首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In capillary electrophoresis, effective optical signal quality improvement is obtained when high frequency (>100 Hz) external pulse fields modulate analyte velocities with synchronous lock-in detection. However, the pulse frequency is constrained under a critical value corresponding to the time required for the bulk viscous flow, which arises due to viscous momentum diffusion from the electro-osmotic slip in the Debye layer, to reach steady-state. By solving the momentum diffusion equation for transient bulk flow in the micro-channel, we show that this set-in time to steady-state and hence, the upper limit for the pulse frequency is dependent on the characteristic diffusion length scale and therefore the channel geometry; for cylindrical capillaries, the set-in time is approximately one half of that for rectangular slot channels. From our estimation of the set-in time and hence the upper frequency modulation limit, we propose that the half width of planar channels does not exceed 100 microm and that the radii of cylindrical channels be limited to 140 microm such that there is a finite working bandwidth range above 100 Hz and below the upper limit in order for flicker noise to be effectively suppressed.  相似文献   

2.
We demonstrate efficient mixing in a micro-fluidic reservoir smaller than 10 microL using ac electro-osmosis driven by field-induced polarization. Our mixing device, of that electrodes are outside of the mixing unit, consists of three circular reservoirs (3mm in diameter) connected by a 1 mm x 1 mm channel. Unlike dc electro-osmosis, whose polarization is from charged substrate functional groups, this new mechanism uses the external field to capacitively charge the surface and the surface capacitance becomes the key factor in the electrokinetic mobility. The charging and mixing are enhanced at tailor-designed channel corners by exploiting the high normal fields at geometric singularities. The induced surface dielectric polarization and the resulting electric counter-ion double layer produce an effective Zeta potential in excess of 1 V, over one order of magnitude larger than the channel Zeta potential. The resulting ac electro-osmotic slip velocity scales quadratically with respect to the applied field, in contrast to the linear scaling of dc electro-osmosis and at 1cm/s and larger, exceeds the classical dc values by two orders of magnitude. The polarization is non-uniform at the corners due to field leakage to the dielectric substrate and the inhomogeneous slip velocity produces intense mixing vortices that effectively homogenize solutes in 30s in a 3mm reservoir, in contrast to hour-long mixing by pure diffusion.  相似文献   

3.
The single signed integral pulse frequency modulation (SS-IPFM) is used in modeling neural communication processes. The reference signal crossing and in particular sine wave crossings (SWC) are used to describe physiological processes like vision. Under some restrictions upon the input signal it is possible to define SS-IPFM and SWC systems with identical output for the same modulation input. These restrictions and the exact compositions of the encoders are examined by comparison of both SS-IPFM and SWC to general form of Pulse Position Modulation (PPM) technique.  相似文献   

4.
A novel exposure system for double-blind human electromagnetic provocation studies has been developed that satisfies the precision, control of fields and potential artifacts, and provides the flexibility to investigate the response of hypotheses-driven electromagnetic field exposure schemes on brain function, ranging from extremely low frequency (ELF) to radio frequency (RF) fields. The system can provide the same exposure of the lateral cerebral cortex at two different RF frequencies (900 and 2140 MHz) but with different exposure levels at subcortical structures, and also allows uniform ELF magnetic field exposure of the brain. The RF modulation and ELF signal are obtained by a freely programmable arbitrary signal generator allowing a wide range of worst-case exposure scenarios to be simulated, including those caused by wireless devices. The maximum achievable RF exposure is larger than 60 W/kg peak spatial specific absorption rate averaged over 10 g of tissue. The maximum ELF magnetic field exposure of the brain is 800 A/m at 50 Hz with a deviation from uniformity of 8% (SD).  相似文献   

