首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the experiments carried out with the suspension of the myometrium cell plasmatic membranes treated with 0.1% digitonin solution the authors investigated influence of the calix[4]arenes C-97 and C-107 (codes are shown) on ouabain effect on the Na+,K+-ATPase activity. It was shown that calixarenes in concentration 100 tiM inhibited by 97-98% the enzymatic Na+,K+-ATPase activity, while they did not practically influence on the basal Mg2+-ATPase activity, and suppressed much more effective than ouabain the sodium pump enzymatic activity: in the case of the action of the calixarenes the value of the apparent constant of inhibition I0.5 was < 0.1 microM while for ouabain it was 15-25 microM. The negative cooperative effect was typical of the inhibitory action of calixarenes, as well as ouabain: the value of Hills factor nH = 0.3-0.5 <1. The modelling compound M-3 (0.1 microM 4 microM)--a fragment of the calixarene C-107--did not practically influence the enzymatic activities as Na+,K+-ATPase and basal Mg2+-ATPase. Hence the influence of calixarene C-107 on the Na+, K+-ATPase activity is caused by cooperative action of two fragments M-3 and effect of calixarene bowl, rather than by simple action of the fragment M-3. Calixarenes C-97 and C-107, used in concentration corresponding to values of I0.5 (40 and 60 nM, accordingly), essentially stimulated inhibiting action of ouabain on the specific Na+, K+-ATPase activity in the memrane fraction. Under coaction of ouabain with calixarene C-97 or C-107 there was no additive effect of the action of these inhibitors on the Na+,K+-ATPase activity. Calixarene C-97 brought in the incubation medium in concentration of 10 nM not only led to inhibition of the Na+,K+-ATPase activity relative to control, but also simultaneously increased the affinity of the enzyme for the cardiac glycoside: the magnitudes of the apparent constant of inhibition I0.5 were 21.0 +/- 5.2 microM and 5.3 +/- 0.7 microM. It is concluded, that highly effective inhibitors of the Na+,K+-ATPase activity--calixarenes C-97 and C-107 can enhance the effect of the sodium pump conventional inhibitor--ouabain, increasing the affinity of the enzyme for the cardiac glycoside (on the example of calixarene C-97).  相似文献   

2.
Investigation the influence of calyx[4]arenes C-90, C-91, C-97 and C-99 (codes are indicated) on the enzymatic activity of four functionally different Mg2+ -dependent ATPases from smooth muscle of the uterus: actomyosin ATPase, transporting Ca2+, Mg2+ -ATPase, ouabain-sensible Na+, K+ -ATPase and basal Mg2+ -ATPase. It was shown that calixarenes C-90 and C-91 in concentration 100 microM act multidirectionally on the functionally different Mg2+ -dependent ATP-hydrolase enzymatic systems. These compounds activate effectively the actomyosin ATPase (Ka = 52 +/- 11 microM [Ukrainian character: see text] 8 +/- 2 microM, accordingly), at the same time calixarene C-90 inhibited effectively activity of transporting Ca2+, Mg2+ -ATPase of plasmatic membranes (I(0,5) = 34.6 +/- 6.4 microM), but influence on membrane-bound Na+, K+ -ATPase and basal Mg2+ -ATPase. Calixarene C-91 reduce effectively basal Mg2+ -ATPase activity, insignificantly activating Na+, K+ -ATPase but has no influence on transporting Ca2+, Mg2+ -ATPase activity of plasmatic membranes. Calixarenes C-97 and C-99 (100 microM), which have similar structure, have monodirectional influence on activity of three functionally different Mg2+-dependent ATPases of the myometrium: actomyosin ATPase and two ATPases, that related to the ATP-hydrolases of P-type--Ca2+, Mg2+ -ATPase and Na+, K+ -ATPase of plasmatic membranes. Basal Mg2+ -ATPase is resistant to the action of these two connections. Results of comparative experiments that were obtained by catalytic titration of calixarenes C-97 and C-99 by actomyosin ATPase (I(0,5) = 88 +/- 9 and 86 +/- 8 microM accordingly) and Na+, K+ -ATPase from plasmatic membranes (I(0,5) = 33 +/- 4 and 98 +/- 8 nM accordingly) indicate to the considerably more sensitiveness of Na+, K+ -ATP-ase to these calixarenes than ATPase of contractile proteins. Thus, it is shown that calixarenes have influence on activity of a number of important enzymes, involved in functioning of the smooth muscle of the uterus and related to energy-supplies of the process of the muscle contracting and support of intracellular ionic homeostasis. The obtained results can be useful in further researches, directed at the use of calixarenes as pharmaceutical substance, able to normalize the contractile function of the uterus at some pregnancy pathologies in women's.  相似文献   

