. Variation in flow rate and sulfuric acid concentration improved not as much as the column temperature did.  相似文献   

3.
Levulinic acid production from wheat straw   总被引:4,自引:0,他引:4  
Chang C  Cen P  Ma X 《Bioresource technology》2007,98(7):1448-1453
Studies were carried out on the effects of temperature, acid concentration, liquid:solid ratio and reaction time on levulinic acid production from wheat straw using response surface methodology. The P-value of the coefficient for acid concentration was 0.0002, suggesting that this was highly significant. The quadratic effects of temperature and liquid:solid ratio were also significant and their P-values were <0.0001 and 0.0027, respectively. The coefficient determination (R(2)) was good for the second-order model. The optimal conditions for levulinic acid production from wheat straw were 209.3 degrees C, 3.5% acid concentration, 15.6 liquid:solid ratio and 37.6 min of reaction time resulted 19.86% yield.  相似文献   

4.
Olive stones (whole stones and seed husks in fragments) were processed by steam-explosion under different experimental conditions of temperature and time, 200-236 degrees C for 2-4 min, with or without previous acid impregnation with 0.1%, H2SO4 (w/w). This paper examines the solubilization of hemicelluloses and their molecular weight distribution. The subsequent enzymatic hydrolysis of the solid residue, using a preparation of cellulase, was also studied. The maximum yield of the pentosan recovered in the water solution was 63% pentose in the starting material for seed husk treated at 200 degrees C for 2 min (log R0 3.24) prior to acid-impregnation, or at 215 degrees C for 2 min (log R0 3.69) without acid, compared to 39% of the potential yield for whole stones pre-impregnated with acid under more severe conditions (at log R0 = 4.07). This indicates that the autohydrolysis of hemicellulose in seed husks when compared to whole stones is enhanced. The molecular weight distribution of profile sugars showed that the depolymerization of hemicelluloses is a function of the severity of the treatment. Steam-explosion improved the accessibility of the cellulose and increased the enzymatic hydrolysis yield after steam-explosion with respect to material without steam explosion (ball-milled material), although little increase in the extent of saccharification occurred when the alkali-soluble lignin was removed. Only when the substrate was post-treated with Na-chlorite was the enzymatic hydrolysis improved, the water-insoluble residue being almost completely hydrolyzed in 8 h of incubation.  相似文献   

5.
Photoperiod sensitive (PS) sorghum, with high soluble sugar content, high mass yield and high drought tolerance in dryland environments, has great potential for bioethanol production. The effect of diluted sulfuric acid pretreatment on enzymatic hydrolysis was investigated. Hydrolysis efficiency increased from 78.9 to 94.4% as the acid concentration increased from 0.5 to 1.5%. However, the highest total glucose yield (80.3%) occurred at the 1.0% acid condition because of the significant cellulose degradation at the 1.5% concentration. Synchrotron wide-angle X-ray diffraction was used to study changes of the degree of crystallinity. With comparison of cellulosic crystallinity and adjusted cellulosic crystallinity, the crystalline cellulose decreased after low acidic concentration (0.5%) applied, but did not change significantly, as the acid concentration increased. Scanning electron microscopy was also employed to understand how the morphological structure of PS sorghum changed after pretreatment. Under current processing conditions, the total ethanol yield is 74.5% (about 0.2 g ethanol from 1 g PS sorghum). A detail mass balance was also provided.  相似文献   

6.
Bio-refinery processes require use of the most suitable lignocellulosic biomass for enzymatic saccharification and microbial fermentation. Glucose yield from biomass solid fractions obtained after dilute sulfuric acid (1%) pretreatment (at 180 °C) was investigated using 14, 8, and 16 varieties of rice, wheat, and sorghum, respectively. Biomass solid fractions of each crop showed similar cellulose content. However, glucose yield after enzymatic hydrolysis (cellulase loading at 6.6 filter paper unit/g-biomass) was different among the varieties of each crop, indicating genotypic differences for rice, wheat, and sorghum. Nuclear magnetic resonance method revealed that the high residual level of lignin aromatic regions decreased glucose yield from solid fraction of sorghum.  相似文献   

