首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Two major components of climate change, increasing atmospheric [CO2] and increasing temperature, may substantially alter the effects of water availability to plants through effects on the rate of water loss from leaves. We examined the interactive effects of elevated [CO2] and temperature on seasonal patterns of stomatal conductance (gs), transpiration (E) and instantaneous transpiration efficiency (ITE) in Douglas‐fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings. Seedlings were grown in sunlit chambers at either ambient CO2 (AC) or ambient + 180 µmol mol?1 CO2 (EC), and at ambient temperature (AT) or ambient + 3·5 °C (ET) in a full‐factorial design. Needle gas exchange at the target growth conditions was measured approximately monthly over 21 months. Across the study period and across temperature treatments, growth in elevated [CO2] decreased E by an average of 12% and increased ITE by an average of 46%. The absolute reduction of E associated with elevated [CO2] significantly increased with seasonal increases in the needle‐to‐air vapour pressure deficit (D). Across CO2 treatments, growth in elevated temperature increased E an average of 37%, and did not affect ITE. Combined, growth in elevated [CO2] and elevated temperature increased E an average of 19% compared with the ACAT treatment. The CO2 supply and growth temperature did not significantly affect stomatal sensitivity to D or the relationship between gs and net photosynthetic rates. This study suggests that elevated [CO2] may not completely ameliorate the effect of elevated temperature on E, and that climate change may substantially alter needle‐level water loss and water use efficiency of Douglas‐fir seedlings.  相似文献   

2.
In order to separate the net effect of growth at elevated [CO2] on stomatal conductance (gs) into direct and acclimatory responses, mid‐day values of gs were measured for plants grown in field plots in open‐topped chambers at the current ambient [CO2], which averaged 350 μmol mol?1 in the daytime, and at ambient + 350 μmol mol?1[CO2] for winter wheat, winter barley, potato and sorghum. The acclimatory response was determined by comparing gs measured at 700 μmol mol?1[CO2] for plants grown at the two [CO2]. The direct effect of increasing [CO2] from 350 to 700 μmol mol?1 was determined for plants grown at the lower concentration. Photosynthetic rates were measured concurrently with gs. For all species, growth at the higher [CO2] significantly reduced gs measured at 700 μmol mol?1[CO2]. The reduction in gs caused by growth at the higher [CO2] was larger for all species on days with low leaf to air water vapour pressure difference for a given temperature, which coincided with highest conductances and also the smallest direct effects of increased [CO2] on conductance. For barley, there was no other evidence for stomatal acclimation, despite consistent down‐regulation of photosynthetic rate in plants grown at the higher [CO2]. In wheat and potato, in addition to the vapour pressure difference interaction, the magnitude of stomatal acclimation varied directly in proportion to the magnitude of down‐regulation of photosynthetic rate through the season. In sorghum, gs consistently exhibited acclimation, but there was no down‐regulation of photosynthetic rate. In none of the species except barley was the direct effect the larger component of the net reduction in gs when averaged over measurement dates. The net effect of growth at elevated [CO2] on mid‐day gs resulted from unique combinations of direct and acclimatory responses in the various species.  相似文献   

3.
An elevated atmospheric CO2 concentration ([CO2]) can reduce stomatal conductance of leaves for most plant species, including rice (Oryza sativa L.). However, few studies have quantified seasonal changes in the effects of elevated [CO2] on canopy evapotranspiration, which integrates the response of stomatal conductance of individual leaves with other responses, such as leaf area expansion, changes in leaf surface temperature, and changes in developmental stages, in field conditions. We conducted a field experiment to measure seasonal changes in stomatal conductance of the uppermost leaves and in the evapotranspiration, transpiration, and evaporation rates using a lysimeter method. The study was conducted for flooded rice under open‐air CO2 elevation. Stomatal conductance decreased by 27% under elevated [CO2], averaged throughout the growing season, and evapotranspiration decreased by an average of 5% during the same period. The decrease in daily evapotranspiration caused by elevated [CO2] was more significantly correlated with air temperature and leaf area index (LAI) rather than with other parameters of solar radiation, days after transplanting, vapor‐pressure deficit and FAO reference evapotranspiration. This indicates that higher air temperatures, within the range from 16 to 27 °C, and a larger LAI, within the range from 0 to 4 m2 m?2, can increase the magnitude of the decrease in evapotranspiration rate caused by elevated [CO2]. The crop coefficient (i.e. the evapotranspiration rate divided by the FAO reference evapotranspiration rate) was 1.24 at ambient [CO2] and 1.17 at elevated [CO2]. This study provides the first direct measurement of the effects of elevated [CO2] on rice canopy evapotranspiration under open‐air conditions using the lysimeter method, and the results will improve future predictions of water use in rice fields.  相似文献   

