首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitsuhashi S  Nishino I 《Autophagy》2011,7(12):1559-1561
Mitophagy, selective autophagy of mitochondria, has been extensively demonstrated in cultured cell models but has never been described in skeletal muscle in the context of muscle disease. We recently reported the first example of human muscle disease where mitophagy plays a role in the peculiar muscle pathology. This disease is caused by loss-of-function mutations in the CHKB gene encoding choline kinase β. "Patients" and rostrocaudal muscular dystrophy (rmd) mice, spontaneous Chkb mutants, develop congenital muscular dystrophy with a peculiar mitochondrial abnormality--mitochondria are markedly enlarged at the periphery of muscle fibers and absent from the center. Choline kinase is the first enzymatic step in a biosynthetic pathway for phosphatidylcholine, the most abundant phospholipid in eukaryotes. Our discovery demonstrates that a phosphatydilcholine biosynthetic defect leads to mitochondrial dysfunction and increased mitophagy.  相似文献   

2.
Congenital muscular dystrophy is a heterogeneous group of inherited muscle diseases characterized clinically by muscle weakness and hypotonia in early infancy. A number of genes harboring causative mutations have been identified, but several cases of congenital muscular dystrophy remain molecularly unresolved. We examined 15 individuals with a congenital muscular dystrophy characterized by early-onset muscle wasting, mental retardation, and peculiar enlarged mitochondria that are prevalent toward the periphery of the fibers but are sparse in the center on muscle biopsy, and we have identified homozygous or compound heterozygous mutations in the gene encoding choline kinase beta (CHKB). This is the first enzymatic step in a biosynthetic pathway for phosphatidylcholine, the most abundant phospholipid in eukaryotes. In muscle of three affected individuals with nonsense mutations, choline kinase activities were undetectable, and phosphatidylcholine levels were decreased. We identified the human disease caused by disruption of a phospholipid de novo biosynthetic pathway, demonstrating the pivotal role of phosphatidylcholine in muscle and brain.  相似文献   

3.
Garvey SM  Rajan C  Lerner AP  Frankel WN  Cox GA 《Genomics》2002,79(2):146-149
Muscular dystrophy with myositis (mdm) is a recessive mouse mutation that causes severe and progressive muscular degeneration. Here we report the identification of the mdm mutation as a complex rearrangement that includes a deletion and a LINE insertion in the titin (Ttn) gene. Mutant allele-specific splicing results in the deletion of 83 amino acids from the N2A region of TTN, a domain thought to bind calpain-3 (CAPN3) the product of the human limb-girdle muscular dystrophy type 2A (LGMD2A) gene. The Ttn(mdm) mutant mouse may serve as a model for human tibial muscular dystrophy, which maps to the TTN locus at 2q31 and shows a secondary reduction of CAPN3 similar to that observed in mdm skeletal muscle. This is the first demonstration that a mutation in Ttn is associated with muscular dystrophy and provides a novel animal model to test for functional interactions between TTN and CAPN3.  相似文献   

4.
The myodystrophy (myd) mutation arose spontaneously and has an autosomal recessive mode of inheritance. Homozygous mutant mice display a severe, progressive muscular dystrophy. Using a positional cloning approach, we identified the causative mutation in myd as a deletion within the Large gene, which encodes a putative glycosyltransferase with two predicted catalytic domains. By immunoblotting, the alpha-subunit of dystroglycan, a key muscle membrane protein, is abnormal in myd mice. This aberrant protein might represent altered glycosylation of the protein and contribute to the muscular dystrophy phenotype. Our results are discussed in the light of recent reports describing mutations in other glycosyltransferase genes in several forms of human muscular dystrophy.  相似文献   

5.
A class of recessive lethal zebrafish mutations has been identified in which normal skeletal muscle differentiation is followed by a tissue-specific degeneration that is reminiscent of the human muscular dystrophies. Here, we show that one of these mutations, sapje, disrupts the zebrafish orthologue of the X-linked human Duchenne muscular dystrophy (DMD) gene. Mutations in this locus cause Duchenne or Becker muscular dystrophies in human patients and are thought to result in a dystrophic pathology through disconnecting the cytoskeleton from the extracellular matrix in skeletal muscle by reducing the level of dystrophin protein at the sarcolemma. This is thought to allow tearing of this membrane, which in turn leads to cell death. Surprisingly, we have found that the progressive muscle degeneration phenotype of sapje mutant zebrafish embryos is caused by the failure of embryonic muscle end attachments. Although a role for dystrophin in maintaining vertebrate myotendinous junctions (MTJs) has been postulated previously and MTJ structural abnormalities have been identified in the Dystrophin-deficient mdx mouse model, in vivo evidence of pathology based on muscle attachment failure has thus far been lacking. This zebrafish mutation may therefore provide a model for a novel pathological mechanism of Duchenne muscular dystrophy and other muscle diseases.  相似文献   