7.
Deicers from renewable resources are needed to overcome the disadvantages of using traditional deicers. Salts made from levulinic acid produced using grain sorghum as raw material were tested as road deicing agents. Freezing points of these salts viz., sodium levulinate, magnesium levulinate and calcium levulinate along with rock salt (sodium chloride) were determined according to American Society for Testing and Materials (ASTM) D 1177-94 standard at concentrations of 10, 20, 30 and 40 % w/w. There were significant differences among the freezing points of the salts. Freezing points for rock salt, sodium levulinate, calcium levulinate and magnesium levulinate, for different concentrations, were in the ranges of -6.6 to -20.5, -2.9 to -15.0, -2.1 to -7.8 and -1.5 to -6.5 degrees C, respectively. Deicing effectiveness of the salts of levulinic acid were investigated by conducting small-scale deicing tests with aqueous solutions of various salt concentrations (2%, 5% and 10%) in a laboratory freezer and by spraying the deicer on a graveled surface covered by ice and snow with the average temperature during the testing at -2.7 degrees C. Deicing capabilities of the three salts of levulinic acid differed. At -2.7 degrees C, all three salts caused melting of the ice. Among the different levulinates studied sodium levulinate was the most effective deicing agent. These salts of levulinates could be a viable replacement for traditional deicers and could help in reducing the disadvantages of traditional deicers.  相似文献   

8.
A 2(2) full factorial design was employed to evaluate the effects of sulfuric acid loading and residence time on the composition of sugarcane bagasse hydrolysate obtained in a 250-L reactor. The acid loading and the residence time were varied from 70 to 130 mg acid per gram of dry bagasse and from 10 to 30 min, respectively, while the temperature (121 degrees C) and the bagasse loading (10%) were kept constant. Both the sulfuric acid loading and the residence time influenced the concentrations of xylose and inhibitors in the hydrolysate. The highest xylose concentration (22.71 g/L) was achieved when using an acid loading of 130 mg/g and a residence time of 30 min. These conditions also led to increased concentrations of inhibiting byproducts in the hydrolysate. All of the hydrolysates were vacuum-concentrated to increase the xylose concentration, detoxified by pH alteration and adsorption into activated charcoal, and used for xylitol bioproduction in a stirred tank reactor. Neither the least (70 mg/g, 10 min) nor the most severe (130 mg/g, 30 min) hydrolysis conditions led to the best xylitol production (37.5 g/L), productivity (0.85 g/L h), and yield (0.78 g/g).  相似文献   

9.
Levulinic acid, a competitive inhibitor of delta-aminolevulinic acid dehydratase, was used to inhibit cytochrome biosynthesis in growing yeast cells. In Saccharomyces cerevisiae the antimetabolite acts by inhibiting delta-aminolevulinic acid dehydratase in vivo, causing an accumulation of intracellular delta-aminolevulinic acid and simultaneous decreases in all classes of mitochondrial cytochromes. Changes in cellular cytochrome content with increasing levulinic acid concentration suggested the existence of different regulatory patterns in S. cerevisiae and Candida utilis. In C. utilis, cytochrome a.a3 formation is very resistant to the antimetabolite action of levulinic acid. In this aerobic yeast, cytochrome c+c1 is the most sensitive to levulinic acid, and cytochrome b exhibits intermediate sensitivity.  相似文献   