3.
The inhibitory action of calixarene C-107 (5,17-diamino(2-pyridyl)methylphosphono- 11,23-di-tret-butyl-26,28-dihydroxy-25,27-dipropoxy-calix[4]arene) on Na+, K(+)-ATPase activity kinetic properties of myometrium perforated plasma membrane was investigated. It has been shown that the calixarene C-107 inhibiting Na+, K(+)-ATPase does not change the kinetic parameters (Km, nH) of reaction velocity dependence on substrate concentration. The constant Ka of enzyme activation by MgCl2 has complex dependence on calixarene C-107 concentration: it increases twice with growth of calixarene concentration up to 50 nM and decreases to the control level with further growth of calixarene concentration. The Hill cooperativity coefficient nH of activation by MgCl2 does not vary in the presence of calixarene C-107. Both ATP and MgCl2 have no influence on Na+, K(+)-ATPase constant of inhibition by calixarene C-107, but an increase of concentration of the mentioned physiological compounds causes the growth of cooperativity coefficient nH of enzymatic reaction inhibition by calixaren C-107.  相似文献   

4.
Effect of calix[4]arenes C-97, C-99, C-107, functionalized by fragments of alpha-hydroxy-phosphonic, alpha-aminophosphonic- and methylene-bisphosphonic acid on enzymatic activity of oubaine-sensitive Na+, K+-ATPase and oubaine-resistant basal Mg2+- ATPase (specific activity - 10.6 +/- 0.9 and 18.1 +/- 1.2 micromol Pi/h per 1 mg of protein, respectively; n = 7) was studied in experiments made on the suspension of myometrium cell plasma membranes treated by 0.1% solution of digitonin. It was found that calixarene-phosphonic acids in concentration of 100 microM inhibited enzymatic activity of Na+, K+-ATPase by 86-98% and did not practically affect activity of Mg2+-ATPase. These calixarenes were more efficient than oubaine in suppressing enzymatic activity of the sodium pump: in case of the effect of calixerenes the value of the appearence constant of inhibition I0.5 was < 0.1 microM. Calixarene-methylene-bisphosphonic acid (calixarene C-97; I0.5 =33 +/- 4 microM (n = 6) takes the most efficient inhibitory effect on Na+,K+-ATPase activity among the studied calixarenes. A phenomenon of negative cooperation: the Hill coefficient value etaH =0.1-0.5<1 is characteristic of both the inhibiting effect of calixarenes and oubaine. Reguliarities of calixarenes C-97 effect on enzymatic activity of Na+,K+-ATPase were studied. As it appeared its inhibiting effect cannot be caused by trivial factors - potentially possible binding of Mg ions by it and (or) this substance effect on Mg2+ interaction with ATP4- in the incubation medium. Calixerene C-97 does not also decrease the enzyme affinity for Mg ions or ATP. However this calixerenes decreases the affinity of Na+,K+-ATPase for Na ions (the value of activation constant K(Na+)) from 50 +/- 4 (control) to 76 +/- 6 microM in the control and under the effect of calixerene, respectively). A conclusion is made that calixerene C-97 is highly-efficient (with respect to oubaine) and selective (with respect to lack of its effect on basal Mg2+-ATPase) inhibitor of Na+,K+-ATPase of plasma membrane. In the practical aspect it may be used in concentration of 1-10 microM in biochemical membranology when testing and studying kinetic and catalytic properties of the sodium pump in case of such experimental model, as the plasma membrane fraction.  相似文献   

