首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Root hydrogel, a hydrophilic polymer, has been used to improve transplanting success of bareroot conifer seedlings through effects on water holding capacity. We examined mechanisms by which Terra-sorb® Fine Hydrogel reduces damage that occurs when roots of 1-year old, dormant northern red oak (Quercus rubra L.) were subjected to short-term (1, 3, and 5 h) pre-transplanting desiccation and long-term (45 days) drought stress following transplanting in a controlled environment chamber or greenhouse conditions. Hydrogel-treated seedlings had 80% greater root moisture content than non-root dipped control seedlings following the pre-transplanting desiccation period. Hydrogel reduced root membrane leakiness by 31% 5 h after the desiccation exposure. Hydrogel-treated seedlings did not show greater differences in shoot length, plant dry mass, root volume, net photosynthesis, and stomatal conductance compared with control seedlings following the 45-day drought stress exposure. A reduction in mean number of days to bud break in hydrogel-treated seedlings, combined with delayed tissue moisture loss (linked to higher stem water potential), suggests that hydrogel may have provided stress protection to aid survival under short-term desiccation, which may be beneficial toward alleviating initial transplanting stress.  相似文献   

2.
In the southern United States, much of the emphasis in bottomland restoration is placed on establishing an oak-dominated forest. Artificial regeneration is an alternative for restoration on cleared lands and where a desirable seed source is not present. Currently the standard procedure for seedling preparation is to prune the roots prior to transplanting in the field. It is not fully known what effect(s) root pruning has on transplanted seedlings. In addition, bottomland restoration efforts inherently take place on floodplains. The potential interaction between root pruning and flooding on seedling performance is not known. This study consisted of two separate but related laboratory experiments. The purpose of the first experiment was to quantify the effects of various percentages of root removal and varying soil moisture regimes on transplanted Nuttall oak seedlings (Quercus nuttallii Palmer). Root pruning treatments consisted of removal of roots at 0%, 25% and 75% while soil moisture regime was maintained at non-flooded or periodically flooded conditions. Plant gas exchange, growth, and survival were measured. Root pruning alone had adverse effects on height growth during the first 72 days following transplanting. Periodic flooding also produced adverse effects on stomatal conductance (p = 0.0002), height growth (p = 0.005), and survival (p = 0.02). Photosynthetic data indicated that as pruning intensified in the periodically flooded seedlings, photosynthetic rates decreased. In contrast, as pruning intensified in the non-flooded seedlings, photosynthesis increased. This demonstrated that pruning rate had a varying effect on photosynthesis dependent upon soil moisture condition. Experiment 2 focused on the effects of varying degrees of root pruning on new root formation. The seedlings were grown under laboratory conditions, harvested at 0, 10, 20, and 30 days after treatment initiation, and analyzed for new root formation. Results of Experiment 2 indicated no difference in new root formation, root length, or root biomass due to the pruning treatment. Overall, our results from both experiments indicated that root pruning had no detectable long-term adverse effects on growth and survival of seedlings under drained soil conditions; however, as results from Experiment 1 demonstrated, if seedlings were planted in periodically flooded conditions, root pruning produced adverse effects. Thus, in restoration efforts utilizing Nuttall oak seedlings, the planting strategy and pruning rate should be carefully evaluated based on the knowledge of sites' hydrology. Alternatively, on sites with unpredictable flooding both pruned and unpruned seedlings may be utilized to ensure survival.  相似文献   