10.
Studies were conducted to establish optimal conditions for the acid hydrolysis of sweet potato for maximal ethanol yield. The starch contents of two sweet potato cultivars (Georgia Red and TG-4), based on fresh weight, were 21.1 +/- 0.6% and 27.5 +/- 1.6%, respectively. The results of acid hydrolysis experiments showed the following: (1) both hydrolysis rate and hydroxymethylfurfural (HMF) concentration were a function of HCL concentration, temperature, and time; (2) the reducing sugars were rapidly formed with elevated concentrations of HCl and temperature, but also destroyed quickly; and (3) HMF concentration increased significantly with the concentration of HCl, temperature, and hydrolysis time.Maximum reducing sugar value of 84.2 DE and 0.056% HMF (based on wet weight) was achieved after heating 8% SPS for 15 min in 1N HCl at 110 degrees C. Degraded 8% SPS (1N HCl, 97 degrees C for 20 min or 110 degrees C for 10 min) was utilized as substrate for ethanol fermentation and 3.8% ethanol (v/v) was produced from 1400 mL fermented wort. This is equal to 41.6 g ethanol (200 proof) from 400 g of fresh sweet potato tuber (Georgia Red) or an ethanol yield potential of 431 gal of 200-proof ethanol/acre (from 500 bushel tubers/acre).  相似文献   

11.
Fast pyrolysis of bagasse pretreated by sulfuric acid was conducted in a fixed bed reactor to prepare levoglucosenone (LGO), a very important anhydrosugar for organic synthesis. The liquid yield and LGO yield were studied at temperatures from 240 to 350 °C and sulfuric acid loadings from 0.92 to 7.10 wt.%. An optimal LGO yield of 7.58 wt.% was obtained at 270 °C with a sulfuric acid pretreatment concentration of 0.05 M (corresponding to 4.28 wt.% sulfuric acid loading). For comparison, microcrystalline cellulose pretreated by 0.05 M sulfuric acid solution was pyrolyzed at temperature from 270 °C to 320 °C, and bagasse loaded with 3-5 wt.% phosphoric acid was pyrolyzed at temperature from 270 °C to 350 °C. The highest yield of LGO from bagasse was 30% higher than that from microcrystalline cellulose, and treatment with sulfuric acid allowed a 21% higher yield than treatment with phosphoric acid.  相似文献   

12.
Hydrolysis of the straw material Paja Brava, a sturdy grass characteristic for the high plains of Bolivia, was studied in order to find suitable conditions for hydrolysis of the hemicellulose and cellulose parts. Dried Paja Brava material was pre-steamed, impregnated with dilute sulfuric acid (0.5% or 1.0% by wt), and subsequently hydrolyzed in a reactor at temperatures between 170 and 230 degrees C for a reaction time between 3 and 10 min. The highest yield of xylose (indicating efficient hydrolysis of hemicellulose) were found at a temperature of 190 degrees C, and a reaction time of 5-10 min, whereas considerably higher temperatures (230 degrees C) were needed for hydrolysis of cellulose. Fermentability of hemicellulose hydrolyzates was tested using the xylose-fermenting yeast species Pichia stipitis, Candida shehatae and Pachysolen tannophilus. The fermentability of hydrolyzates decreased strongly for hydrolyzates produced at temperatures higher than 200 degrees C.  相似文献   

13.
Sorghum contaminated with a total concentration of aflatoxin B1 (AFB1) and aflatoxin B2 (AFB2) at 140 ± 7.3 ng/g was extrusion-cooked in a single screw extruder. The temperature profile in the barrel sections of the extruder was 80–150–200 °C. The flour moisture content (M.C.) was adjusted at 200, 250 and 300 g/kg by means of aqueous citric acid at concentrations of 0, 0.5, 1, 2, 4 and 8N. The barrel temperature profile, in combination with the M.C. and the citric acid concentration, significantly affected the extent of aflatoxin reduction in the extruded sorghum. The recovered aflatoxin decreased with an increase in M.C. and acid concentration. The maximum percentage of aflatoxins degraded from cooking the milled sorghum ranged from 17 to 92%. Even when using a severe extrusion condition combined with high citric acid concentrations, acceptable product colour, viscosity, functional and textural properties were obtained.  相似文献   