4.
It has been reported that elevated temperature accelerates the time‐to‐mortality in plants exposed to prolonged drought, while elevated [CO2] acts as a mitigating factor because it can reduce stomatal conductance and thereby reduce water loss. We examined the interactive effects of elevated [CO2] and temperature on the inter‐dependent carbon and hydraulic characteristics associated with drought‐induced mortality in Eucalyptus radiata seedlings grown in two [CO2] (400 and 640 μL L?1) and two temperature (ambient and ambient +4 °C) treatments. Seedlings were exposed to two controlled drying and rewatering cycles, and then water was withheld until plants died. The extent of xylem cavitation was assessed as loss of stem hydraulic conductivity. Elevated temperature triggered more rapid mortality than ambient temperature through hydraulic failure, and was associated with larger water use, increased drought sensitivities of gas exchange traits and earlier occurrence of xylem cavitation. Elevated [CO2] had a negligible effect on seedling response to drought, and did not ameliorate the negative effects of elevated temperature on drought. Our findings suggest that elevated temperature and consequent higher vapour pressure deficit, but not elevated [CO2], may be the primary contributors to drought‐induced seedling mortality under future climates.  相似文献   

5.
Strawberry (Fragaria × ananassa) plants were grown in field plots at the current ambient [CO2], and at ambient + 300 and ambient + 600 μmol mol−1 [CO2]. Approximately weekly measurements were made of single leaf gas exchange of upper canopy leaves from early spring through fall of two years, in order to determine the temperature dependence of the stimulation of photosynthesis by elevated [CO2], whether growth at elevated [CO2] resulted in acclimation of photosynthesis, and whether any photosynthetic acclimation was reduced when fruiting created additional demand for the products of photosynthesis. Stimulation of photosynthetic CO2 assimilation by short-term increases in [CO2] increased strongly with measurement temperature. The stimulation exceeded that predicted from the kinetic characteristics of ribulose-1,5-bisphosphate carboxylase at all temperatures. Acclimation of photosynthesis to growth at elevated [CO2] was evident from early spring through summer, including the fruiting period in early summer, with lower rates under standard measurement conditions in plants grown at elevated [CO2]. The degree of acclimation increased with growth [CO2]. However, there were no significant differences between [CO2] treatments in total nitrogen per leaf area, and photosynthetic acclimation was reversed one day after switching the [CO2] treatments. Tests showed that acclimation did not result from a limitation of photosynthesis by triose phosphate utilization rate at elevated [CO2]. Photosynthetic acclimation was not evident during dry periods in midsummer, when the elevated [CO2] treatments conserved soil water and photosynthesis declined more at ambient than at elevated [CO2]. Acclimation was also not evident during the fall, when plants were vegetative, despite wet conditions and continued higher leaf starch content at elevated [CO2]. Stomatal conductance responded little to short-term changes in [CO2] except during drought, and changed in parallel with photosynthetic acclimation through the seasons in response to the long-term [CO2] treatments. The data do not support the hypothesis that source-sink balance controls the seasonal occurrence of photosynthetic acclimation to elevated [CO2] in this species. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
The atmospheric [CO2] in which crops grow today is greater than at any point in their domestication history and represents an opportunity for positive effects on seed yield that can counteract the negative effects of greater heat and drought this century. In order to maximize yields under future atmospheric [CO2], we need to identify and study crop cultivars that respond most favorably to elevated [CO2] and understand the mechanisms contributing to their responsiveness. Soybean (Glycine max Merr.) is a widely grown oilseed crop and shows genetic variation in response to elevated [CO2]. However, few studies have studied the physiological basis for this variation. Here, we examined canopy light interception, photosynthesis, respiration and radiation use efficiency along with yield and yield parameters in two cultivars of soybean (Loda and HS93‐4118) previously reported to have similar seed yield at ambient [CO2], but contrasting responses to elevated [CO2]. Seed yield increased by 26% at elevated [CO2] (600 μmol/mol) in the responsive cultivar Loda, but only by 11% in HS93‐4118. Canopy light interception and leaf area index were greater in HS93‐4118 in ambient [CO2], but increased more in response to elevated [CO2] in Loda. Radiation use efficiency and harvest index were also greater in Loda than HS93‐4118 at both ambient and elevated [CO2]. Daily C assimilation was greater at elevated [CO2] in both cultivars, while stomatal conductance was lower. Electron transport capacity was also greater in Loda than HS93‐4118, but there was no difference in the response of photosynthetic traits to elevated [CO2] in the two cultivars. Overall, this greater understanding of leaf‐ and canopy‐level photosynthetic traits provides a strong conceptual basis for modeling genotypic variation in response to elevated [CO2].  相似文献   