3.
The influence of a water deficit treatment and mycorrhizal inoculation with Pisolithus tinctorius (Pers.) Coker and Couch on the water relations, gas exchange, and plant growth in Arbutus unedo L. plants was studied in order to evaluate the hardening process during the nursery period. The ability to withstand the adverse conditions after transplantation was also studied. Mycorrhizal and non-mycorrhizal seedlings of A. unedo were pot-grown for 4 months in a greenhouse (nursery period), during which time two irrigation treatments, well watered (100% water holding capacity, leaching 20% of the applied water) and deficit irrigation (50% of the well watered), were applied. Subsequently, the plants were transplanted to the field and well irrigated (transplanting period), after which and until the end of the experiment they received no water (establishment period). At the end of the nursery period, both water deficit and mycorrhizae were seen to have altered the plant morphology. Mycorrhizal plants had lower leaf area and improved leaf color parameters, while the water deficit increased root dry weight and the root/shoot ratio. Mycorrhizal plants had higher leaf water potential values than non-inoculated plants. Mycorrhizae increased stomatal conductance and photosynthesis values, especially in stressed plants. Drought led to an osmotic adjustment and a decrease in the leaf water potential values at turgor loss point in the mycorrhizal plants. Cell wall rigidity, measured as increased bulk modulus of elasticity, was decreased by the mycorrhizae effect. After transplanting, no differences were found in the water relations or gas exchange values between treatments. During the establishment period, the plants that had been exposed to both drought and mycorrhizae showed a better water status (higher leaf water and turgor potential values) and higher gas exchange values. In conclusion, water deficit and mycorrhizal inoculation of A. unedo plants in nursery produced changes in tissue water relations, gas exchange, and growth, related with the acclimation process in the seedlings, which could provide better resistance to drought and stress conditions following planting.  相似文献   

4.
Previous studies suggest that the positive response of transplanted rice (Oryza sativa L.) to nursery fertiliser application was due to increased seedling vigour or possibly to increased nutrient content. This paper presents results of two glasshouse experiments designed to test the hypothesis that seedling vigour was responsible for the response of transplanted seedlings to nursery treatments. The aim of the present study was to explore the concept of seedling vigour of transplanted rice and to determine what plant attributes conferred vigour on the seedlings. Seedling vigour treatments were established by subjecting seedlings to short-term submergence (0, 1 and 2 days/week) in one experiment and to leaf clipping or root pruning and water stress in another to determine their effect on plant growth after transplanting. Submerging seedlings increased plant height but depressed shoot and root dry matter and root:shoot ratio of the seedling at 28 days after sowing. After transplanting these seedlings, prior submergence depressed shoot dry matter at 40 days. Nursery nutrient application increased plant height, increased root and shoot dry matter, but generally decreased root:shoot ratio. Pruning up to 60% of the roots at transplanting decreased shoot and root dry matter, P concentration in leaves at panicle initiation (PI) and straw dry matter and grain yield at maturity. By contrast, pruning 30% of leaves depressed shoot and root dry matter by 30% at PI, and root dry matter and straw and grain yield by 20% at maturity. The combined effects of leaf clipping and root pruning on shoot, root and straw dry matter were largely additive. It is concluded that the response of rice yield to nursery treatments is largely due to increased seedling vigour and can be effected by a range of nutritional as well as non-nutritional treatments of seedlings that increase seedling dry matter, nutrient content, and nutrient concentration. Impairment of leaf growth and to a lesser extent root growth in the nursery depressed seedling vigour after transplanting. However, rather than increasing stress tolerance, seedling vigour was more beneficial when post transplant growth was not limited by nutrient or water stresses.  相似文献   

5.
Summary Flooding ofPlatanus occidentalis L. seedlings for up to 40 days induced several changes including early stomatal closure, greatly accelerated ethylene production by stems, formation of hypertrophied lenticels and adventitious roots on submerged portions of stems, and marked growth inhibition. Poor adaptation ofPlatanus occidentalis seedlings to soil inundation was shown in stomatal closure during the entire flooding period, inhibition of root elongation and branching, and death of roots. Some adaptation to flooding was indicated by (1) production of hypertrophied lenticels which may assist in exchange of dissolved gases in flood water and in release of toxic compounds, and (2) production of adventitious roots on stems which may increase absorption of water. These adaptations appeared to be associated with greatly stimulated ethylene production in stems of flooded plants. The greater reduction of root growth over shoot growth in flooded seedlings will result in decreased drought tolerance after the flood waters recede. The generally low tolerance to flooding of seedlings of species that are widely rated as highly flood tolerant is emphasized.  相似文献   

