首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The hypothesis that the restriction of dietary protein during lactation has different impacts on reproductive performance in light and heavy sows at farrowing was investigated, as well as the relationships between reproductive parameters and sow metabolic data. At farrowing, 38 primiparous sows were assigned to one of three groups: sows weighing 180 kg not restricted in dietary protein during lactation (180CP); sows weighing 180 or 240 kg restricted in protein (180LP and 240LP). Twenty-four sows were catheterized and serial blood samples were collected 1 d before and 1 d after weaning. The sows were inseminated at the first estrus after weaning and slaughtered at d 30 of gestation. Protein restriction reduced the proportion of sows that returned to estrus within 8 d after weaning in the 180LP sows (P < 0.03), but not in the 240LP sows. It also induced a reduction in ovulation rate in the 180LP sows (P < 0.05) and, to a lesser extent, in the 240LP sows (P = 0.12). When the sows were categorized according to return to estrus (WOI < or = 8 or > 8 d), basal and mean concentrations of LH increased after weaning only in sows with a short WOI. Sows with a delayed estrus exhibited a higher ratio of plasma tyrosine to large neutral amino acids (AA, P < 0.01). In conclusion, large body reserves at farrowing buffer, at least in part, the detrimental effect of a strongly negative nitrogen balance on reproduction. We suggest that the alteration of AA profiles induced by dietary protein restriction and body protein loss alters LH secretion via modifications of the neurotransmitters involved in GnRH secretion.  相似文献   

2.
Modern genotype primiparous and multiparous sows (Yorkshire x Landrace, n=48) were used to evaluate effects of dietary lysine intake during late gestation and lactation, and their interaction on reproductive performance. Sows were randomly allotted to two gestation lysine (G, 0.6% or 0.8% lysine) treatments based on parity in a 2 x 2 factorial arrangement, and each treatment had 12 replicates comprising 1 sow. Then all the sows were assigned to two lactation lysine (L, 1.0% or 1.3% lysine) treatments within parity and gestation treatments in a 2 x 2 x 2 factorial design, and each treatment comprised six replicates with 1 sow/replicate during lactation. Feeding higher lysine level during gestation increased sow body weight and backfat thickness (P=0.001) and body condition was better (P=0.001) in multiparous than that of primiparous sows. Both of the lysine levels during lactation and parity influenced sow body condition and reproductive performance (P<0.05). Higher lysine intake during lactation increased the concentrations of total solids (P=0.024), protein (P=0.001) and solids not-fat (P=0.042) in colostrum and total solids (P=0.001), protein (P=0.001), fat (P=0.001) and solids not-fat (P=0.005) in milk. Protein concentration of milk was greater (P=0.001) in multiparous sows than that of primiparous sows. Feeding of high lysine diets resulted in an increment of plasma urea N (P=0.010; P=0.047) and a decrease of creatinine (P=0.045; P=0.002) on the day of postfarrowing and weaning, respectively. Furthermore, as lysine intake increased, the secretions of insulin, FSH, and LH were increased (P<0.05) and multiparous sows showed higher (P<0.05) concentrations of FSH and LH pulses on the day of postfarrowing and weaning, respectively. These results indicated that higher lysine intake than that recommended by NRC [NRC, 1998. Nutrient Requirements of Swine, 10th ed. National Academy Press, 458 Washington, DC] could improve sow performance during late gestation and lactation. Furthermore primiparous sows need higher lysine intake than multiparous sows. Moreover, nutritional impacts on reproduction may be mediated in part through associated effects on circulating LH concentration.  相似文献   

3.
Concentrations of leptin in serum and milk were assessed in gilts fed diets during gestation that differed in energy level. Beginning at day 45 and continuing throughout pregnancy, gilts received either a high-energy (6882 kcal metabolizable energy (ME) per day) or low-energy (5221 kcal ME per day) diet (n = 9 per group). All gilts had ad libitum access to a standard lactation diet throughout a 21 day lactation. During gestation, gilts consuming the high-energy diet gained more body weight (P < 0.01) and backfat thickness (P = 0.03) than gilts fed the low-energy diet; however, serum concentrations of leptin remained similar between groups (P = 0.35). Within 24 h after farrowing, gilts fed the high-energy diet had greater levels of leptin in serum and milk than gilts that consumed the low-energy diet during gestation (P < 0.07); Across treatments, backfat thickness and leptin levels in serum were positively correlated (r(2) = 0.51; P = 0.03). At weaning, backfat thickness (P < 0.07), but not body weights or serum and milk levels of leptin (P > 0.1), were greater for gilts fed the high-energy, versus the low-energy, diet during gestation. Gilts that were fed the low-energy diet during gestation consumed more feed during week 2 of lactation (P = 0.06). Our results suggest that altering the level of energy in the diets of gestating swine can influence circulating and milk concentrations of leptin, as well as feed consumption, during lactation.  相似文献   