7.
Physiological processes of terrestrial plants regulate the land–atmosphere exchange of carbon, water, and energy, yet few studies have explored the acclimation responses of mature boreal conifer trees to climate change. Here we explored the acclimation responses of photosynthesis, respiration, and stomatal conductance to elevated temperature and/or CO2 concentration ([CO2]) in a 3‐year field experiment with mature boreal Norway spruce. We found that elevated [CO2] decreased photosynthetic carboxylation capacity (?23% at 25 °C) and increased shoot respiration (+64% at 15 °C), while warming had no significant effects. Shoot respiration, but not photosynthetic capacity, exhibited seasonal acclimation. Stomatal conductance at light saturation and a vapour pressure deficit of 1 kPa was unaffected by elevated [CO2] but significantly decreased (?27%) by warming, and the ratio of intercellular to ambient [CO2] was enhanced (+17%) by elevated [CO2] and decreased (?12%) by warming. Many of these responses differ from those typically observed in temperate tree species. Our results show that long‐term physiological acclimation dampens the initial stimulation of plant net carbon assimilation to elevated [CO2], and of plant water use to warming. Models that do not account for these responses may thus overestimate the impacts of climate change on future boreal vegetation–atmosphere interactions.  相似文献   

8.
Leaf gas exchange parameters and the content of ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) in the leaves of two 2‐year‐old aspen (Populus tremuloides Michx.) clones (no. 216, ozone tolerant and no. 259, ozone sensitive) were determined to estimate the relative stomatal and mesophyll limitations to photosynthesis and to determine how these limitations were altered by exposure to elevated CO2 and/or O3. The plants were exposed either to ambient air (control), elevated CO2 (560 p.p.m.) elevated O3 (55 p.p.b.) or a mixture of elevated CO2 and O3 in a free air CO2 enrichment (FACE) facility located near Rhinelander, Wisconsin, USA. Light‐saturated photosynthesis and stomatal conductance were measured in all leaves of the current terminal and of two lateral branches (one from the upper and one from the lower canopy) to detect possible age‐related variation in relative stomatal limitation (leaf age is described as a function of leaf plastochron index). Photosynthesis was increased by elevated CO2 and decreased by O3 at both control and elevated CO2. The relative stomatal limitation to photosynthesis (ls) was in both clones about 10% under control and elevated O3. Exposure to elevated CO2 + O3 in both clones and to elevated CO2 in clone 259, decreased ls even further – to about 5%. The corresponding changes in Rubisco content and the stability of Ci/Ca ratio suggest that the changes in photosynthesis in response to elevated CO2 and O3 were primarily triggered by altered mesophyll processes in the two aspen clones of contrasting O3 tolerance. The changes in stomatal conductance seem to be a secondary response, maintaining stable Ci under the given treatment, that indicates close coupling between stomatal and mesophyll processes.  相似文献   