6.
Two experiments were conducted to examine the response of Quercus rubra L. seedlings to coppicing. In a greenhouse experiment, growth, biomass distribution, leaf gas exchange, and water and carbohydrate relations were measured for 1-year-old seedlings that were either coppiced when dormant at the time of planting or left intact as controls. Coppicing induced sprouting from the base of the stem, and, in general, the physiology of sprouts and controls was similar. However, the relative growth rate (RGR) of sprouts was 9% higher than that of controls, allowing sprouts to compensate fully for the initial mass lost to coppicing. In a second experiment, in an outdoor cold frame, growth, biomass distribution, leaf gas exchange and plant water relations were measured on 1-year-old seedlings that were either coppiced at the time of planting (dormant-coppiced), coppiced soon after bud break (active-coppiced) or left intact (controls). Dormant coppicing again had little impact on seedling physiology, and dormant-coppiced plants again compensated for initial mass loss with a higher RGR. In contrast, active-coppiced seedlings did not compensate for initial mass loss, as their RGR did not differ from that of controls. By the tenth week of the study, leaf gas exchange rates of active-coppiced sprouts were higher than those of dormant-coppiced and control seedlings. Active-coppiced sprouts also had a greater soil-to-leaf hydraulic conductivity (expressed on a leaf area basis) and a lower ratio of leaf area to root surface area than did controls. Across treatments, photosynthetic rate and stomatal conductance were positively correlated with soil-to-leaf hydraulic conductivity, and gas exchange rates and hydraulic conductivity were negatively related to leaf:root area ratio. Thus, the removal of actively growing shoots may have altered subsequent leaf gas exchange largely through coppice-induced changes in leaf-root balance.  相似文献   

7.
Changes on abscisic acid (ABA), jasmonic acid (JA) and indole-3-acetic acid (IAA) levels were investigated in papaya seedlings (Carica papaya L.) cv. “Baixinho de Santa Amalia” under progressive water stress and subsequent rehydration. Also, the behaviour of leaf gas exchange and leaf growth was determined under stress condition. The results indicated that ABA and JA differ in their pattern of change under water stress. ABA continuously increased in leaves and roots during the whole period of stress whereas JA showed a sharp increase and a later decrease in both organs. Re-watering reduced rapidly (24 h) leaf and root ABA to control levels whereas the influence on JA levels could not be assessed. Drought and recovery did not alter IAA levels in leaf and root tissues of papaya seedlings. In addition, water stress reduced stomatal conductance, photosynthetic rate, transpiration rate, the percentage of attached leaves and leaf growth. Rehydration reverted in few days the effects of stress on leaf growth and gas exchange parameters. Overall, the data suggest that ABA could be involved in the induction of several progressive responses such as the induction of stomatal closure and leaf abscission to reduce papaya water loss. In addition, the pattern of accumulation of JA is compatible with a triggering signal upstream ABA. The unaltered levels of IAA could suggest a certain adaptive ability of papaya to maintain active physiological processes under progressive drought stress.  相似文献   

8.
Root pressure and plasma membrane intrinsic protein (PIP) availability in the xylem have been recognized to participate in the refilling of embolized conduits, yet integration of the two mechanisms has not been reported in the same plant. In this study, 4‐month‐old seedlings of a hybrid poplar (Populus alba × Populus glandulosa) clone 84K were subjected to two contrasting soil‐water treatments, with the drought treatment involving withholding of water for 17 days to reduce the soil‐water content to 10% of the saturated field capacity, followed by a re‐watering cycle. The percentage loss of stem hydraulic conductance (PLC) sharply increased, and stomatal conductance and photosynthesis declined in response to drought stress; these processes were gradually restored following the subsequent re‐watering. Embolism was most severe in the middle portions of the stem, followed by the basal and top portions of the stems of seedlings subjected to drought stress and subsequent re‐watering. Although drought stress eliminated root pressure, re‐watering partially restored it in a short period of time. The expression of PIP genes in the xylem was activated by drought stress, and some PIP genes were further stimulated in the top portion after re‐watering. The dynamics of root pressure and differential expression of PIP genes along the stem coincided with changes in PLC, suggesting that root pressure and PIPs work together to refill the embolized vessels. On the basis of the recovery dynamics in PLC and gsmax (maximum stomatal conductance) after re‐watering, the stomatal closure and xylem cavitation exhibited fatigue due to drought stress.  相似文献   