4.
In pig production, parturition progress is a key event for sow's reproductive performance, evaluated by piglet survival and piglets' performance. The aim of this study was to investigate the impact of feeding a high-fibre (HF) diet during gestation on parturition progress and reproductive performance of sows. Forty-two primiparous sows (Large-White × Landrace crossbred) were fed during gestation either a control diet (C diet; 2.40 kg/day, 3.2% crude fibre, in % of dry matter (DM)), or a HF diet (2.80 kg/day, 12.4% crude fibre, in % of DM). All sows received 33 MJ digestible energy per day. Continuous video recordings were done on the parturition day to determine postural changes (standing, sitting, lying) and behavioural activities (nesting behaviour, uterine contractions, restlessness, social behaviour towards piglets) during parturition. Duration of parturition and individual birth intervals were also measured. Piglets' growth was evaluated by weekly weighing from birth until weaning, at 26.5 days of age. Sows were weighed and backfat thickness was measured at mating, on day 105 of gestation, on the 1st day post partum, and at weaning. Durations of parturition and of birth intervals were not affected by the gestation diet and averaged 211 ± 12 min and 16.5 ± 0.9 min (mean ± s.e.), respectively. During the parturition progress, the gestation diet did not affect the frequency and the time devoted to postural and behavioural activities. Dietary treatment during gestation did not influence duration of gestation and weaning-to-oestrus interval, as well as litter size, and number of stillborn and weaned piglets. Piglet weight at birth did not differ between gestation dietary treatments but piglets nursed by HF sows showed a 13.5% greater growth rate during the 1st week of life (P < 0.01) and tended to be heavier at weaning (P = 0.06) compared with C piglets. The HF sows were leaner at the end of gestation (P < 0.05), but variations of sows' weight during gestation and lactation were not affected by the gestation diet. All sows lost the same amount of backfat thickness during lactation. During lactation, the average daily feed intake was not significantly affected by the gestation diet. This study shows that substituting a control diet for a HF diet during gestation has limited effects on farrowing progress and reproductive performance, but improved piglets' growth rate during the 1st week of life and tended to increase their live weight at weaning.  相似文献   

5.
The aim of this study was of establishing a correlation between endogenous LH secretion and the magnitude of the LH response to challenges with GnRH and the opioid antagonist naloxone during lactation, and between these characteristics and LH secretion and follicular development after weaning. Sows (n = 9) were sampled for 6 h at day 2 post-partum, for 12 h on day 26 of lactation and for 6 h immediately after weaning at day 27 of lactation. Four hours after the beginning of sampling at day 26 of lactation all sows were injected with 2 mg/kg i.v. of naloxone hydrochloride and 5 h later with 100 microg/sow of GnRH. Follicular development was studied in all sows at slaughter the day after weaning. There was an effect of time (sampling period; P < 0.001) on mean plasma LH, with an increase (P < 0.05) in LH the day after weaning compared to mean LH concentrations during lactation. Naloxone and GnRH treatment both increased (P < 0.05) mean LH concentrations. A positive relationship (r = 0.58, P < 0.01) between mean plasma LH after GnRH and after weaning was established. Although there were differences (P < 0.001) between sows in follicular fluid volume, there were no correlations between mean follicular fluid volume and mean LH concentrations after GnRH or after weaning. These data indicate that the LH response to GnRH during late lactation could be useful predictor of LH activity after weaning. However, none of the measures of endogenous or induced LH secretion were associated with differences in ovarian follicular size after weaning. Direct evidence is therefore still needed for a functional link between differences in LH in lactation and differences in fertility after weaning.  相似文献   