14.
In this study, hydrolysis of marine algal biomass Kappaphhycus alvarezii using two different acid catalysts was examined with the goal of identifying optimal reaction conditions for the formation of sugars and by-products. K. alvarezii were hydrolyzed by autoclave using sulfuric acid or hydrochloric acid as catalyst with different acid concentrations (0.1-1.0 M), substrate concentrations (1.0-13.5%), hydrolysis time (10-90 min) and hydrolysis temperatures (100-130 (°)C). A difference in galactose, glucose, reducing sugar and total sugar content was observed under the different hydrolysis conditions. Different by-product compounds such as 5-hydroxymethylfurfural and levulinic acid were also observed under the different reaction conditions. The optimal conditions for hydrolysis were achieved at a sulfuric acid concentration, temperature and reaction time of 0.2 M, 130 °C and 15 min, respectively. These results may provide useful information for the development of more efficient systems for biofuel production from marine biomass.  相似文献   

15.
The effect of ZnCl2 on the degradation of cellulose was studied to develop conditions to produce useful feedstock chemicals directly from cellulosic biomass. Cellulose containing 0.5 mol of ZnCl2/mol of glucose unit of cellulose was found to degrade at 200 °C when heated for more than 60 s in air. The major non-gaseous products of the degradation were identified as furfural, 5-hydroxymethylfurfural and levulinic acid. The maximum yields for furfural and 5-hydroxymethylfurfural are 8% and 9%, respectively, based on glucose unit of cellulose. These yields are reached after 150 s of heating at 200 °C. A cellulose sample containing 0.5 mol of ZnCl2/mol of glucose unit of cellulose and 5.6 equivalents of water when heated for 150 s at 200 °C produced levulinic acid as the only product in 6% yield. The ZnCl2 mediated controlled degradation of cellulose at 200 °C is shown to produce useful feedstock chemicals in low yield.  相似文献   

16.
Sweet sorghum was used as the raw material for the lactate production by a strain of Lactobacillus paracasei. The submerged conversion of sugar juice obtained from sweet sorghum by extraction could be accomplished with the same efficiency as observed in a control experiment with MRS-glucose medium (final lactate concentration of 88–106 g/l, lactate yield of 91–95%, duration of the fermentation of 24–32 h). Finely ground stalks of sorghum served as the substrate in the solid-state fermentation. The lactate accumulation in the solid medium and the lactate yield were optimized up to values comparable with the results from the submerged fermentation (final lactate concentration of 90 g/kg, lactate yield of 91–95%). However, the duration of the fermentation amounted to 120–200 h in the solid-state process. The data from a series of experiments performed at variable values of temperatures between 30°C and 36°C and initial sugar concentrations between 60 g/kg and 115 g/kg, and degrees of moisture between 78% and 82% was the basis of a polynomial multidimensional regression. As a result, simple three-dimensional model functions were obtained for the maximum productivity of lactate formation, the lactate yield and the time required for a 90% conversion.  相似文献   

17.
Maleic acid-catalyzed hemicellulose hydrolysis reaction in corn stover was analyzed by kinetic modeling. Kinetic constants for Saeman and biphasic hydrolysis models were analyzed by an Arrhenius-type expansion which include activation energy and catalyst concentration factors. The activation energy for hemicellulose hydrolysis by maleic acid was determined to be 83.3 +/- 10.3 kJ/mol, which is significantly lower than the reported E(a) values for sulfuric acid catalyzed hemicellulose hydrolysis reaction. Model analysis suggest that increasing maleic acid concentrations from 0.05 to 0.2 M facilitate improvement in xylose yields from 40% to 85%, while the extent of improvement flattens to near-quantitative by increasing catalyst loading from 0.2 to 1 M. The model was confirmed for the hydrolysis of corn stover at 1 M maleic acid concentrations at 150 degrees C, resulting in a xylose yield of 96% of theoretical. The refined Saeman model was used to evaluate the optimal condition for monomeric xylose yield in the maleic acid-catalyzed reaction: low temperature reaction conditions were suggested, however, experimental results indicated that bi-phasic behavior dominated at low temperatures, which may be due to the insufficient removal of acetyl groups. A combination of experimental data and model analysis suggests that around 80-90% xylose yields can be achieved at reaction temperatures between 100 and 150 degrees C with 0.2 M maleic acid.  相似文献   