5.
A modeling approach to explain pulse design in bats   总被引:3,自引:1,他引:2  
In this modeling study we wanted to find out why bats of the family Vespertilionidae (and probably also members of other families of bats) use pulses with a certain bandwidth and duration. Previous studies have only speculated on the function of bandwidth and pulse duration in bat echolocation or addressed this problem by assuming that bats optimize echolocation parameters to achieve very fine acuities in receiving single echoes. Here, we take a different approach by assuming that bats in nature rarely receive single echoes from each pulse emission, but rather many highly overlapping echoes. Some echolocation tasks require individual echoes to be separated to reconstruct reflection points in space. We used an established hearing model to investigate how the parameters bandwidth and pulse duration influence the separation of overlapping echoes. Our findings corroborate the following previously unknown or unsubstantiated facts: 1. Broadening the bandwidth improves the bat's lower resolution limit. 2. Increasing the sweep rate (defined by bandwidth and pulse duration) improves acuity of each extracted echo. 3. Decreasing the sweep rate improves the probability of frequency channels being activated. Since facts 2 and 3 affect sweep rate in an opposing fashion, an optimum sweep rate will exist, depending on the quality of the returning echoes and the requirements of the bat to improve acuity. The existence of an optimal sweep rate explains why bats are likely to use certain combinations of bandwidth and pulse duration to obtain such sweep rates.  相似文献   

6.
Magnetic fields emanate from radial tires due to the presence of reinforcing belts which are made of magnetized steel wire. When these tires spin, they generate alternating magnetic fields of extremely low frequency (ELF), usually below 20 Hz. The fundamental frequency of these fields is determined by tire rotation rate and has a sinusoidal waveform with a high harmonic content. The static field of radial tires can exceed 500 microT at the tread, and the tire-generated alternating fields can exceed 2.0 microT at seat level in the passenger compartment of vehicles. Degaussing the tires reduces both the static and alternating fields to low levels, but the fields increase gradually over time after degaussing. The tire-generated fields are below the frequencies detected by most of the magnetic field meters used in previous studies of power frequency magnetic field health effects. If these fields are biologically active, failure to detect them could compromise exposure assessments associated with epidemiologic studies.  相似文献   

7.
T Fujikado  R Hayakawa  Y Wada 《Biopolymers》1979,18(9):2303-2314
Two new techniques, amplitude modulation (AM) and frequency modulation (FM) of an electric field, are developed for the light-scattering study of polymer solutions under ac electric fields. The AM technique makes it possible to observe accurately the frequency dependence of the intensity changes of scattered light due to the electric field. The FM one allows us to obtain directly the frequency derivative of the intensity change. The techniques are applied to DNA, poly(acrylic acid), and tobacco mosaic virus in the frequency range from 10 Hz to 100 kHz. A low-frequency relaxation is found for both DNA and poly(acrylic acid). The obsersved relaxation time of DNA agrees with that in the dielectric relaxation of DNA, which has been attributed to the rotation of the molecule with a quasipermanent dipole. In the case of poly(acrylic acid), the relaxation strength increases with increasing degree of neutralization. TMV at a concentration of 0.1% exhibits a negative relaxation at low frequencies, which indicates the rotation of TMV aggregate with a permanent dipole along its minor axis.  相似文献   

8.
Picosecond pulse electrical fields (psPEFs), due to their high temporal-resolution accuracy and localization, were viewed as a potential targeted and noninvasive method for neuromodulation. However, few studies have reported psPEFs regulating neuronal activity in vivo. In this paper, a preliminary study on psPEFs regulating action potentials in hippocampus CA1 of rats in vivo was carried out. By analyzing the neuronal spike firing rate in hippocampus CA1 pre- and post-psPEF stimulation, effects of frequency, duration, and dosimetry of psPEFs were studied. The psPEF used in this study had a pulse width of 500 ps and a field strength of 1 kV/mm, established by 1 kV picosecond voltage pulses. Results showed that the psPEF suppressed spike firing in hippocampal CA1 neurons. The suppression effect was found to be significant except for 10 s, 10 Hz. For short-duration stimulation (10 s), the inhibition rate of spike firing increased with frequency. At longer stimulation durations (1 and 2 min), the inhibition rate increased and decreased alternately as the frequency increased. Despite this, the inhibition rate at high frequencies (5 and 10 kHz) was significantly larger than that at 10 and 100 Hz. A cumulative effect of psPEF on spike firing inhibition was found at low frequencies (10 and 100 Hz), which was saturated when frequency reached 500 Hz or higher. This paper conducts a study on psPEF regulating spike firing in hippocampal CA1 in vivo for the first time and guides subsequent study on psPEF achieving noninvasive neuromodulation. © 2020 Bioelectromagnetics Society  相似文献   