5.
The paper deals with the influence of the proton pump inhibitors - omeprasole and lansoprasole on the enzymatic activity of the ouabain-sensitive Na+, K+ -ATPase and the ouabain-resistant Mg2+ - ATPase in the suspension of the myometrium cell plasmatic membranes treated with 0.1% digitonin solution. It was found, that omeprasole and lansoprasole inhibited Na+, K+ -ATPase in the range from 10 to 100 microM. The maximal effect was observed at a concentration of 100 microM with the percentage of inhibition of 81 and 86% at an average as compared with the control for omeprasole and lansoprasole, respectively. The magnitudes of the inhibition coefficient I(0.5) for omeprasole and lansoprasole were 35.60 +/- 0.81 and 29.40 +/- 1.79 microM respectively. Meanwhile cooperative effects on the Na+, K+ - ATPase activity were not found, as the Hill coefficient n(H) for omeprasole was 1.00 +/- 0.08, while for lansoprasole it was 1.20 +/- 0.03. These substances had also insignificant influence on Mg2+ -ATPase: the enzymatic activity was decreased to 84 and 82% as compared with the control with omeprasole and lansoprasole, respectively, in concentration of 100 microM for each inhibitor. The inhibition of Na+, K+ -ATPase activity can evidence for the possible side effects of omeprasole and lansoprasole when they are used for treatment of acid-dependent diseases of the stomach. In addition, obtained experimental data can be useful for further research of the membrane mechanisms of omeprasole and lansoprasole action on cationic exchange in the smooth muscle cells.  相似文献   

6.
In the experiments carried out with the suspension of the myometrium cell plasmatic membranes treated with 0.1% digitonin solution we investigated the influence of calixarene C-107 (5,17-diamino(2-pyridyl)methylphosphono-11,23-di-tret-butyl-26,28-dihydroxy-25,27-dipropoxyca-lix[4]arene) on the Na+,K(+)-ATPase activity. It was shown that this calixarene increased the affinity of the enzyme for the sodium pump conventional inhibitor - ouabain: the magnitudes of the seeming constant of inhibition I0.5 changed from 26.9 +/- 1.3 mM to 10.9 +/- 0.6 mM. However the ouabain itself did not influence on the affinity of the Na+,K(+)-ATPase for calixarene C-107.  相似文献   

7.
The comparative study of influence of ouabain and calixarene C107, and the structure component of this calixarene--fragment M3, in the conditions of in vitro and chronic action in vivo on Na+, K(+)-ATPase activity was carried out on the fractions of plasmatic membranes (PM) of the rat hepatocytes. A general property in the conditions in vitro is the ability of calixarene C107 and ouabain (both substances were in the concentration of 1 mM) to inhibit PM Na+, K(+)-ATPase of rat hepatocytes. However, in the case of activities of calixarene C107 and ouabain in the conditions in vivo heterogeneous action on Mg2(+)-ATPase and Mg2+, Na+, K(+)-ATPase activities takes place: total activity in the conditions of injection of increased concentrations of ouabain remains without changes, but Mg2(+)-ATPase activity significantly grows; in analogous conditions under the action of calixarene C107 both these activities decrease twice in comparison with control. Both under the in vitro and in vivo conditions, M3 fragment (the structural component of C107) does not change the values of investigated enzymatic activities. The biochemical mechanisms of calixarene C107 action on Na+, K(+)-ATPase activity in PM of rat hepatocytes are discussed.  相似文献   