9.
The effect of (2RS, 3RS)-1-(4-Chlorophenyl)-4, 4-dimethyl-2-(1H-1,2,4 triazol-1-yl) pentan-3-ol (PP333) on the growth and transpiration of normal and root pruned colt rootstocks was measured. PP333 reduced plant height, stem diameter increment, leaf number, area and weight and stem weight. Root pruning reduced root, leaf and stem weight, and plant height in control plants. PP333 reduced both total water use and transpiration per unit leaf area and increased stomatal resistance. In control plants root pruning also reduced total water use and increased stomatal resistance. 15 days after the beginning of the experiment half the plants in all treatments were allowed to dry out. The effects of drought, i.e. reduced transpiration, growth and leaf water potentials, were smaller in PP333 treated than in control plants.  相似文献   

10.
Jones  M.  Sinclair  F.L.  Grime  V.L. 《Plant and Soil》1998,201(2):197-207
Soil cores were taken to estimate root length prior to transplanting and after 60 days growth of a dry season sorghum crop in an agroforestry experiment in a semi-arid region of north-east Nigeria. The experiment compared sorghum grown alone and with two tree species (Acacia nilotica subsp adstringens and Prosopis juliflora) and one management treatment (pruning of tree crowns). Data on soil water content were collected from 6 days before and 20, 60 and 110 days after sorghum transplanting. The main findings were: (i) Per unit root length, A. nilotica had a more negative effect on sorghum above and below ground than P. juliflora. This appeared to be correlated with greater rates of water extraction from layers of soil shared with crop roots; (ii) Crown pruning substantially reduced the competitive effect of P. juliflora on crop yield but did not affect the impact of A. nilotica on intercropped sorghum. Since the impact of pruning on tree-crop competition varies with species, tree species selection and management will be a key factor in determining the feasibility of dryland agroforestry systems.  相似文献   

11.
The regeneration and configuration of new roots on transplanted8 month old Pinus radiata D. Don seedlings were measured inrelation to soil temperature and time after transplanting. Theeffects of root wrenching and nutrition on root regenerationwere compared. Low soil temperature adversely affected the initiationand elongation of new roots. The branching and morphology ofthe new roots were also influenced by soil temperature. Theprocesses of initiation and elongation are greatly retardedbelow a critical root temperature between 11 and 14 ?C. Wrenchingand fertilization stimulated new root growth at low temperatures.There is a close interrelationship between the constituent partsof the network which forms the new root system. The first-orderlaterals on transplants are critical as a basic framework forextension and production of second-order laterals which formthe major part of the regenerating root system. Needle water potential was closely related to the new root growth.The water stress experienced by the transplants for severalweeks after planting was due primarily to the suppressive effectof low soil temperature on root regeneration. Wrenched plantswere less water-stressed than unwrenched plants. Field measurements confirmed the finding from controlled experimentsthat, in southern Australia, the low soil temperature in theplanting season imposes a major restriction on early root regenerationwhich in turn inflicts water stress in transplants. This needsto be considered during the planning of planting and fertilization.  相似文献   