9.
A lower than theoretically expected increase in leaf photosynthesis with long‐term elevation of carbon dioxide concentration ([CO2]) is often attributed to limitations in the capacity of the plant to utilize the additional photosynthate, possibly resulting from restrictions in rooting volume, nitrogen supply or genetic constraints. Field‐grown, nitrogen‐fixing soybean with indeterminate flowering might therefore be expected to escape these limitations. Soybean was grown from emergence to grain maturity in ambient air (372 µmol mol?1[CO2]) and in air enriched with CO2 (552 µmol mol?1[CO2]) using Free‐Air CO2 Enrichment (FACE) technology. The diurnal courses of leaf CO2 uptake (A) and stomatal conductance (gs) for upper canopy leaves were followed throughout development from the appearance of the first true leaf to the completion of seed filling. Across the growing season the daily integrals of leaf photosynthetic CO2 uptake (A′) increased by 24.6% in elevated [CO2] and the average mid‐day gs decreased by 21.9%. The increase in A′ was about half the 44.5% theoretical maximum increase calculated from Rubisco kinetics. There was no evidence that the stimulation of A was affected by time of day, as expected if elevated [CO2] led to a large accumulation of leaf carbohydrates towards the end of the photoperiod. In general, the proportion of assimilated carbon that accumulated in the leaf as non‐structural carbohydrate over the photoperiod was small (< 10%) and independent of [CO2] treatment. By contrast to A′, daily integrals of PSII electron transport measured by modulated chlorophyll fluorescence were not significantly increased by elevated [CO2]. This indicates that A at elevated [CO2] in these field conditions was predominantly ribulose‐1,5‐bisphosphate (RubP) limited rather than Rubisco limited. There was no evidence of any loss of stimulation toward the end of the growing season; the largest stimulation of A′ occurred during late seed filling. The stimulation of photosynthesis was, however, transiently lost for a brief period just before seed fill. At this point, daytime accumulation of foliar carbohydrates was maximal, and the hexose:sucrose ratio in plants grown at elevated [CO2] was significantly larger than that in plants grown at current [CO2]. The results show that even for a crop lacking the constraints that have been considered to limit the responses of C3 plants to rising [CO2] in the long term, the actual increase in A over the growing season is considerably less than the increase predicted from theory.  相似文献   

10.
Achieving higher canopy photosynthesis rates is one of the keys to increasing future crop production; however, this typically requires additional water inputs because of increased water loss through the stomata. Lowland rice canopies presently consume a large amount of water, and any further increase in water usage may significantly impact local water resources. This situation is further complicated by changing the environmental conditions such as rising atmospheric CO2 concentration ([CO2]). Here, we modeled and compared evapotranspiration of fully developed rice canopies of a high‐yielding rice cultivar (Oryza sativa L. cv. Takanari) with a common cultivar (cv. Koshihikari) under ambient and elevated [CO2] (A‐CO2 and E‐CO2, respectively) via leaf ecophysiological parameters derived from a free‐air CO2 enrichment (FACE) experiment. Takanari had 4%–5% higher evapotranspiration than Koshihikari under both A‐CO2 and E‐CO2, and E‐CO2 decreased evapotranspiration of both varieties by 4%–6%. Therefore, if Takanari was cultivated under future [CO2] conditions, the cost for water could be maintained at the same level as for cultivating Koshihikari at current [CO2] with an increase in canopy photosynthesis by 36%. Sensitivity analyses determined that stomatal conductance was a significant physiological factor responsible for the greater canopy photosynthesis in Takanari over Koshihikari. Takanari had 30%–40% higher stomatal conductance than Koshihikari; however, the presence of high aerodynamic resistance in the natural field and lower canopy temperature of Takanari than Koshihikari resulted in the small difference in evapotranspiration. Despite the small difference in evapotranspiration between varieties, the model simulations showed that Takanari clearly decreased canopy and air temperatures within the planetary boundary layer compared to Koshihikari. Our results indicate that lowland rice varieties characterized by high‐stomatal conductance can play a key role in enhancing productivity and moderating heat‐induced damage to grain quality in the coming decades, without significantly increasing crop water use.  相似文献   