8.
Influence of aliphatic polyamines of spermine and spermidine on the enzymatic activity of the ouabain-sensitive Na+,K(+)-ATPase and the ouabain-resistant basal Mg(2+)-ATPase (specific activity--10.6 +/- 0.9 and 18.1 +/- 1.2 microM P(i)/hour on 1 mg of protein accordingly, n = 7) has been studied in the experiments carried out with the suspension of the myometrium cell plasmatic membranes treated with 0.1% digitonin solution. It was found, that the polyamine spermine in concentration of 1 and 10 mM activated the Na+,K(+)-ATPase by 54 and 64% on the average relative to control value. Spermidine also stimulated the Na+,K(+)-ATPase activity, however it did it less efficiently than spermine: by 8 and 20% on the average at concentration of 1 and 10 mM, accordingly. Similarly, polyamines had affect on the basal Mg(2+)-ATPase: spermine in concentration of 1 and 10 mM activated it by 26 and 39% relative to control value; spermidine in concentration of 1 and 10 mM activated it by 10 and 32% relative to control. The magnitudes of the apparent activation constant K(a) of spermine were 0.35 +/- 0.07 and 0.10 +/- 0.02 mM for Na+,K(+)-ATPase and basal Mg(2+)-ATPase, accordingly (M +/- m, n = 5). It is supposed, that the obtained experimental data can be useful in the further research of the membrane mechanisms underlying of the cationic exchange in the smooth muscles, in particular, when investigating the role of the plasmatic membrane in providing electromechanical coupling in them, and also in regulation of ionic homeostasis in the smooth muscle cells.  相似文献   

9.
B Vilsen 《Biochemistry》1999,38(35):11389-11400
Mutant Phe788 --> Leu of the rat kidney Na+,K(+)-ATPase was expressed in COS cells to active-site concentrations between 40 and 60 pmol/mg of membrane protein. Analysis of the functional properties showed that the discrimination between Na+ and K+ on the two sides of the system is severely impaired in the mutant. Micromolar concentrations of K+ inhibited ATP hydrolysis (K(0.5) for inhibition 107 microM for the mutant versus 76 mM for the wild-type at 20 mM Na+), and at 20 mM K+, the molecular turnover number for Na+,K(+)-ATPase activity was reduced to 11% that of the wild-type. This inhibition was counteracted by Na+ in high concentrations, and in the total absence of K+, the mutant catalyzed Na(+)-activated ATP hydrolysis ("Na(+)-ATPase activity") at an extraordinary high rate corresponding to 86% of the maximal Na+,K(+)-ATPase activity. The high Na(+)-ATPase activity was accounted for by an increased rate of K(+)-independent dephosphorylation. Already at 2 mM Na+, the dephosphorylation rate of the mutant was 8-fold higher than that of the wild-type, and the maximal rate of Na(+)-induced dephosphorylation amounted to 61% of the rate of K(+)-induced dephosphorylation. The cause of the inhibitory effect of K+ on ATP hydrolysis in the mutant was an unusual stability of the K(+)-occluded E2(K2) form. Hence, when E2(K2) was formed by K+ binding to unphosphorylated enzyme, the K(0.5) for K+ occlusion was close to 1 microM in the mutant versus 100 microM in the wild-type. In the presence of 100 mM Na+ to compete with K+ binding, the K(0.5) for K+ occlusion was still 100-fold lower in the mutant than in the wild-type. Moreover, relative to the wild-type, the mutant exhibited a 6-7-fold reduced rate of release of occluded K+, a 3-4-fold increased apparent K+ affinity in activation of the pNPPase reaction, a 10-11-fold lower apparent ATP affinity in the Na+,K(+)-ATPase assay with 250 microM K+ present (increased K(+)-ATP antagonism), and an 8-fold reduced apparent ouabain affinity (increased K(+)-ouabain antagonism).  相似文献   