12.
Hurricane Katrina caused large losses of bottomland hardwood forests on the Gulf Coastal Plain. Heavy‐seeded species such as oaks (Quercus) generally require direct planting for restoration after such losses. However, evaluating the performance of various oak planting stocks using biometric data alone can be challenging due to their slow juvenile growth and belowground carbon allocation. Our study goals were to evaluate physiological parameters including photosynthesis, stomatal conductance, and water‐use efficiency (WUE) and their correlation with annual height growth to determine differences in functional performance and drought tolerance between seedling types and whether physiology can predict height growth. Monthly growing season gas exchange measurements were made on two oak species (Quercus texana and Quercus shumardii) and three planting stocks (bare root, conventional containerized, large containerized [LC]) planted on two sites in coastal Mississippi. We found that photosynthesis decreased throughout the growing season while stomatal conductances increased leading to decreasing WUEs in all seedling types. Physiological parameters differed across planting stocks but not species. Particularly, LC seedlings exhibited greater WUEs and sensitivity to vapor pressure deficit (VPD) suggesting increased moisture stress compared with other planting stocks. Across seedling types, photosynthesis, stomatal sensitivity to VPD, and seasonal changes in intrinsic WUE measured in year one of the study were significantly correlated with year two, but not year one height growth, suggesting belowground allocation of carbon during the first growing season. In total, these results highlight the use of physiological measurements in selecting successful planting stocks for various site conditions.  相似文献   

13.
Summary A greenhouse study in which 24, 54 and 71 per cent roots of wheat (Triticum aestivum L.) were pruned on the 73rd day from the date of planting (anthesis stage) showed that during a 7-day period following root pruning, total transpiration and leaf water potential were significantly lower (P=0.05) and the stomatal resistance was significantly higher (P=0.05) where 54 and 71 per cent roots were pruned, as compared to no root pruning or 24 per cent root pruning. The leaf relative water content, however, showed no significant differences. Thus about one-fourth root sytem could be reduced without adversely affecting the plant-water status.  相似文献   

14.
Summary Stomatal conductance of unstrossed, soil drought, and previously drought (predrought) Gmelina arborea seedlings increased in the morning and decreased before or immediately after midday. In the unstressed and predrought seedlings, leaf water potential decreased with increases in transpiration. In soil drought seedlings, there was some evidence of decreased hydraulic conductivity from soil to the plant, as indicated by the shape in the slope of the water potential/transpiration relationship. Root growth of drought plants was greater than in their unstressed counterparts at the lowest soil segment of a pot. The partial recovery of predrought seedlings was attributed to this subtantial root growth in the lowest soil segment.In the second experiment, Gmelina arborea seedlings were partially waterlogged, by flooding the polyethylene bag to half its length, for a period of 23 days. Waterlogging induced stomatal closure and reduction in leaf water potential but there was some evidence of tolerance to waterlogging towards the end of treatment. Root growth, shoot and root dry weights were slightly reduced below those of controls. After 9 days of waterlogging, adventitious roots began to form which correlated with depletion of soluble sugars in the shoot but with an increase in the roots.It is suggested that the tolerance of Gmelina plants to either soil drought or waterlogging may partly be due to partitioning of the soluble sugars from shoot to roots for production of roots and formation of adventitious roots respectively which are likely to enhance the flow of water from the soils to the plant. Therefore the plant response is very similar under conditions of increased deficits and surplus of soil water.  相似文献   

15.
为探讨亚低温和干旱对植株水分传输的影响机制,以番茄幼苗为试材,利用人工气候室设置常温(昼25 ℃/夜18 ℃)和亚低温(昼15 ℃/夜8 ℃)环境,采用盆栽进行正常灌水(75%~85%田间持水量)和干旱处理(55%~65%田间持水量),分析了温度和土壤水分对番茄植株水分传输、气孔和木质部导管形态解剖结构的影响。结果表明: 与常温正常灌水处理相比,干旱处理使番茄叶水势、蒸腾速率、气孔导度、水力导度、茎流速率、气孔长度和叶、茎、根导管直径显著减小,而使叶、茎、根导管细胞壁厚度和抗栓塞能力增强;亚低温处理下番茄叶水势、蒸腾速率、气孔导度、水力导度和叶、茎、根导管直径显著降低,但气孔变大,叶、根导管细胞壁厚度和叶、茎、根抗栓塞能力显著升高。亚低温条件下土壤水分状况对番茄叶水势、蒸腾速率、气孔导度、水力导度、气孔形态、叶、根导管结构均无显著影响。总之,干旱处理下番茄通过协同调控叶、茎、根结构使植株水分关系重新达到稳态;亚低温处理下番茄植株水分关系的调控主要通过改变叶和根导管结构实现,且受土壤水分状况的影响较小。  相似文献   