6.
《Autophagy》2013,9(12):1559-1561
Mitophagy, selective autophagy of mitochondria, has been extensively demonstrated in cultured cell models but has never been described in skeletal muscle in the context of muscle disease. We recently reported the first example of human muscle disease where mitophagy plays a role in the peculiar muscle pathology. This disease is caused by loss-of-function mutations in the CHKB gene encoding choline kinase β. “Patients” and rostrocaudal muscular dystrophy (rmd) mice, spontaneous Chkb mutants, develop congenital muscular dystrophy with a peculiar mitochondrial abnormality—mitochondria are markedly enlarged at the periphery of muscle fibers and absent from the center. Choline kinase is the first enzymatic step in a biosynthetic pathway for phosphatidylcholine, the most abundant phospholipid in eukaryotes. Our discovery demonstrates that a phosphatydilcholine biosynthetic defect leads to mitochondrial dysfunction and increased mitophagy.  相似文献   

7.
The myodystrophy (myd) mutation arose spontaneously and has an autosomal recessive mode of inheritance. Homozygous mutant mice display a severe, progressive muscular dystrophy. Using a positional cloning approach, we identified the causative mutation in myd as a deletion within the Large gene, which encodes a putative glycosyltransferase with two predicted catalytic domains. By immunoblotting, the α-subunit of dystroglycan, a key muscle membrane protein, is abnormal in myd mice. This aberrant protein might represent altered glycosylation of the protein and contribute to the muscular dystrophy phenotype. Our results are discussed in the light of recent reports describing mutations in other glycosyltransferase genes in several forms of human muscular dystrophy.  相似文献   

8.
Muscular dystrophies are a clinically and genetically heterogeneous group of disorders that show myofiber degeneration and regeneration. Identification of animal models of muscular dystrophy has been instrumental in research on the pathogenesis, pathophysiology, and treatment of these disorders. We review our understanding of the functional status of dystrophic skeletal muscle from selected animal models with a focus on 1) the mdx mouse model of Duchenne muscular dystrophy, 2) the Bio 14.6 delta-sarcoglycan-deficient hamster model of limb-girdle muscular dystrophy, and 3) transgenic null mutant murine lines of sarcoglycan (alpha, beta, delta, and gamma) deficiencies. Although biochemical data from these models suggest that the dystrophin-sarcoglycan-dystroglycan-laminin network is critical for structural integrity of the myofiber plasma membrane, emerging studies of muscle physiology suggest a more complex picture, with specific functional deficits varying considerably from muscle to muscle and model to model. It is likely that changes in muscle structure and function, downstream of the specific, primary biochemical deficiency, may alter muscle contractile properties.  相似文献   

9.
Congenital muscular dystrophy (CMD) is a clinically and genetically heterogeneous group of inherited muscle disorders. In patients, muscle weakness is usually present at or shortly after birth and is progressive in nature. Merosin deficient congenital muscular dystrophy (MDC1A) is a form of CMD caused by a defect in the laminin-α2 gene (LAMA2). Laminin-α2 is an extracellular matrix protein that interacts with the dystrophin-dystroglycan (DGC) complex in membranes providing stability to muscle fibers. In an N-ethyl-N-nitrosourea mutagenesis screen to develop zebrafish models of neuromuscular diseases, we identified a mutant fish that exhibits severe muscular dystrophy early in development. Genetic mapping identified a splice site mutation in the lama2 gene. This splice site is highly conserved in humans and this mutation results in mis-splicing of RNA and a loss of protein function. Homozygous lama2 mutant zebrafish, designated lama2(cl501/cl501), exhibited reduced motor function and progressive degeneration of skeletal muscles and died at 8-15 days post fertilization. The skeletal muscles exhibited damaged myosepta and detachment of myofibers in the affected fish. Laminin-α2 deficiency also resulted in growth defects in the brain and eye of the mutant fish. This laminin-α2 deficient mutant fish represents a novel disease model to develop therapies for modulating splicing defects in congenital muscular dystrophies and to restore the muscle function in human patients with CMD.  相似文献   