11.
Uptake of CO2 by the leaf is associated with loss of water. Control of stomatal aperture by volume changes of guard cell pairs optimizes the efficiency of water use. Under water stress, the protein kinase OPEN STOMATA 1 (OST1) activates the guard‐cell anion release channel SLOW ANION CHANNEL‐ASSOCIATED 1 (SLAC1), and thereby triggers stomatal closure. Plants with mutated OST1 and SLAC1 are defective in guard‐cell turgor regulation. To study the effect of stomatal movement on leaf turgor using intact leaves of Arabidopsis, we used a new pressure probe to monitor transpiration and turgor pressure simultaneously and non‐invasively. This probe permits routine easy access to parameters related to water status and stomatal conductance under physiological conditions using the model plant Arabidopsis thaliana. Long‐term leaf turgor pressure recordings over several weeks showed a drop in turgor during the day and recovery at night. Thus pressure changes directly correlated with the degree of plant transpiration. Leaf turgor of wild‐type plants responded to CO2, light, humidity, ozone and abscisic acid (ABA) in a guard cell‐specific manner. Pressure probe measurements of mutants lacking OST1 and SLAC1 function indicated impairment in stomatal responses to light and humidity. In contrast to wild‐type plants, leaves from well‐watered ost1 plants exposed to a dry atmosphere wilted after light‐induced stomatal opening. Experiments with open stomata mutants indicated that the hydraulic conductance of leaf stomata is higher than that of the root–shoot continuum. Thus leaf turgor appears to rely to a large extent on the anion channel activity of autonomously regulated stomatal guard cells.  相似文献   

12.
Isoprene basal emission (the emission of isoprene from leaves exposed to a light intensity of 1000 µmol m?2 s?1 and maintained at a temperature of 30 °C) was measured in Phragmites australis plants growing under elevated CO2 in the Bossoleto CO2 spring at Rapolano Terme, Italy, and under ambient CO2 at a nearby control site. Gas exchange and biochemical measurements were concurrently taken. Isoprene emission was lower in the plants growing at elevated CO2 than in those growing at ambient CO2. Isoprene emission and isoprene synthase activity (IsoS) were very low in plants growing at the bottom of the spring under very rich CO2 and increased at increasing distance from the spring (and decreasing CO2 concentration). Distance from the spring did not significantly affect photosynthesis making it therefore unlikely that there is carbon limitation to isoprene formation. The isoprene emission rate was very quickly reduced after rapid switches from elevated to ambient CO2 in the gas‐exchange cuvette, whereas it increased when switching from ambient to elevated CO2. The rapidity of the response may be consistent with post‐translational modifications of enzymes in the biosynthetic pathway of isoprene formation. Reduction of IsoS activity is interpreted as a long‐term response. Basal emission of isoprene was not constant over the day but showed a diurnal course opposite to photosynthesis, with a peak during the hottest hours of the day, independent of stomatal conductance and probably dependent on external air temperature or temporary reduction of CO2 concentration. The present experiments show that basal emission rate of isoprene is likely to be reduced under future elevated CO2 levels and allow improvement in the modelling of future isoprene emission rates.  相似文献   

13.
We investigated the effect of elevated [CO2] (700 μmol mol?1), elevated temperature (+2 °C above ambient) and decreased soil water availability on net photosynthesis (Anet) and water relations of one‐year old potted loblolly pine (Pinus taeda L.) seedlings grown in treatment chambers with high fertility at three sites along a north‐south transect covering a large portion of the species native range. At each location (Blairsville, Athens and Tifton, GA) we constructed four treatment chambers and randomly assigned each chamber one of four treatments: ambient [CO2] and ambient temperature, elevated [CO2] and ambient temperature, ambient [CO2] and elevated temperature, or elevated [CO2] and elevated temperature. Within each chamber half of the seedlings were well watered and half received much less water (1/4 that of the well watered). Measurements of net photosynthesis (Anet), stomatal conductance (gs), leaf water potential and leaf fluorescence were made in June and September, 2008. We observed a significant increase in Anet in response to elevated [CO2] regardless of site or temperature treatment in June and September. An increase in air temperature of over 2 °C had no significant effect on Anet at any of the sites in June or September despite over a 6 °C difference in mean annual temperature between the sites. Decreased water availability significantly reduced Anet in all treatments at each site in June. The effects of elevated [CO2] and temperature on gs followed a similar trend. The temperature, [CO2] and water treatments did not significantly affect leaf water potential or chlorophyll fluorescence. Our findings suggest that predicted increases in [CO2] will significantly increase Anet, while predicted increases in air temperature will have little effect on Anet across the native range of loblolly pine. Potential decreases in precipitation will likely cause a significant reduction in Anet, though this may be mitigated by increased [CO2].  相似文献   