6.
A commercial pig spends nearly half of its life in utero and its nutrition during this time can influence birth weight and postnatal growth. We hypothesised that postnatal growth is increased in pigs raised by sows with a high backfat depth and high level of energy intake during gestation compared with sows with a low backfat depth and low level of energy intake during gestation. This was tested in a 2×3 factorial design experiment with 2 factors for gilt backfat depth (Thin and Fat) and 3 factors for gestation feed allowance (Restricted, Control and High). Between d 25 and d 90 of gestation, Thin gilts (n=68; 12±0.6 mm P2 backfat) and Fat gilts (n=72; 19±0.6 mm P2 backfat) were randomly allocated, as individuals, to a gestation diet (6.19 g/kg lysine, 13.0 MJ DE/kg) at the following feed allowances: 1.8 kg/day (Restricted); 2.5 kg/day (Control) and 3.5 kg/day (High). For the remainder of gestation and during lactation all gilts were treated similarly. At weaning (day 28), 155 piglets were sacrificed and 272 were individually housed and followed through to slaughter (day 158). At day 80 of gestation, fasted Thin Restricted gilts had lower serum IGF-1 concentrations than Thin High or Thin Control fed gilts (P<0.001). Pigs born from Fat gilts had greater backfat depths (P<0.05), a lower lean meat yield (P<0.05) and were heavier (P<0.05) at slaughter than pigs born from Thin gilts. Gilt gestation feed allowance had only transitory effects on average daily gain and feed conversion efficiency and had no effect on pig weight at slaughter (P>0.05) or lean meat yield (P>0.05). In conclusion, gilts with a backfat depth of ~19 mm at insemination produced pigs that were heavier and fatter at ~158 days of age than those born from gilts with ~12 mm backfat depth at insemination. Maternal body condition during gestation had a more predominant influence on growth parameters of the offspring, such as weight at slaughter and backfat depth, than did feed level during gestation.  相似文献   

7.
Koketsu Y  Dial GD 《Theriogenology》1997,47(7):1445-1461
The objective of this study was to investigate the effects of various factors, including lactational feed intake, on the reproductive performance of sows in commercial herds. The 4 measures of reproductive performance were weaning-to-first-service interval, weaning-to-conception interval, litter weight at weaning, and subsequent litter size. Parity, farrowing season, lactation length, farrowing-to-conception interval, litter size, and lactation feed intake were investigated as risk factors common to the 4 measures of post-weaning reproductive performance. Using 4 basic multiple regression models for each measure, the least-square means for sets of factors were compared using the GLM procedure of SAS. Parity 1 sows had the longest weaning-to-first-service interval and weaning-to-conception interval, and the lighter litter weight at weaning (P < 0.05) than mid-parity sows. Sows in Parities 2 to 5 had larger subsequent litter size (P < 0.05) than those in Parities 1 and >/= 7. Sows farrowing in summer and spring had the longest and second longest weaning-to-conception interval (P < 0.05), respectively, while sows farrowing in summer had longer weaning-to-first-service interval than those that farrowed in spring (P < 0.05). Sows farrowing in summer produced the lightest litter weight at weaning (P < 0.05). No differences in subsequent litter sizes were found due to farrowing season (P > 0.10). As lactation length increased, weaning-to-first-service interval and weaning-to-conception interval decreased, and litter weaning weight increased. Longer lactation length and farrowing-to-conception interval were associated with larger subsequent litter size (P < 0.05). Litter size did not affect weaning-to-first-service interval or weaning-to-conception interval. Larger litter sizes were associated with heavier litter weight at weaning. Greater lactation feed intake improved the 4 measures of reproductive performance.  相似文献   

8.
This study was conducted to investigate the effects of konjac flour (KF) inclusion in gestation diets of sows on nutrients digestibility, lactation feed intake, reproductive performance of sows and preweaning performance of piglets. Two isoenergetic and isonitrogenous gestation diets were formulated: a control diet and a 2.1% KF-supplemented diet (KF diet). Both diets had the same NDF and insoluble fiber (ISF) levels, but the KF diet had higher soluble fiber (SF) level. The day after breeding, 96 multiparous sows were assigned to the two dietary treatments. Restrict-fed during gestation, in contrast, all sows were offered the same lactation diet ad libitum. Response criteria included sow BW, backfat depth, lactation feed intake, weaning-to-estrus interval, litter size and piglet’s weight at parturition and day 21 of lactation. On day 60 of gestation, 20 sows were used to measure nutrient digestibility. Results showed that the digestibility of dry matter, gross energy, crude fiber and ADF were not affected by the dietary treatments. The inclusion of KF in gestation diets increased NDF digestibility (P<0.05) and tended to increase the digestibility of CP (P=0.05) compared with the control diet group. In addition, dietary treatment during gestation did not affect litter size, BW and backfat gain during gestation, lactation weight, backfat loss or weaning-to-estrus interval of sows. However, sows fed the KF diet consumed more (P<0.05) lactation diet per day than sows in the control group. Accordingly, sows fed the KF diet showed greater average piglet weights on day 21 of lactation (P=0.09), and the litter weight of sows fed the KF diet on day 21 of lactation increased by 3.95 kg compared with sows fed the control diet (not significant). In conclusion, the inclusion of KF in gestation diets increased lactation feed intake of sows and tended to improve litter performance.  相似文献   