10.
The action of sodium nitroprusside, nitrite-anions and hydrogen peroxide on Ca2+, Mg(2+)-ATPase and Mg(2+)-ATPase (Ca(2+)-independent) enzymatic activity in myometrium sarcolemma fraction is investigated. It is established, that 0.1 mM sodium nitroprusside and 10(-8)-10(-5) M nitrite-anions essentially reduce Ca2+, Mg(2+)-ATPase activity whereas Mg(2+)-ATPase proved to be absolutely resistant to them. At rather high concentration of nitrite-anions (0.1 mM) appreciable stimulation of Ca2+, Mg(2+)-ATPase was observed. Hydrogen peroxide (10(-8)-10(-4)), depending on the concentration suppressed both enzymes activity. However, Ca2+, Mg(2+)-ATPase proved to be more sensitive to the action of H2O2 (seeming K(i) = 0.42 +/- 0.1 microM), than Mg(2+)-ATPase (seeming K(i) = 3.1 +/- 0.9 microM). At presence of 1 mM ditiothreitole (a reducer of SH groups of the membrane surface) action of investigated substances considerably decreased. Reagents on carboxic- (dicyclogexilcarbodiimid) and amino- groups of the membrane (trinitrobenzolsulfonic acid) inhibited both Ca2+, Mg(2+)-ATPase, and Mg(2+)-ATPase activity in membrane fractions. In the presence of noted reagents sodium nitroprusside and nitrite-anions action was not almost shown. Hence, nitrogen oxide, nitrite-anions and hydrogen peroxide suppress Ca2+, Mg(2+)-ATPase and Mg(2+)-ATPase (only hydrogen peroxide) activity in the plasmatic membrane of myometrium cells, and this action can be connected with direct updating of superficial chemical groups of the membrane.  相似文献   

11.
The aim of this work was to develop a method for renal H+,K+-ATPase measurement based on the previously used Na+,K+-ATPase assay (Beltowski et al.: J Physiol Pharmacol.; 1998, 49: 625-37). ATPase activity was assessed by measuring the amount of inorganic phosphate liberated from ATP by isolated microsomal fraction. Both ouabain-sensitive and ouabain-resistant K+-stimulated and Na+-independent ATPase activity was detected in the renal cortex and medulla. These activities were blocked by 0.2 mM imidazolpyridine derivative, Sch 28080. The method for ouabain-sensitive H+,K+-ATPase assay is characterized by good reproducibility, linearity and recovery. In contrast, the assay for ouabain-resistant H+,K+-ATPase was unsatisfactory, probably due to low activity of this enzyme. Ouabain-sensitive H+,K+-ATPase was stimulated by K+ with Km of 0.26 +/- 0.04 mM and 0.69 +/- 0.11 mM in cortex and medulla, respectively, and was inhibited by ouabain (Ki of 2.9 +/- 0.3 microM in the renal cortex and 1.9 +/- 0.4 microM in the renal medulla) and by Sch 28080 (Ki of 1.8 +/- 0.5 microM and 2.5 +/- 0.9 microM in cortex and medulla, respectively). We found that ouabain-sensitive H+,K+-ATPase accounted for about 12% of total ouabain-sensitive activity in the Na+,K+-ATPase assay. Therefore, we suggest to use Sch 28080 during Na+,K+-ATPase measurement to block H+,K+-ATPase and improve the assay specificity. Leptin administered intraperitoneally (1 mg/kg) decreased renal medullary Na+,K+-ATPase activity by 32.1% at 1 h after injection but had no effect on H+,K+-ATPase activity suggesting that the two renal ouabain-sensitive ATPases are separately regulated.  相似文献   

12.
It has been shown that the desensibilization of the enzymic preparations of Na+, K+-ATPase by urea, DS-Na, digitonin and CHAPS reduces differently the amount of alpha beta-protomer in the enzymic preparations and the Hill coefficients of Na+ and K+. The factors (urea, DS-Na) which cause a more pronounced decrease in the amount of beta-protomer reduce the nH of Na+ for Na+, K+-ATPase and nH of K+ for Na+, K+-ATPase and K+-pNPPase to unit. The analysis of the effects of ATP and pNPP indicates that ATP has a protective effect only in the case of urea and DS-Na, but this effect is not exerted by pNPP (nonallosteric substrate). A conclusion is drawn that cooperative interactions of Na+, K+-ATPase from the brain with Na+ require more higher level of the oligomeric structure of enzyme than cooperative interactions with K+. At the same time these cooperative interactions in the both cases need subunits interactions in the protomer and interactions between cation sites with relatively high affinity.  相似文献   