9.
The propagation of a nonlinear right-hand polarized wave along an external magnetic field in subcritical plasma in the electron cyclotron resonance region is studied using numerical simulations. It is shown that a small-amplitude plasma wave excited in low-density plasma is unstable against modulation instability with a modulation period equal to the wavelength of the excited wave. The modulation amplitude in this case increases with decreasing detuning from the resonance frequency. The simulations have shown that, for large-amplitude waves of the laser frequency range propagating in plasma in a superstrong magnetic field, the maximum amplitude of the excited longitudinal electric field increases with the increasing external magnetic field and can reach 30% of the initial amplitude of the electric field in the laser wave. In this case, the energy of plasma electrons begins to substantially increase already at magnetic fields significantly lower than the resonance value. The laser energy transferred to plasma electrons in a strong external magnetic field is found to increase severalfold compared to that in isotropic plasma. It is shown that this mechanism of laser radiation absorption depends only slightly on the electron temperature.  相似文献   

10.
Electric birefringence studies of strongly elongated, rod-like particles of polytetrafluoroethylene (PTFE) in agarose gels show that the negative effect observed by semi-diluted aqueous suspensions at low frequencies and at low electric field strengths (the so called "anomaly') disappears. The absolute value of the low frequency effect increases 3-4 times and the amplitude of modulation decreases faster compared to that of the suspensions. This together with decreased decay relaxation times in gels make the possibilty that the PTFE particles orientation in gels is not due to dipolar but to electrophoretic orientation mechanism quite probable. Similar change in the orientation mechanism could be expected also for suspensions of higher concentrations. The further elucidation of the orientation mechanism using fractions with lower polydispersity, broader ranges of experimental conditions (particle concentration, ionic strength and composition, electric field strengths, frequencies, etc.) could be interest for several fields: colloid electro-optics and especially that of concentrated colloids, pulsed field gel electrophoresis of DNA (and especially its sinusoidal biased field variant) and of nucleoprotein complexes and for the gel research.  相似文献   

11.
Interaction between biological systems and environmental electric or magnetic fields has gained attention during the past few decades. Although there are a lot of studies that have been conducted for investigating such interaction, the reported results are considerably inconsistent. Besides the complexity of biological systems, the important reason for such inconsistent results may arise due to different excitation protocols that have been applied in different experiments. In order to investigate carefully the way that external electric or magnetic fields interact with a biological system, the parameters of excitation, such as intensity or frequency, should be selected purposefully due to the influence of these parameters on the system response. In this study, pancreatic β cell, the main player of blood glucose regulating system, is considered and the study is focused on finding the natural frequency spectrum of the system using modeling approach. Natural frequencies of a system are important characteristics of the system when external excitation is applied. The result of this study can help researchers to select proper frequency parameter for electrical excitation of β cell system. The results show that there are two distinct frequency ranges for natural frequency of β cell system, which consist of extremely low (or near zero) and 100–750 kHz frequency ranges. There are experimental works on β cell exposure to electromagnetic fields that support such finding.  相似文献   