18.
Jeong TS  Kim YS  Oh KK 《Bioresource technology》2011,102(22):10529-10534
Two-stage acid hydrolysis was conducted on easy reacting cellulose and resistant reacting cellulose of fractionated Gelidium amansii (f-GA). Acid hydrolysis of f-GA was performed at between 170 and 200 °C for a period of 0-5 min, and an acid concentration of 2-5% (w/v, H2SO4) to determine the optimal conditions for acid hydrolysis. In the first stage of the acid hydrolysis, an optimum glucose yield of 33.7% was obtained at a reaction temperature of 190 °C, an acid concentration of 3.0%, and a reaction time of 3 min. In the second stage, a glucose yield of 34.2%, on the basis the amount of residual cellulose from the f-GA, was obtained at a temperature of 190 °C, a sulfuric acid concentration of 4.0%, and a reaction time 3.7 min. Finally, 68.58% of the cellulose derived from f-GA was converted into glucose through two-stage acid saccharification under aforementioned conditions.  相似文献   

19.
Poly(beta-hydroxybutyrate-co-beta-hydroxyvalerate) (P(3HB-co-3HV)) copolymers were prepared via shake-flask fermentations of Burkholderia cepacia (formerly Pseudomonas cepacia) containing 2.2% (w/v) xylose and concentrations of levulinic acid ranging from 0.07% to 0.67% (w/v). Periodic harvest of shake-flask cultures from 48 to 92 h post-inoculation yielded 4.4-5.3 g/L of dry cell biomass, containing 42-56% (w/w) P(3HB-co-3HV), with optimal product yield occurring between 66 and 74 h. Growth and PHA accumulation enhancement were observed with concentrations of levulinic acid from 0.07 to 0.52% (w/v), producing dry cell biomass and P(3HB-co-3HV) yields of 9.5 and 4.2 g/L, respectively, at the 0.52% (w/v) concentration of levulinic acid. Representative samples were subjected to compositional analysis by 300 MHz 1H and 150 MHz 13C NMR, indicating that these random copolymers contained between 0.8 and 61 mol % 3-hydroxyvalerate (3HV). Solvent-cast film samples were characterized by differential scanning calorimetry, which demonstrated melting temperatures (Tm) to decrease in a pseudoeutectic fashion from 174.3 degrees C (0.8 mol % 3HV) to a minimum of 154.2 degrees C (25 mol % 3HV) and the glass transition temperatures (Tg) to decrease linearly from 2.1 to -11.9 degrees C as a function of increasing mol % 3HV. Thermogravimetric analysis of the copolymer series showed the temperature for onset of thermal decomposition (T(decomp)) to vary as a function of mol % 3HV from 273.4 to 225.5 degrees C. Intrinsic viscosities (eta) varied from 3.2 to 5.4 dL/g, as determined by dilute solution viscometry. Viscosity average molecular weights (Mv) of the copolymers were determined to range from 469 to 919 kDa, indicating that these P(3HB-co-3HV) copolymers are of sufficient molecular mass for commercial application.  相似文献   

20.
以大黄酸含量为参考指标,通过单因素实验分别考察硫酸浓度(A)、液料比(B)、提取加热时间(C)、提取加热温度(D)对大黄中大黄酸提取量的影响,并根据单因素试验结果设计正交试验。结果表明,影响大黄中大黄酸提取工艺的主次因素为:加热温度D>加热时间C>硫酸浓度A>液料比B,大黄中大黄酸的最佳提取工艺为:15%硫酸、5∶1液料比、55℃加热回流2.5 h。此法操作性强,优选出最佳提取工艺条件,为开发大黄中泻下有效部位提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号