9.
The supplementing of sow diets with lipids during pregnancy and lactation has been shown to reduce sow condition loss and improve piglet performance. The aim of this study was to determine the effects of supplemental palm oil (PO) on sow performance, plasma metabolites and hormones, milk profiles and pre-weaning piglet development. A commercial sow ration (C) or an experimental diet supplemented with 10% extra energy in the form of PO, were provided from day 90 of gestation until weaning (24 to 28 days postpartum) in two groups of eight multiparous sows. Gestation length of PO sows increased by 1 day (P<0.05). Maternal BW changes were similar throughout the trial, but loss of backfat during lactation was reduced in PO animals (C: −3.6±0.8 mm; PO: −0.1±0.8 mm; P<0.01). Milk fat was increased by PO supplementation (C day 3: 8.0±0.3% fat; PO day 3: 9.1±0.3% fat; C day 7: 7.8±0.5% fat; PO day 7: 9.9±0.5% fat; P<0.05) and hence milk energy yield of PO sows was also elevated (P<0.05). The proportion of saturated fatty acids was greater in colostrum from PO sows (C: 29.19±0.31 g/100 g of fat; PO: 30.77±0.36 g/100 g of fat; P<0.01). Blood samples taken on 105 days of gestation, within 24 h of farrowing, day 7 of lactation and at weaning (28±3 days post-farrowing) showed there were no differences in plasma concentrations of triacylglycerol, non-esterified fatty acids, insulin or IGF-1 throughout the trial. However, circulating plasma concentrations of both glucose and leptin were elevated during lactation in PO sows (P<0.05 and P<0.005, respectively) and thyroxine was greater at weaning in PO sows (P<0.05). Piglet weight and body composition were similar at birth, as were piglet growth rates throughout the pre-weaning period. A period of 7 days after birth, C piglets contained more body fat, as indicated by their lower fat-free mass per kg (C: 66.4±0.8 arbitrary units/kg; PO: 69.7±0.8 arbitrary unit/kg; P<0.01), but by day 14 of life this situation was reversed (C: 65.8±0.6 arbitrary units/kg; PO: 63.6±0.6 arbitrary units/kg; P<0.05). Following weaning, PO sows exhibited an increased ratio of male to female offspring at their subsequent farrowing (C: 1.0±0.3; PO: 2.2±0.2; P<0.05). We conclude that supplementation of sow diets with PO during late gestation and lactation appears to increase sow milk fat content and hence energy supply to piglets. Furthermore, elevated glucose concentrations in the sow during lactation may be suggestive of impaired glucose homoeostasis.  相似文献   

10.
Selection for prolificacy in sows has resulted in higher metabolic demands during lactation. In addition, modern sows have an increased genetic merit for leanness. Consequently, sow metabolism during lactation has changed, possibly affecting milk production and litter weight gain. The aim of this study was to investigate the effect of lactational feed intake on milk production and relations between mobilization of body tissues (adipose tissue or skeletal muscle) and milk production in modern sows with a different lactational feed intake. A total of 36 primiparous sows were used, which were either full-fed (6.5 kg/day) or restricted-fed (3.25 kg/day) during the last 2 weeks of a 24-day lactation. Restricted-fed sows had a lower milk fat percentage at weaning and a lower litter weight gain and estimated milk fat and protein production in the last week of lactation. Next, several relations between sow body condition (loss) and milk production variables were identified. Sow BW, loin muscle depth and backfat depth at parturition were positively related to milk fat production in the last week of lactation. In addition, milk fat production was related to the backfat depth loss while milk protein production was related to the loin muscle depth loss during lactation. Backfat depth and loin muscle depth at parturition were positively related to lactational backfat depth loss or muscle depth loss, respectively. Together, results suggest that sows which have more available resources during lactation, either from a higher amount of body tissues at parturition or from an increased feed intake during lactation, direct more energy toward milk production to support a higher litter weight gain. In addition, results show that the type of milk nutrients that sows produce (i.e. milk fat or milk protein) is highly related to the type of body tissues that are mobilized during lactation. Interestingly, relations between sow body condition and milk production were all independent of feed level during lactation. Sow management strategies to increase milk production and litter growth in modern sows may focus on improving sow body condition at the start of lactation or increasing feed intake during lactation.  相似文献   