12.
Summary Zygotes of the marine brown alga,Fucus serratus, have been subjected to the different modes of electric fields. 1) The result of a former study with conductive d.c. fields has been confirmed using electrostatic d.c. fields of 0.5 to 4 V/cm: the zygotes develop the cell polarity axis parallel to the imposed field with the rhizoid pole toward the cathode. 2) The frequency response to both, conductive and electrostatic, a.c. fields represents an optimum curve. The response,i.e. rhizoid formation at either or, in rare cases, both cell poles, peaks at square pulse durations,t E, of 70 to 120 ms. 3) The same frequency response appears if the pulse number is kept constant at 8s–1 by variation of the interval between the pulses,t o. Only fort oo > 200 ms,i.e. a pulse number of 3s–1 the response declines markedly. The data support our hypothesis that imposed electric fields induce cell polarityvia differential shift of the membrane potential rather than transcellular current flow. Furthermore, the given dose-response curves strikingly resemble those due to the other morphogenetically active signals: percent response consistently approximates the per cent signal intensity gradient which evokes it.  相似文献   

13.
Australian magpies (Gymnorhina tibicen) are notable for their vocal prowess. We investigated the syringeal and respiratory dynamics of vocalization by two 6-month-old males, whose songs had a number of adult features. There was no strong lateral syringeal dominance and unilateral phonation was most often achieved by closing the syringeal valve on the contralateral side of the syrinx. Unlike other songbirds studied, magpies sometimes used an alternative syringeal motor pattern during unilateral phonation in which both sides of the syrinx are partially adducted and open to airflow. Also, in contrast to most other songbirds, the higher fundamental frequency during two-voice syllables was usually generated on the left side of the syrinx. Amplitude modulation, a prominent feature of magpie song, was produced by linear or nonlinear interactions between different frequencies which may originate either on opposite sides of the syrinx or on the same side. Pulse tones, similar to vocal fry in human speech, were present in some calls. Unlike small songbirds, the fundamental of the modal frequency can be as low as that of the pulse tone, suggesting that large birds may have evolved pulse tones to increase acoustic diversity, rather than decrease the fundamental frequency.  相似文献   

14.
The photovoltaic signal associated with the primary photochemical event in an oriented bacteriorhodopsin film is measured by directly probing the electric field in the bacteriorhodopsin film using an ultrafast electro-optic sampling technique. The inherent response time is limited only by the laser pulse width of 500 fs, and permits a measurement of the photovoltage with a bandwidth of better than 350 GHz. All previous published studies have been carried out with bandwidths of 50 GHz or lower. We observe a charge buildup with an exponential formation time of 1.68 +/- 0.05 ps and an initial decay time of 31.7 ps. Deconvolution with a 500-fs Gaussian excitation pulse reduces the exponential formation time to 1.61 +/- 0.04 ps. The photovoltaic signal continues to rise for 4.5 ps after excitation, and the voltage profile corresponds well with the population dynamics of the K state. The origin of the fast photovoltage is assigned to the partial isomerization of the chromophore and the coupled motion of the Arg-82 residue during the primary event.  相似文献   

15.
Methods utilizing stem cells hold tremendous promise for tissue engineering applications; however, many issues must be worked out before these therapies can be routinely applied. Utilization of external cues for preimplantation expansion and differentiation offers a potentially viable approach to the use of stem cells in tissue engineering. The studies reported here focus on the response of murine neural stem cells encapsulated in alginate hydrogel beads to alternating current electric fields. Cell viability and differentiation was studied as a function of electric field magnitude and frequency. We applied fields of frequency (0.1–10) Hz, and found a marked peak in neural stem cell viability under oscillatory electric fields with a frequency of 1 Hz. We also found an enhanced propensity for astrocyte differentiation over neuronal differentiation in the 1 Hz cultures, as compared to the other field frequencies we studied. Published 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