14.
Acclimation of photosynthesis to growth at elevated CO2 concentration varies markedly between species. Species functionally classified as stress-tolerators (S) and ruderals (R), are thought to be incapable, or the least capable, of responding positively in terms of growth to elevated [CO2]. Is this pattern of response also apparent in leaf photosynthesis of wild S- and R-strategists? Acclimatory loss of a photosynthetic and growth response to elevated [CO2] is assumed to reflect limitation on capacity to utilize additional photosynthate. The doubling of pre-industrial global [CO2] is expected to coincide with a 3 °C increase in mean temperature which could stimulate growth; will photosynthetic capacity at elevated [CO2] be greater when the concurrent temperature increase is simulated? Five species from natural grassland of NW Europe and of contrasting ecological strategy were grown in hemispherical greenhouses, environmentally controlled to track the external microclimate. Within a replicated design, plants were grown at (i) current ambient [CO2] and temperature, (ii) elevated [CO2] (ambient + 340 μmol mol–1) and ambient temperature, (iii) ambient [CO2] and elevated temperature (ambient + 3 °C), or (iv) elevated [CO2] and elevated temperature. After 75–104 days, the CO2 response of light-saturated rates of photosynthesis (Asat) was analysed in controlled-environment cuvettes in a field laboratory. There was no acclimatory loss of photosynthetic capacity with growth in elevated [CO2] or elevated temperature over this period in Poa alpina (S), Bellis perennis (R) or Plantago lanceolata (mixed C-S-R strategist), and a significant (P ? ? bl 0.05) increase in capacity in Helianthemum nummularium (S) and Poa annua (R). Photosynthetic rates of leaves grown and measured in elevated [CO2] were therefore significantly higher than rates for leaves grown and measured in ambient [CO2], for all species. With the exception of Poa alpina, stomatal conductance and stomatal limitation on Asat showed no acclimatory response to growth in elevated [CO2]. Carboxylation efficiency, determined from the initial slope of the response of Asat to intercellular CO2 concentration was significantly increased by elevated [CO2] and elevated temperature in H.nummularium, implying a possible increase in in vivo RubisCO activity. Increased carboxylation efficiency of this species was also reflected by an increase in the CO2- and light-saturated rates of photosynthesis, indicating an increased capacity for regeneration of the primary CO2 acceptor in photosynthesis. The results show that R-strategists and slow-growing S-strategists, are inherently capable of large increases in leaf photosynthetic capacity with growth in elevated [CO2] in contrast to expectations from growth studies. With the exception of P.annua, where there was a significant negative interaction between CO2 and temperature, concurrent increase in growth temperature had little effect on this pattern of response.  相似文献   