11.
From day 23 of pregnancy, 24 gilts received either a medium (M, n = 16) or a high (H, n = 8) level of feeding calculated to meet 115% or 190% of energy for maintenance, respectively. During lactation, all H sows were fed ad libitum (H-AL) whereas M sows were fed either ad libitum (M-AL, n = 8) or were restricted (M-RE, n = 8) to the amount of feed ingested by H-AL sows. Increased feed intake during pregnancy increased live weight, backfat thickness, and estimated body lipid and protein on days 4 and 25 of lactation (P < 0.05). It also resulted in lower feed intake and higher lipid mobilisation during lactation (P < 0.05) without a detrimental influence on milk production. Activities of malic enzyme and glucose-6-phosphate dehydrogenase from neck fat samples were higher in H than M sows on day 4 (P < 0.05). They decreased during lactation in H sows (P < 0.05). Mean diameter of adipocytes decreased during lactation in the 3 groups (P < 0.05) but did not differ between groups on days 4 and 25. Plasma leptin on days 4, 11, 18 and 25 was higher in H than in M sows (P < 0.05) but was not influenced by lactational feed intake. Neither measured characteristics of gonadotrophin secretion on day 22, nor of ovarian activity on day 26, were significantly influenced by the level of feeding during pregnancy or lactation.  相似文献   

12.
Koketsu Y  Dial GD  King VL 《Theriogenology》1997,47(7):1347-1363
We studied the records of 30 herds with an average inventory of 11,705 sows, 25,719 farrowings and 25,040 daily feed intake logs. Production events were recorded by producers using the PigCHAMP production information system. Of 21,505 matings, 7.2% of sows subsequently returned to estrus after service. The proportionate rates of intervals from service to the subsequent post service event were 0 to 17 d, 2.1%; 18 to 25 d, 27.9%; 26 to 37 d, 13.8%; 38 to 46 d, 15.8%; 47 to 108 d, 30.4%; and >108 d, 10.0%. Sows returned to service after mating were categorized into groups that either regularly or irregularly returned to service after mating. Of a total inventory of 19,076 sows, 10.0% were removed following weaning for reproductive reasons. The reasons for removal included those of anestrus (25.2%), failure to conceive (37.0%), failure to farrow (15.0%), not pregnant (1.4%), negative pregnancy check (14.0%), and abortion (7.4%). The last 5 types of post weaning reproductive failure were grouped into the category of did not farrow. Categorical additive models and comparisons using contrasts were used to analyze the influence of risk factors on reproductive failure. Parity 1 sows had a higher proportion (P < 0.01) of returns to service and a greater proportion of sows remaining anestrous post weaning relative to Parity 3 sows. The proportion of sows that did not farrow was higher (P < 0.01) in Parities 9 and 10 than in Parity 3. More sows were removed for anestrus during the spring (P < 0.01) and summer (P = 0.06) than during the winter. All categories of lactation length had similar rates of reproductive failure except for the lactation length 1 to 7 d, which had a higher (P < 0.05) proportion of reproductive failure. Lower lactational feed intake was associated with an increased risk of occurrence of each reproductive failure category. The odds ratios of lactation feed intake in logistic regression analyses were 0.84, 0.89, 0.82 and 0.88 for regularly and irregularly returned to service, anestrus, and did not farrow groups, respectively. This means, for example, that a sow was 0.88 times less likely to have an occurrence of not farrowing for each 1 kg increase in average daily feed intake during lactation. Our results indicate that lower and higher parities, spring and summer seasons, a lactation length of less than 8 d and lower feed intake during lactation affect the occurrence of return to service after mating and of herd removal for reproductive reasons.  相似文献   