16.
Factors that control the performance of a reversible immunosensor with an analyte (progesterone)-enzyme (horseradish peroxidase) conjugate as signal generator have been investigated. The conjugate is used in conjunction with two antibodies, which are specific to progesterone and to horseradish peroxidase, immobilized on two spatially separated polypropylene mesh discs. The conjugate and two antibodies are confined to an internal compartment of a microdialyzer by a semipermeable membrane. The small analyte from an external medium permeates across the membrane into the internal compartment where the analyte concentration determines the relative amounts of the bound conjugate on the two solid surfaces. By measuring two signals from the conjugate bound at two separate sites, we experimentally obtained time-response curves to a concentration pulse of the external analyte. A mathematical (kinetic) model describing the sensor system was developed and used for the determination of rate-limiting factors. In semicontinuous monitoring of the analyte concentrations, operation of the immunosensor with the enzyme conjugate as signal generator required special attention to (a) enzyme stability, (b) analyte permeation (dependence on medium components), and (c) kinetics related to the different accessibility to the same antibody of the small analyte (to be measured) vs. the larger counterpart on the enzyme conjugate (for signal generation). (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 221-231, 1997.  相似文献   

17.
There have been many attempts to develop a theoretical explanation of the phenomena of electromagnetic field interactions with biological systems. None of the reported efforts have been entirely successful in accounting for the observed experimental results, in particular with respect to the reports of interactions between extremely low frequency (ELF) magnetic fields and biological systems at ion cyclotron resonance frequencies. The approach used in this paper starts with the Lorentz force equation, but use is made of cylindrical co-ordinates and cylindrical boundary conditions in an attempt to more closely model the walls of an ion channel. The equations of motion of an ion that result from this approach suggest that the inside shape of the channel plus the ELF magnetic fields at specific frequencies and amplitudes could act as a gate to control the movement of the ion across the cell membrane.  相似文献   

18.
The biological effects of extremely low frequency magnetic fields (ELF MFs) on living organisms have been explored in many studies. Most of them demonstrate the biological effects caused by 50/60 Hz magnetic fields or pulsed magnetic fields. However, as the development of power electronics flourishes, the magnetic fields induced are usually in other different waveforms. This study aims to assess the effects of magnetic fields generated by inverter systems on the early growth of plants using mung beans as an example. In the experiment, an inverter which can produce sinusoidal pulsed width modulation (SPWM) voltages was used to drive 3 specially made circular coils and an AC motor. Six SPWM voltages with different fundamental frequencies (10, 20, 30, 40, 50, and 60 Hz) set on the inverter drive the circuit to produce the specific kinds of MFs. The results indicate that the magnetic field induced by a 20 or 60 Hz SPWM voltage has an enhancing effect on the early growth of mung beans, but the magnetic fields induced by SPWM voltages of other frequencies (30, 40, and 50 Hz) have an inhibitory effect, especially at 50 Hz.  相似文献   

19.
Rotating frame relaxation experiments in proteins are used to study slow motions on the microsecond to millisecond timescale. An on/off resonance rotating frame relaxation experiment (R(1)(rho)) has been developed that incorporates adiabatic rotations into a R(1)(rho)-R(1) constant relaxation time experiment with weak radio frequency field strengths in order to effectively lock the magnetization over a wide range of (15)N frequencies. The new pulse sequence allows the measurement of a wide range of chemical exchange timescales on the order of 1.0 to 0.05 ms over an asymmetric bandwidth from +1.7omega(l) to -0.5omega(l) in a single experiment. A total bandwidth of +/-l.7omega(l) is obtained by performing the experiment a second time with a reversed adiabatic rotation.  相似文献   

20.
In experiments with cats under the hexenal anesthesia it has been found that the transmission of information in multineuronic reflex ring carries out by frequency-dependent way. The optimum frequency subrange corresponds to each meaning of the modulation depth. Appearing signal distortions are accompanied by the phase lead of dorsal potentials with maximum on "resonance" frequency. The mechanism of presynaptic inhibition serves as control command amplifier. For all this the information signal amplitude grows, signal relation to noise increases, noise immunity of information transmission through the neuronic communication channel of multineuronic reflex ring improves considerably.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号