16.
马守臣  徐炳成  李凤民  黄占斌 《生态学报》2008,28(12):6172-6179
通过田间试验研究了不同时期根修剪处理对冬小麦(Triticum aestivum)根系大小与分布、根系效率、水分利用效率及产量形成的影响。设置4个根修剪处理:越冬期小剪根(WS)、越冬期大剪根(WB),返青期小剪根(GS)、返青期大剪根(GB),未剪根小麦作为对照(CK)。结果表明,到花期时,各根修剪处理小麦的在0~120cm总根量均显著小于对照。与对照相比各根修剪处理主要是显著地减少了上层土壤中的根量。但WS和GS两小剪根处理和对照相比在中层土壤中有较大的根量;花后各处理小麦旗叶的气孔导度和蒸腾速率均显著大于对照。这说明根修剪处理减少了小麦表层的根量,从而削弱了表土干旱信号对作物与外界气体交换的抑制作用。花期时各根修剪小麦的净光合速率均显著高于对照,而单位面积上的根呼吸速率均显著小于对照,根修剪处理提高了小麦的根系效率,使更多的光合产物用于籽粒生产,从而提高了小麦的收获指数。根修剪还提高了小麦的水分利用效率,其中WS、WB、GS处理的水分利用效率显著高于对照。但是GB处理的水分利用效率却没有显著提高。因此,本研究进一步证明了由不同年代品种得到的推测,认为在旱地农业中,通过遗传育种或采用适当农艺措施优化根系分布,既可以减少生长前期作物对水分的过度消耗,又能够削弱花后表土过度干旱对作物生长抑制作用,同时降低根系对同化产物的消耗,对作物产量及水分利用效率的提高具有积极的作用。  相似文献   

17.
The effects of exogenous foliar glycine betaine (GB) and abscisic acid (ABA) on papaya responses to water stress were investigated under distinct water regimes. Papaya seedlings (Carica papaya L. cultivar “BH-65”) were pretreated with GB or ABA and subsequently subjected to consecutive periods of drought, rehydration, and a second period of drought conditions. Results indicated that water stress induced ABA, jasmonic acid (JA), and proline accumulation but did not modify malondialdehyde (MDA) concentration. In addition, water deprivation reduced photosynthetic rate, stomatal conductance, relative water content (RWC), leaf fresh weight, and increased leaf abscission. GB applied prior to drought imposition decreased the impact of water stress on ABA, JA, proline accumulation, leaf water status, growth, and photosynthetic performance. However, ABA-pretreated plants did not show alteration of most of these parameters under water stress conditions when compared with non-pretreated plants except a clear induction of JA accumulation. Taken together, the data suggest that GB may modulate ABA, JA, and proline accumulation through the control of stomatal movement and the high availability of compatible solutes, leading to improvement of leaf water status, growth, and photosynthetic machinery function. In contrast, exogenous ABA did not stimulate papaya physiological responses under drought, but interestingly ABA in combination with drought could induce progressive JA synthesis, unlike drought alone, which induces a transitory JA increase and may trigger endogenous ABA accumulation. The data also suggest that irrespective of the pretreatments, papaya did not suffer oxidative damage.  相似文献   