13.
A total of 50 mixed parity sows of a high-prolificacy genetic line were used to evaluate the impact of feed restriction during lactation on their production and reproductive performance and their performance in the subsequent lactation. From day 7 of lactation, sows were distributed according to a completely randomized experimental design into two treatments. In treatment 1, sows were fed 8.0 kg feed/day (control) and in treatment 2, sows were fed 4.0 kg/day. The same suckling pressure was maintained until weaning on day 28 of lactation. Average minimum and maximum temperatures measured during the experimental period were 32.1°C and 16.5°C, respectively. Control sows presented significantly higher feed intake (P<0.001) compared with the restricted sows (6.43 v. 4.14 kg/day, respectively). Treatments influenced BW and backfat thickness losses (P<0.001). Control sows lost less BW than the restricted-fed sows (7.8 v. 28.2 kg). Restricted-fed sows lost more backfat thickness than those in the control group (3.97 v. 2.07 mm; P<0.01). Restricted-fed sows tended (P<0.10) to be lighter at weaning compared with the control sows (211 v. 227 kg). The composition of BW loss was influenced by the treatments (P<0.001), as the restricted-fed sows lost more body protein, lipids and energy compared with the control sows (3.90 v. 0.98 kg, 11.78 v. 4.83 kg and 584 v. 224 MJ, respectively). Litter weight gain was greater (P<0.05) in control sows than in restricted-fed sows (2.70 v. 2.43 kg/day). Daily milk production was 19% higher (P<0.01) in the control sows compared with the restricted-fed sows (8.33 v. 6.99 kg/day). However, restricted-fed sows presented a higher (P<0.05) lactation efficiency than the sows of the control group (82.30% v. 72.93%). No differences were detected (P>0.10) in weaning-to-estrus interval and averaged 4.3 days. No effect of the treatment (P>0.10) was observed on any of the studied performance traits in the subsequent lactation, except for litter size at birth that tended (15.2 v. 14.1; P<0.10) to be lower for the restricted sows. In conclusion, the present study demonstrated that feed restriction during lactation leads to intense catabolism of the body tissues of sows, negatively affecting their milk production, and the litter weight gain and possibly number of piglets born in the next litter. On the other hand, restricted-fed sows are more efficient, producing more milk per amount of feed intake.  相似文献   

14.
In this study we aimed to identify possible causes of within-litter variation in piglet birth weight (birth weight variation) by studying follicular development of sows at weaning in relation to their estimated breeding value (EBV) for birth weight variation. In total, 29 multiparous sows (parity 3 to 5) were selected on their EBV for birth weight variation (SD in grams; High-EBV: 15.8±1.6, N=14 and Low-EBV: −24.7±1.5, N=15). The two groups of sows had similar litter sizes (15.7 v. 16.9). Within 24 h after parturition, piglets were cross-fostered to ensure 13 suckling piglets per sow. Sows weaned 12.8±1.0 and 12.7±1.0 piglets, respectively, at days 26.1±0.2 of lactation. Blood and ovaries were collected within 2 h after weaning. The right ovary was immediately frozen to assess average follicle size and percentage healthy follicles of the 15 largest follicles. The left ovary was used to assess the percentage morphologically healthy cumulus-oocyte complexes (COCs) of the 15 largest follicles. To assess the metabolic state of the sows, body condition and the circulating metabolic markers insulin, IGF1, non-esterified fatty acid, creatinine, leptin, urea and fibroblast growth factor 21 were analysed at weaning. No significant differences were found in any of the measured follicular or metabolic parameters between High-EBV and Low-EBV. A higher weight loss during lactation was related to a lower percentage healthy COCs (β= −0.65, P=0.02). Serum creatinine, a marker for protein breakdown, was negatively related to average follicle size (β= −0.60, P=0.05). Backfat loss during lactation was related to a higher backfat thickness at parturition and to a higher average follicle size (β=0.36, P<0.001) at weaning. In conclusion, we hypothesise that modern hybrid sows with more backfat at the start of lactation are able to mobilise more energy from backfat during lactation and could thereby spare protein reserves to support follicular development.  相似文献   