10.
Mutations in dysferlin, a novel membrane protein of unknown function, lead to muscular dystrophy. Myoferlin is highly homologous to dysferlin and like dysferlin is a plasma membrane protein with six C2 domains highly expressed in muscle. C2 domains are found in a variety of membrane-associated proteins where they have been implicated in calcium, phospholipid, and protein-binding. We investigated the pattern of dysferlin and myoferlin expression in a cell culture model of muscle development and found that dysferlin is expressed in mature myotubes. In contrast, myoferlin is highly expressed in elongated "prefusion" myoblasts and is decreased in mature myotubes where dysferlin expression is greatest. We tested ferlin C2 domains for their ability to bind phospholipid in a calcium-sensitive manner. We found that C2A, the first C2 domain of dysferlin and myoferlin, bound 50% phosphatidylserine and that phospholipid binding was regulated by calcium concentration. A dysferlin point mutation responsible for muscular dystrophy was engineered into the dysferlin C2A domain and demonstrated reduced calcium-sensitive phospholipid binding. Based on these data, we propose a mechanism for muscular dystrophy in which calcium-regulated phospholipid binding is abnormal, leading to defective maintenance and repair of muscle membranes.  相似文献   

11.
Skeletal muscle is maintained and repaired by resident stem cells called muscle satellite cells, but there is a gradual failure of this process during the progressive skeletal muscle weakness and wasting that characterises muscular dystrophies. The pathogenic mutation causes muscle wasting, but in conditions including Duchenne muscular dystrophy, the mutant gene is not expressed in satellite cells, and so muscle maintenance/repair is not directly affected. The chronic muscle wasting, however, produces an increasingly hostile micro-environment in dystrophic muscle. This probably combines with excessive satellite cell use to eventually culminate in an indirect failure of satellite cell-mediated myofibre repair. By contrast, in disorders such as Emery-Dreifuss muscular dystrophy, the pathogenic mutation not only instigates muscle wasting, but could also directly compromise satellite cell function, leading to less effective muscle homeostasis. This may again combine with excessive use and a hostile environment to further compromise satellite cell performance. Whichever the mechanism, the ultimate consequence of perturbed satellite cell activity is a chronic failure of myofibre maintenance in dystrophic muscle. Here, we review whether the pathogenic mutation can directly contribute to satellite cell dysfunction in a number of muscular dystrophies.  相似文献   

12.
Impaired glycerophosphorylcholine synthesis in murine muscular dystrophy   总被引:1,自引:0,他引:1  
A test of some of the tenets of a proposed hypothesis on muscle phospholipid synthesis, and its possible defect in murine muscular dystrophy, shows that the cytidine pathways for the synthesis of phosphatidylcholine and phosphatidylethanolamine have a negligible flux in differentiated mouse gastrocnemius, while that of the respective proposed de novo glycerophosphodiester pathways is normally high in this muscle. Evidence is presented that de novo glycerophosphorylcholine synthesis in dystrophic mouse gastrocnemius is about half that of the wild type homozygotes, while that of the heterozygotes is near the mean of the two homozygous groups. No significant differences in rates of glycerophosphorylcholine or glycerophosphorylethanolamine synthesis were observed in brain and liver tissues among the three genotypes. These results suggest that defective de novo synthesis of glycerophosphorylcholine may be the primary biochemical lesion in murine muscular dystrophy.  相似文献   

13.
Myotonic dystrophy type 1 (DM1), the most common form of muscular dystrophy in adults, is caused by toxic RNAs produced from the mutant DM protein kinase (DMPK) gene. DM1 is characterized by progressive muscle wasting and weakness. Therapeutic strategies have mainly focused on targeting the toxic RNA. Previously, we found that fibroblast growth factor-inducible 14 (Fn14), the receptor for TWEAK, is induced in skeletal muscles and hearts of mouse models of RNA toxicity and that blocking TWEAK/Fn14 signaling improves muscle function and histology. Here, we studied the effect of Tweak deficiency in a RNA toxicity mouse model. The genetic deletion of Tweak in these mice significantly reduced muscle damage and improved muscle function. In contrast, administration of TWEAK in the RNA toxicity mice impaired functional outcomes and worsened muscle histopathology. These studies show that signaling via TWEAK is deleterious to muscle in RNA toxicity and support the demonstrated utility of anti-TWEAK therapeutics.  相似文献   