13.
F R Gorga 《Biochemistry》1985,24(24):6783-6788
N,N'-Dicyclohexylcarbodiimide (DCCD), a reagent that reacts with carboxyl groups under mild conditions, irreversibly inhibits (Na+,K+)-ATPase activity (measured by using 1 mM ATP) with a pseudo-first-order rate constant of 0.084 min-1 (0.25 mM DCCD and 37 degrees C). The partial activities of the enzyme, including (Na+,K+)-ATPase at 1 microM ATP, Na+-ATPase, and the formation of enzyme-acyl phosphate (E-P), decayed at about one-third the rate at which (Na+,K+)-ATPase at 1 mM ATP was lost. The formation of E-P from inorganic phosphate was unaffected by DCCD while K+-phosphatase activity decayed at the same rate as (Na+,K+)-ATPase measured at 1 mM ATP. The enzyme's substrates (i.e., sodium, potassium, magnesium, and ATP) all decreased the rate of DCCD inactivation of (Na+,K+)-ATPase activity measured at either 1 mM or 1 microM ATP. The concentration dependence of the protection afforded by each substrate is consistent with its binding at a catalytically relevant site. DCCD also causes cross-linking of the enzyme into species of very high molecular weight. This process occurs at about one-tenth the rate at which (Na+,K+)-ATPase activity measured at 1 mM ATP is lost, too slowly to be related to the loss of enzymatic activity. Labeling of the enzyme with [14C]DCCD shows the incorporation of approximately 1 mol of DCCD per mole of large subunit; however, the incorporation is independent of the loss of enzymatic activity. The results presented here suggest that (Na+,K+)-ATPase contains two carboxyl groups that are essential for catalytic activity, in addition to the previously known aspartate residue which is involved in formation of E-P.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The comparative research of catalytic properties of two ATP-hydrolases of the sarcolemma of the smooth muscle of the uterus--ouabaine-sensitive Na+,K+-ATPase and ouabaine-resistent Mg2+-ATPase is carried out. The specific enzymatic activity of Na+,K+-ATPase and Mg2+-ATPase makes 10.2 +/- 0.7 and 18.1 +/- 1.2 mmol P/mg of protein for 1 hour, accordingly. The action of ouabaine on Na+,K+-ATPase is characterized by magnitude of quotient of inhibition I0.5=21.3 +/- 1.5 mkM. Processing of the sarcolemma fraction by digitonin in concentrations 0.001 +/- 0.1% promotes an activation of Na+,K+ATPase and Mg2+- ATPase, and in the first case much more efficiently than in the second. The kinetics of accumulation of the product of ATP-hydrolase reactions of phosphate satisfies the laws of the zero order reaction (incubation time--about 10 min). Na+,K+-ATPase is highly specific concerning the univalent cations--Na+, K+, however Li+ can partially substitute K+. Activity of Mg2+-ATPase is not specific concerning univalent cations. The dependence of Na+,K+-ATPase activity on pH in the range of 6.0-8.0 is characterized by the bell-shaped curve, at the same time the linear dependence on pH is peculiar to Mg2+-ATPase. The functioning of Na+,K+-ATPase is provided only by ATP, in the case of Mg2+-ATPase ATP can be successfully replaced with other nucleotidetriphosphates. It is supposed that the obtained experimental data can be beneficial in further research of membranous mechanisms underlying the cation exchange in the smooth muscles, in particular when studying the role of the plasma membrane in the maintenance of electromechanical coupling in them, and also in the regulation of ionic homeostasis in myocytes.  相似文献   