15.
Eighteen sows (6 primiparous and 12 multiparous) were allotted randomly within parity to two lactational treatments: litter separation (LS; 6 h/day) plus boar exposure (BE; 1 h/day; N = 14) beginning 8 days before weaning (4 weeks) and no LS + no BE (controls; N = 4). Blood was collected from all sows via indwelling venous catheters at 20-min intervals for 5 h on Days -1, 0, 1, 2 and 3 from start of treatment. Control sows and those exposed to LS + BE not exhibiting oestrus during lactation were resampled on Days -1, 0, 1 and 2 from weaning. All 10 multiparous sows receiving LS + BE exhibited oestrus during lactation, whereas none of the 4 primiparous sows exposed to LS + BE or the 2 control multiparous and 2 control primiparous sows exhibited lactational oestrus. Overall concentrations of LH in serum were higher (P less than 0.05) in sows receiving LS + BE than in control sows during lactation, whereas overall FSH was higher (P less than 0.05) in primiparous than multiparous sows. Number and amplitude of pulses of LH were greater (P less than 0.05) for treated primiparous than multiparous sows during lactation. Oestradiol-17 beta increased (P less than 0.05) in sows during LS + BE and was higher (P less than 0.01) in multiparous sows of this group than control multiparous or treated primiparous sows. Preweaning concentrations of cortisol and progesterone in serum were higher (P less than 0.05) in treated than control sows for multiparous and primiparous animals. In sows resampled at weaning, the number of pulses of LH was greater (P less than 0.05) in treated primiparous than in control sows. Postweaning concentrations of FSH in serum were unaffected by preweaning treatments. It was concluded that (1) litter separation and boar exposure increased basal and pulsatile secretion of LH in multiparous and primiparous sows; (2) lack of ovarian follicular development and oestradiol secretion may preclude expression of oestrus in primiparous sows during lactation, despite elevated concentrations of FSH and LH in serum; and (3) if elevated concentrations of cortisol and progesterone inhibit the onset of oestrous cycles, in response to litter separation and boar exposure during lactation, the effect is limited to primiparous sows.  相似文献   

16.
Sows generally are anoestrus during lactation. Weaning the litter normally results in a rapid increase in follicular growth that terminates in oestrus and ovulation. Follicular development after weaning is characterized by an elevation in the blood concentrations of oestradiol-17ß (E2). Although the post-weaning patterns of E2 in blood circulation have been reported previously (Cox & Britt 1982, Edwards & Foxcroft 1983, Rojanasthien 1988), the plasma patterns of E2 in relation to the interval from weaning to oestrus (WOI), to our knowledge, have not been assessed. The purpose of this study was therefore to relate the blood patterns of E2 to the WOI in sows exhibiting their first oestrus within 10 days after weaning.  相似文献   

17.
Previously we demonstrated that pre-ovulatory LH and post-ovulatory progesterone (P4) concentrations in plasma were low and embryo development was retarded when sows were induced to ovulate during lactation by submitting them to intermittent suckling (IS). The present study investigated whether this was due to: (1) stage of lactation when IS was initiated, and (2) continuation of IS post-ovulation. Multiparous Topigs40 sows were studied under three conditions: conventional weaning at Day 21 of lactation (C21; n = 30), intermittent suckling from Day 14 of lactation (IS14; n = 32), and intermittent suckling from Day 21 of lactation (IS21; n = 33). Sows were separated from piglets for 12 h daily during IS. IS sows were either weaned at ovulation or 20 d following ovulation. One-third (21/63) of the IS21 and C21 sows had already ovulated or had large pre-ovulatory follicles at Day 21 and were excluded from further study. Initiation of IS at Day 14 instead of Day 21 of lactation tended to reduce P4 at 7 d post-ovulation (P = 0.07), did not affect pregnancy rate, and tended to reduce embryo survival (P = 0.06). Continuation of IS during pregnancy resulted in lower P4 at 7 and 12 d post-ovulation, tended to reduce embryo weight and pregnancy rate (P < 0.10), whereas embryo survival was not affected. This study presents data for a population of sows in which follicle growth and ovulation are easily triggered under suckling conditions. Further, when these sows are bred during lactation, initiation of IS at 21 rather than 14 d of lactation with weaning at ovulation yields the most desirable reproductive performance.  相似文献   