14.
Choline kinase in mammals is encoded by two genes, Chka and Chkb. Disruption of murine Chka leads to embryonic lethality, whereas a spontaneous genomic deletion in murine Chkb results in neonatal forelimb bone deformity and hindlimb muscular dystrophy. Surprisingly, muscular dystrophy isn't significantly developed in the forelimb. We have investigated the mechanism by which a lack of choline kinase β, encoded by Chkb, results in minimal muscular dystrophy in forelimbs. We have found that choline kinase β is the major isoform in hindlimb muscle and contributes more to choline kinase activity, while choline kinase α is predominant in forelimb muscle and contributes more to choline kinase activity. Although choline kinase activity is decreased in forelimb muscles of Chkb−/− mice, the activity of CTP:phosphocholine cytidylyltransferase is increased, resulting in enhanced phosphatidylcholine biosynthesis. The activity of phosphatidylcholine phospholipase C is up-regulated while the activity of phospholipase A2 in forelimb muscle is not altered. Regeneration of forelimb muscles of Chkb−/− mice is normal when challenged with cardiotoxin. In contrast to hindlimb muscle, mega-mitochondria are not significantly formed in forelimb muscle of Chkb−/− mice. We conclude that the relative lack of muscle degeneration in forelimbs of Chkb−/− mice is due to abundant choline kinase α and the stable homeostasis of phosphatidylcholine.  相似文献   

15.
Choline kinase in mice is encoded by two genes, Chka and Chkb. Disruption of murine Chka leads to embryonic lethality, whereas a spontaneously occurring genomic deletion in murine Chkb results in neonatal bone deformity and hindlimb muscular dystrophy. We have investigated the mechanism by which a lack of choline kinase β, encoded by Chkb, causes hindlimb muscular dystrophy. The biosynthesis of phosphatidylcholine (PC) is impaired in the hindlimbs of Chkb−/− mice, with an accumulation of choline and decreased amount of phosphocholine. The activity of CTP:phosphocholine cytidylyltransferase is also decreased in the hindlimb muscle of mutant mice. Concomitantly, the activities of PC phospholipase C and phospholipase A2 are increased. The mitochondria in Chkb−/− mice are abnormally large and exhibit decreased inner membrane potential. Despite the muscular dystrophy in Chkb−/− mice, we observed increased expression of insulin like growth factor 1 and proliferating cell nuclear antigen. However, regeneration of hindlimb muscles of Chkb−/− mice was impaired when challenged with cardiotoxin. Injection of CDP-choline increased PC content of hindlimb muscle and decreased creatine kinase activity in plasma of Chkb−/− mice. We conclude that the hindlimb muscular dystrophy in Chkb−/− mice is due to attenuated PC biosynthesis and enhanced catabolism of PC.  相似文献   

16.
1. Mouse skeletal-muscle sarcolemma was isolated, and the preparations obtained from normal mouse muscle and from muscle of mice with hereditary muscular dystrophy were characterized with respect to appearance under the optical and electron microscopes, distribution of marker enzymes, histochemical properties and biochemical composition. 2. The sarcolemmal membranes from normal and dystrophic muscle were subjected to detailed lipied analysis. Total lipid content was shown to increase in sarcolemma from dystrophic mice as a result of a large increase in neutral lipid and a smaller increase in total phospholipids. Further analysis of the neutral-lipid fraction showed that total acylglycerols increased 6-fold, non-esterified fatty acid 4-fold and cholesterol esters 2-fold, whereas the amount of free cholesterol remained unchanged in sarcolemma from dystrophic muscle. Significant increases were found in lysophosphatidylcholine, phosphatidylcholine and phosphatidylethanolamine in dystrophic-muscle sarcolemma; however, the relative composition of the phospholipid fraction remained essentially the same as in the normal case. 3. The overall result of alterations in lipid composition of the sarcolemma in mouse muscular dystrophy was an increase in neutral lipid compared with total phospholipid, and a 4-fold decrease in the relative amount of free cholesterol in the membrane. The possible impact of these changes on membrane function is discussed.  相似文献   