15.
The aim of this study was to investigate whether the preincubation of brain homogenates with L-phenylalanine (Phe), L-cysteine (Cys) or reduced glutathione (GSH) could reverse the free radical effects on Na+,K+-ATPase activity. Two well established systems were used for the production of free radicals: 1) FeSO4 (84 microM) plus ascorbic acid (400 microM) and 2) FeSO4, ascorbic acid and H2O2 (1 mM) for 10 min at 37 degrees C in homogenates of adult rat whole brain. Changes in brain Na+,K+-ATPase activity and total antioxidant status (TAS) were studied in the presence of each system separately, with or without Phe, Cys or GSH. TAS value reflects the amount of free radicals and the capacity of the antioxidant enzymes to limit the free radicals in the homogenate. Na+,K+-ATPase was inhibited by 35-50% and TAS value was decreased by 50-60% by both systems of free radical production. The enzymatic inhibition was completely reversed and TAS value increased by 150-180% when brain homogenates were preincubated with 0.83 mM Cys or GSH. However, this Na+,K+-ATPase inhibition was not affected by 1.80 mM Phe, which produced a 45-50% increase in TAS value. It is suggested that the antioxidant action of Cys and GSH may be due to the binding of free radicals to sulfhydryl groups of the molecule, so that free radicals cannot induce Na+,K+-ATPase inhibition. Moreover, Cys and GSH could regulate towards normal values the neural excitability and metabolic energy production, which may be disturbed by free radical action on Na+,K+-ATPase.  相似文献   

16.
S Maeda  J Nakamae  R Inoki 《Life sciences》1988,42(4):461-468
The effect of various opioids on Na+, K+ -ATPase partially purified from rat heart was examined. Dynorphin-A (1-13), dynorphin-A (1-17) and ethylketocyclazocine (EKC), which are k-type opiate agonists, markedly inhibited the enzyme activity in a dose-dependent manner; IC50 values were 12 microM, 21 microM and 0.38 mM, respectively. Morphine (mu-type agonist), methionine- and leucine-enkephalin (delta-type agonist) at the concentration of 1 mM did not affect the enzyme activity. The effect of dynorphin-A (1-13) and EKC was not antagonized by naloxone. Dynorphin-A (1-13) mainly decreased Vmax value without the change of Km value in the activation of Na+, K+-ATPase by ATP, Na+ and K+. Dynorphin-A(1-13) inhibited the partial reactions of Na+, K+-ATPase at the different degree of the potency; the inhibition of K+-stimulated phosphatase was greater than that of Na+-dependent phosphorylation. The present study suggests that dynorphin-A and EKC have an effect on cardiovascular system which is mediated by the inhibition of Na+, K+-ATPase in the heart.  相似文献   

17.
Na+, K+-ATPase activity of homogenates prepared from cauda epididymal golden hamster sperm increased after the addition of cGMP (50 microM), monobutyryl cGMP (0.5 microM) or cGMP-dependent protein kinase (0.94 micrograms/ml). Addition of monobutyryl cAMP (0.5 microM) or purified catalytic subunit of cAMP-dependent protein kinase (1.26 micrograms/ml) inhibited the activity of the Na+, K+-ATPase. Preincubation with a partially purified preparation of cAMP-dependent protein kinase inhibitor (75 micrograms/ml) stimulated the activity of the Na+, K+-ATPase, and this stimulation was decreased by the addition of 5 microM monobutyryl cAMP. It is not yet known whether direct and/or indirect mechanisms are involved, but these results are the first to describe such opposing effects by cyclic nucleotide-mediated processes on a Na+, K+-ATPase activity.  相似文献   