18.
The effect of weaning the 4–5 heaviest piglets in the litter on day 33 of lactation and the remainder 2 days later (fractionated weaning) on plasma levels of prolactin, Cortisol, oestradiol-17β (E2), progesterone (P4) and LH, as well as on the weaning to oestrus interval in primiparous sows was studied. Twelve crossbred sows were grouped into 6 pairs according to farrowing date and litter size. The litter of 1 sow in each pair (F) was weaned in 2 stages, and the other conventionally weaned at 35 days (C). Blood samples were collected via a permanent jugular vein catheter every 3 h from 9 am to 9 pm daily throughout the experimental period, and intensively at 15 min intervals for 12 h on the day of first and final weaning and for 6 h on the day after each weaning. All sows were slaughtered following their first post-weaning oestrus and the reproductive organs were macroscopically examined. Lactational oestrus was not observed in any of the sows. Sows from 5 out of 6 pairs showed oestrus within 8 days of weaning and post-mortem examination showed normal ovulation. There was a tendency for the F sows to have a shorter weaning to oestrus interval, as compared with the C sows (5 of 6 pairs, 4.8 days v 5.6 days). The plasma levels of prolactin around weaning were not significantly different between the 2 groups. Within 6 h after final weaning, the prolactin concentrations decreased gradually from 7.6 and 8.7 to 1.6 and 1.7 µg/l in the control and treatment groups, respectively. The plasma levels of Cortisol, showing a diurnal rhythm (with the lowest level at 6 and/or 9 p m), did on no occasion differ between the 2 groups. On the day of final weaning, no diurnal rhythm was observed, with Cortisol remaining high at 6 and 9 pm. The plasma levels of E2 and P4 were low until final weaning in both groups. After final weaning the E2 levels rose faster in the F sows than in the C sows, to 44.3 and 34.8 pmol/l, respectively, on day 2 (p < 0.01). No significant differences in levels of plasma LH and the number of LH pulses were observed between the groups. After final weaning the average and base levels of LH and the number of LH pulse(s) increased significantly.  相似文献   

19.
The effect of L-carnitine supplementation during pregnancy and lactation on the reproductive performance of sows was studied in two separate trials over three reproductive cycles. Both trials were identical in design and conduct but were performed with different animals. The trials comprised of a total of 127 sows (trial 1) and 100 sows (trial 2) which were divided into control and treatment groups. All animals were fed individually and received basic feed mixtures with low native carnitine concentrations. The rations of the sows in the treated group were supplemented with 125mg L-carnitine per head and day during pregnancy and 250mg L-carnitine per head and day during lactation. The animals of the control group received identical feed mixtures in identical amounts, but without the L-carnitine supplement. In the first trial, 212 litters were produced and evaluated for number and body weight of the animals, in the second trial, 173 litters were produced. L-carnitine supplementation significantly increased body weight gains of the sows between day 1 and day 85 of weaning. The number of born piglets, stillborn piglets and piglets fit for rearing was not influenced by dietary L-carnitine supplementation. However, L-carnitine supplementation significantly increased the weights of piglets and litters at birth, weight gains of litters during suckling and weights of litters at weaning. These effects of L-carnitine were seen in both trials; they were independent of the age of the sows and remained over three reproductive cycles in which the sows where continuously treated with L-carnitine. Overall, the study shows that dietary supplementation with L-carnitine during pregnancy and lactation improves the reproductive performance of sows over several reproductive cycles, independent of the age of the sows.  相似文献   

20.
Primiparous crossbred sows (n = 43), lactating for an average of 21.1 +/- 0.1 d and weaning 8.7 +/- 0.1 pigs, were used to evaluate the influence of insulin on ovulation rate and embryo survival. The sows were maintained on 2.3 kg/head/d of a 14% protein gestation diet during pregnancy, fed ad libitum during lactation, given 2.7 kg/head/d from weaning until re-breeding and fed 2.3 kg/head/d after mating. Beginning the day after weaning (Day 0) sows were treated with 0.4 IU/kg body weight (BW) insulin (n = 21) or were administered an equivalent volume of saline (n = 22) for 4 d. Beginning on Day 3 and continuing until Day 14 after weaning, the sows were checked for estrus twice daily and were artificially inseminated using pooled semen from 2 fertile boars. At slaughter (days 30 to 40 of gestation), ovaries and uteri were collected, and the ovulation rate, embryo number and viability, and uterine weight and length were evaluated and recorded. Use of insulin decreased the average interval from weaning to estrus compared with saline by increasing percentage in estrus by Day 14 after weaning (5.0 +/- 0.57 vs 6.9 +/- 0.56 d, respectively; P < 0.03). Ovulation rate, number of embryos, embryo survival, and average uterine length and weight were not influenced by insulin treatment. Overall, insulin affected reproductive efficiency in primiparous sows by increasing the percentage of sows in estrus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号