15.
Maize and grain sorghum seeds were sown in pots and grown for 39 days in sunlit controlled-environment chambers at 360 (ambient) and 720 (double-ambient, elevated) μmol mol−1 carbon dioxide concentrations [CO2]. Canopy net photosynthesis (PS) and evapotranspiration (TR) was measured throughout and summarized daily from 08:00 to 17:00 h Eastern Standard Time. Irrigation was withheld from matched pairs of treatments starting on 26 days after sowing (DAS). By 35 DAS, cumulative PS of drought-stress maize, compared to well-watered plants, was 41% lower under ambient [CO2] but only 13% lower under elevated [CO2]. In contrast, by 35 DAS, cumulative PS of drought-stress grain sorghum, compared to well-watered plants, was only 9% lower under ambient [CO2] and 7% lower under elevated [CO2]. During the 27-35 DAS drought period, water use efficiency (WUE, mol CO2 Kmol−1 H2O), was 3.99, 3.88, 5.50, and 8.65 for maize and 3.75, 4.43, 5.26, and 9.94 for grain sorghum, for ambient-[CO2] well-watered, ambient-[CO2] stressed, elevated-[CO2] well-watered and elevated-[CO2] stressed plants, respectively. Young plants of maize and sorghum used water more efficiently at elevated [CO2] than at ambient [CO2], especially under drought. Reductions in biomass by drought for young maize and grain sorghum plants were 42 and 36% at ambient [CO2], compared to 18 and 14% at elevated [CO2], respectively. Results of our water stress experiment demonstrated that maintenance of relatively high canopy photosynthetic rates in the face of decreased transpiration rates enhanced WUE in plants grown at elevated [CO2]. This confirms experimental evidence and conceptual models that suggest that an increase of intercellular [CO2] (or a sustained intercellular [CO2]) in the face of decreased stomatal conductance results in relative increases of growth of C4 plants. In short, drought stress in C4 crop plants can be ameliorated at elevated [CO2] as a result of lower stomatal conductance and sustaining intercellular [CO2]. Furthermore, less water might be required for C4 crops in future higher CO2 atmospheres, assuming weather and climate similar to present conditions.  相似文献   

16.
Soybeans were grown at three CO2 concentrations in outdoor growth chambers and at two concentrations in controlled-environment growth chambers to investigate the interactive effects of CO2, temperature and leaf-to-air vapour pressure difference (LAVPD) on stomatal conductance. The decline in stomatal conductance with CO2 was a function of both leaf temperature and LAVPD. In the field measurements, stomatal conductance was more sensitive to LAVPD at low CO2 at 30 °C but not at 35 °C. There was also a direct increase in conductance with temperature, which was greater at the two elevated carbon dioxide concentrations. Environmental growth chamber results showed that the relative stomatal sensitivity to LAVPD decreased with both leaf temperature and CO2. Measurements in the environmental growth chamber were also performed at the opposing CO2, and these experiments indicate that the stomatal sensitivity to LAVPD was determined more by growth CO2 than by measurement CO2. Two models that describe stomatal responses to LAVPD were compared with the outdoor data to evaluate whether these models described adequately the interactive effects of CO2, LAVPD and temperature.  相似文献   

17.
Rising atmospheric carbon dioxide concentration ([CO2]) significantly influences plant growth, development, and biomass. Increased photosynthesis rate, together with lower stomatal conductance, has been identified as the key factors that stimulate plant growth at elevated [CO2] (e[CO2]). However, variations in photosynthesis and stomatal conductance alone cannot fully explain the dynamic changes in plant growth. Stimulation of photosynthesis at e[CO2] is always associated with post‐photosynthetic secondary metabolic processes that include carbon and nitrogen metabolism, cell cycle functions, and hormonal regulation. Most studies have focused on photosynthesis and stomatal conductance in response to e[CO2], despite the emerging evidence of e[CO2]'s role in moderating secondary metabolism in plants. In this review, we briefly discuss the effects of e[CO2] on photosynthesis and stomatal conductance and then focus on the changes in other cellular mechanisms and growth processes at e[CO2] in relation to plant growth and development. Finally, knowledge gaps in understanding plant growth responses to e[CO2] have been identified with the aim of improving crop productivity under a CO2 rich atmosphere.  相似文献   