17.
Since the finding that the mdx mouse diaphragm, in contrast to limb muscles, undergoes progressive degeneration analogous to that seen in Duchenne muscular dystrophy, the relationship between the workload on a muscle and the pathogenesis of dystrophy has remained controversial. We increased the work performed by the mdx mouse diaphragm in vivo by tracheal banding and evaluated the progression of dystrophic changes in that muscle. Despite the establishment of dramatically increased respiratory workload and accelerated myofiber damage documented by Evans blue dye, no change in the pace of progression of dystrophy was seen in banded animals vs. unbanded, sham-operated controls. At the completion of the study, more centrally nucleated fibers were evident in the diaphragms of banded mdx mice than in sham-operated mdx controls, indicating that myofiber regeneration increases to meet the demands of the work-induced damage. These data suggest that there is untapped regenerative capacity in dystrophin-deficient muscle and validates experimental efforts aimed at augmenting regeneration within skeletal muscle as a therapeutic strategy in the treatment of dystrophinopathies.  相似文献   

18.
Abstract: Neuronal nitric oxide synthase (nNOS) is a component of the dystrophin complex in skeletal muscle. The absence of dystrophin protein in Duchenne muscular dystrophy and in mdx mouse causes a redistribution of nNOS from the plasma membrane to the cytosol in muscle cells. Aberrant nNOS activity in the cytosol can induce free radical oxidation, which is toxic to myofibers. To test the hypothesis that derangements in nNOS disposition mediate muscle damage in Duchenne dystrophy, we bred dystrophin-deficient mdx male mice and female mdx heterozygote mice that lack nNOS. We found that genetic deletion of nNOS does not itself cause detectable pathology and that removal of nNOS does not influence the extent of increased sarcolemmal permeability in dystrophin-deficient mice. Thus, histological analyses of nNOS-dystrophin double mutants show pathological changes similar to the dystrophin mutation alone. Taken together, nNOS defects alone do not produce muscular dystrophy in the mdx model.  相似文献   

19.
The sarcoglycan complex is found normally at the plasma membrane of muscle. Disruption of the sarcoglycan complex, through primary gene mutations in dystrophin or sarcoglycan subunits, produces membrane instability and muscular dystrophy. Restoration of the sarcoglycan complex at the plasma membrane requires reintroduction of the mutant sarcoglycan subunit in a manner that will permit normal assembly of the entire sarcoglycan complex. To study sarcoglycan gene replacement, we introduced transgenes expressing murine gamma-sarcoglycan into muscle of normal mice. Mice expressing high levels of gamma-sarcoglycan, under the control of the muscle-specific creatine kinase promoter, developed a severe muscular dystrophy with greatly reduced muscle mass and early lethality. Marked gamma-sarcoglycan overexpression produced cytoplasmic aggregates that interfered with normal membrane targeting of gamma-sarcoglycan. Overexpression of gamma-sarcoglycan lead to the up-regulation of alpha- and beta-sarcoglycan. These data suggest that increased gamma-sarcoglycan and/or mislocalization of gamma-sarcoglycan to the cytoplasm is sufficient to induce muscle damage and provides a new model of muscular dystrophy that highlights the importance of this protein in the assembly, function, and downstream signaling of the sarcoglycan complex. Most importantly, gene dosage and promoter strength should be given serious consideration in replacement gene therapy to ensure safety in human clinical trials.  相似文献   

20.
In Duchenne muscular dystrophy (DMD), dystrophin mutation leads to progressive lethal skeletal muscle degeneration. For unknown reasons, dystrophin deficiency does not recapitulate DMD in mice (mdx), which have mild skeletal muscle defects and potent regenerative capacity. We postulated that human DMD progression is a consequence of loss of functional muscle stem cells (MuSC), and the mild mouse mdx phenotype results from greater MuSC reserve fueled by longer telomeres. We report that mdx mice lacking the RNA component of telomerase (mdx/mTR) have shortened telomeres in muscle cells and severe muscular dystrophy that progressively worsens with age. Muscle wasting severity parallels a decline in MuSC regenerative capacity and is ameliorated histologically by transplantation of wild-type MuSC. These data show that DMD progression results, in part, from a cell-autonomous failure of?MuSC to maintain the damage-repair cycle initiated by dystrophin deficiency. The essential role of MuSC function has therapeutic implications for DMD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号