18.
干旱严重影响柑橘的生长和发育.为探索柑橘对干旱胁迫的响应机制,本试验以抗旱性不同的三湖红橘和三湖化红为材料,通过盆栽控水进行干旱胁迫和复水处理,研究处理后植株叶片光合、叶绿素荧光和根系构型的变化.结果表明: 干旱显著降低了两种柑橘幼苗的净光合作用速率、气孔导度、蒸腾速率和胞间CO2浓度,而三湖红橘的下降幅度更小;复水后,光合参数均有所恢复,但仍低于对照.三湖红橘水分利用率在干旱15 d后开始显著高于对照,而三湖化红除干旱15 d外的其他处理时间均低于对照.干旱提高了两种幼苗的PSII最大光合效率,但抑制了三湖化红的PSII实际光合效率.干旱到一定程度后,两种幼苗的PSII电子传递速率和光化学淬灭均下降,干旱和复水后非光化学淬灭在三湖红橘中下降,但在三湖化红中上升.根系构型分析表明,干旱导致两种幼苗的根表面积和根体积下降,同时抑制了三湖化红的总根长,但能够提高三湖红橘的总根长和总根尖数.进一步分析不同直径的侧根长度发现,三湖红橘的一类侧根长度在干旱胁迫10 d后开始增加,而三湖化红的一类侧根长度在干旱前期没有变化,干旱20 d时显著下降;除三湖红橘的三类侧根外,两种幼苗其余直径等级侧根的生长均受干旱抑制.除总根尖数外,复水后根系生长各参数均没有恢复.干旱对三湖红橘光合性能的影响小于三湖化红,并且前者能够维持更高的水分和光能利用率.干旱后三湖红橘根尖数和细根长度增加,可能有助于提高其对水分的吸收能力.  相似文献   

19.
Cytokinins can promote stomatal opening, stimulate shoot growth and decrease root growth. When soil is drying, natural cytokinin concentrations decrease in association with stomatal closure and a redirection of growth away from the shoots to the roots. We asked if decreased cytokinin concentrations mediate these adaptive responses by lessening water loss and promoting root growth thereby favouring exploration for soil water. Our approach was to follow the consequences for 12-d-old lettuce seedlings of inoculating the growing medium with cytokinin-producing bacteria under conditions of water sufficiency and deficit. Inoculation increased shoot cytokinins as assessed by immunoassay and mass spectrometry. Inoculation also promoted the accumulation of shoot mass and shortened roots while having a smaller effect on root mass. Inoculation did not raise stomatal conductance. The possible promoting effect of these cytokinins on stomatal conductance was seemingly hampered by increases in shoot ABA that inoculation also induced. Inoculation lowered root/shoot ratios by stimulating shoot growth. The effect was greater in non-droughted plants but remained sufficiently strong for shoot mass of inoculated droughted plants to exceed that of well-watered non-inoculated plants. We conclude that compensating for the loss of natural cytokinins in droughted plants interferes with the suppression of shoot growth and the enhancement of root elongation normally seen in droughted plants.  相似文献   

20.
Water loss was studied in regenerated plantlets of Brassicaoleracea var. botrytis cv. Currawong derived through apicalmeristem culture. Hardening of plantlets was eliminated by asingle application of a polyvinyl resin (S600) sprayed immediatelyafter transplanting. Plantlets sprayed with S600 had highercuticular resistances than unsprayed plantlets; this treatmenthad no effect on stomatal resistance. Leaves formed during theculture period showed very little wax formation and using markedleaves it was found that only reduced levels of wax formed onthese leaves even after transplanting. New leaves formed aftertransplanting, showed typical wax formation compared to seedgrown plants. Abscisic acid (ABA) at 10–4 M applied as a leaf sprayto transplants did not cause a substantial increase in stomatalresistance in leaves which had been initiated during the cultureperiod. Leaves of seed-grown plants as well as leaves of plantletsformed after transplanting did respond to a leaf spray of ABAat 10–4 M by a large increase in stomatal resistance. Relative concentrations of K, Na, Ca, P, S and Mg in guard cellswere calculated for each leaf type by X-ray micro-probe analysis.K/Na values decreased in the order: seedling > leaves formedafter transplanting > leaves intiated during culture. A highpositive correlation was also found between K/Na and K/P forthe three leaf types. K:Mg and K:Ca ratios for leaves formedduring culture were low in comparison to the values obtainedfor leaves formed after transplanting and seedlings for whichthe values were similar. Brassica oleracea var. botrytis, cauliflower, regenerated plantlets, meristem culture, stomatal resistance, water loss, abscisic acid, X-ray micro-probe analysis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号