18.
To characterise the stomata of six temperate deciduous tree species, sets of stomatal sensitivities to all the most important environmental factors were measured. To compare the importance of abscisic acid (ABA) in the different stomatal responses, the effect of exogenous ABA on all the stomatal sensitivities was determined.Almost all the stomatal sensitivities: the sensitivity to a decrease in leaf water potential, air humidity, CO2 concentration ([CO2]) and light intensity, and to an increase in [CO2] and light intensity were the highest in the slow-growing species, and the lowest in the fast-growing species. Drought increased the sensitivity to the environmental changes that induce a decrease in the stomatal conductance, and decreased the sensitivity to the changes that induce an increase in this conductance. The sensitivities of the slow-growers were most strongly affected by drought and ABA. Therefore the success of the slow-growers in their ecological niches can be based on the highly sensitive and strictly regulated responses of their stomata. The fast-growers had the highest sensitivity to an increase in leaf water potential and this sensitivity was sharply reduced by drought and ABA. Thus, the dominance of the trees in riparian areas can be based on the ability of their stomata to quickly reach high conductance in well-watered conditions and to efficiently decrease this rate during drought.Stomatal sensitivities to the hydraulic environmental factors (water potentials in plant and air) had higher values in well-watered trees and a more pronounced response to drought than the sensitivities to the photosynthetic environmental factors ([CO2] and light intensity). Thus, the hydraulic factors most likely prevail over the photosynthetic factors in determining stomatal conductance in these species.In response to exogenous ABA, the rates of stomatal closure, following a decrease in air humidity and light intensity, and an increase in [CO2], were accelerated. Stomatal opening following an increase in air humidity and light intensity and a decrease in [CO2] was replaced by slow closing. The rate of stomatal opening following an increase in leaf water potential was reduced. As the sensitivities to changes in light were modified less by the ABA than the other stomatal sensitivities, the prediction of stomatal responses on the basis of the sensitivity to light alone should be excluded in stomatal models.  相似文献   

19.
Controversial evidence of CO2‐responsiveness of isoprene emission has been reported in the literature with the response ranging from inhibition to enhancement, but the reasons for such differences are not understood. We studied isoprene emission characteristics of hybrid aspen (Populus tremula x P. tremuloides) grown under ambient (380 μmol mol?1) and elevated (780 μmol mol?1) [CO2] to test the hypothesis that growth [CO2] effects on isoprene emission are driven by modifications in substrate pool size, reflecting altered light use efficiency for isoprene synthesis. A novel in vivo method for estimation of the pool size of the immediate isoprene precursor, dimethylallyldiphosphate (DMADP) and the activity of isoprene synthase was used. Growth at elevated [CO2] resulted in greater leaf thickness, more advanced development of mesophyll and moderately increased photosynthetic capacity due to morphological “upregulation”, but isoprene emission rate under growth light and temperature was not significantly different among ambient‐ and elevated‐[CO2]‐grown plants independent of whether measured at 380 μmol mol?1 or 780 μmol mol?1 CO2. However, DMADP pool size was significantly less in elevated‐[CO2]‐grown plants, but this was compensated by increased isoprene synthase activity. Analysis of CO2 and light response curves of isoprene emission demonstrated that the [CO2] for maximum isoprene emission was shifted to lower [CO2] in elevated‐[CO2]‐grown plants. The light‐saturated isoprene emission rate (Imax,Q) was greater, but the quantum efficiency at given Imax,Q was less in elevated‐[CO2]‐grown plants, especially at higher CO2 measurement concentration, reflecting stronger DMADP limitation at lower light and higher [CO2]. These results collectively demonstrate important shifts in light and CO2‐responsiveness of isoprene emission in elevated‐[CO2]‐acclimated plants that need consideration in modeling isoprene emissions in future climates.  相似文献   

20.
Photosynthetic activities of common spruce (Picea abies (L.) Karst.) and Dahurian larch (Larix gmelinii (Rupr) Rupr ex Kuzen) were analyzed on the basis of datasets obtained for 110- to 130-year-old forest stands in Middle Russia and East Siberia. Using a Li-Cor 6200 gas analyzer, photosynthesis was measured in parallel with transpiration, stomatal conductance, CO2 concentrations in ambient air and intercellular spaces, the photosynthetically active radiation, air temperature, and air humidity. The data were examined within the framework of a biochemical model of photosynthesis of Farquhar et al. [1] in combination with the stomatal conductance model proposed by Jarvis [2]. The species-specific differences in carbon assimilation rates were discovered, and dependences of photosynthesis on the needle age, light regime, and growth conditions were revealed. The model parameters obtained were used to simulate the photosynthetic rates in spruce and larch trees at various weather conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号