18.
Na+-ATPase activity of a dog kidney (Na+ + K+)-ATPase enzyme preparation was inhibited by a high concentration of NaCl (100 mM) in the presence of 30 microM ATP and 50 microM MgCl2, but stimulated by 100 mM NaCl in the presence of 30 microM ATP and 3 mM MgCl2. The K0.5 for the effect of MgCl2 was near 0.5 mM. Treatment of the enzyme with the organic mercurial thimerosal had little effect on Na+ -ATPase activity with 10 mM NaCl but lessened inhibition by 100 mM NaCl in the presence of 50 microM MgCl2. Similar thimerosal treatment reduced (Na+ + K+)-ATPase activity by half but did not appreciably affect the K0.5 for activation by either Na+ or K+, although it reduced inhibition by high Na+ concentrations. These data are interpreted in terms of two classes of extracellularly-available low-affinity sites for Na+: Na+-discharge sites at which Na+-binding can drive E2-P back to E1-P, thereby inhibiting Na+-ATPase activity, and sites activating E2-P hydrolysis and thereby stimulating Na+-ATPase activity, corresponding to the K+-acceptance sites. Since these two classes of sites cannot be identical, the data favor co-existing Na+-discharge and K+-acceptance sites. Mg2+ may stimulate Na+-ATPase activity by favoring E2-P over E1-P, through occupying intracellular sites distinct from the phosphorylation site or Na+-acceptance sites, perhaps at a coexisting low-affinity substrate site. Among other effects, thimerosal treatment appears to stimulate the Na+-ATPase reaction and lessen Na+-inhibition of the (Na+ + K+)-ATPase reaction by increasing the efficacy of Na+ in activating E2-P hydrolysis.  相似文献   

19.
1. The ATP sites. Homotropic interactions between ATP sites have been studied in a very large range of Na+ and K+ concentrations. The ( Na+, K+)-activated ATPase displays Michaelis-Menten kinetics for ATP under standard concentration conditions of Na+ (100 mM) and K+ (10 mM). The steady-state kinetics behavior changes at very low concentrations of K+ where negative cooperativity is observed. The existence of a high affinity and a low affinity site for ATP was clearly demonstrated from the study of the ATP stimulated hydrolysis of p-nitrophenylphosphate in the presence of Na+ and K+. The ratio of apparent affinities of high and low affinity sites for ATP is 86 at pH 7.5. 2. The Na+ sites. The binding of Na+ to its specific stimulatory sites (internal sites) is characterized by positive cooperativity with a Hill coefficient n(H(Na+))=2.0. Homotropic interactions between Na+ sites are unaffected by variations of the K+ concentration. 3. The K+ sites. (a) Binding of K+ to the (external) stimulatory site of the ATPase has been analyzed by following the (Na+, K+)-ATPase activity as well as the p-nitrophenylphosphatase activity in the presence of Na+ and K+ (with or without ATP). Binding is characterized by a Hill coefficient of 1.0 and a K(0.5(K+))=0.1 to 0.8 mM. The absence of positive or negative cooperativity persists between 5 mM and 100 mM Na+. (b) The analysis of the p-nitrophenylphosphatase or of the 2, 4 dinitrophenylphosphatase activity in the presence of K+ alone indicates the existence of low affinity sites for K+ with positive homotropic interactions. The characteristics of stimulation in that case are, K(0.5)=5 mM, n(H)=1.9. The properties of this family of site(s) are the following: firstly, saturation of the low affinity site(s) by K+ prevents ATP binding to its high affinity internal site. Secondly, saturation of the low affinity sites for K+ prevents binding of Na+ to its internal sites. Thirdly, this family of sites disappears in the presence of ATP, p-nitrophenylphosphate or of both substrates, when Na+ binds to its internal sites. Na+ binding to its specific stimulatory sites provokes the formation of the high affinity type of site for K+. 4. Mg2+ stimulation of the (Na+, K+)-ATPase is characterized by a Hill coefficient n(H(Mg2+))=1.0 and a K(0.5(Mg2+))=1 mM stimulation is essentially a V effect. Heterotropic effects between binding of Mg2+ and substrate to their respective sites are small. Heterotropic interactions between the Ms2+, Na+ and K+ sites are also small. 5. The fluidity of membrane lipids also controls the (Na+, K+)-ATPase activity. Phase transitions or separations in the membrane hardly affect recognition properties of substrates, Na+, K+ and Mg2+ for their respective sites on both sides of the membrane. Only the rate of the catalytic transformation is affected.  相似文献   

20.
The radiation inactivation analysis of Na+, K+-ATPase, (EC 3.6.1.37) from two different sources was carried out using ATP, CTP, GTP and p-NPP as substrates. In the case of Na+, K+-ATPase from the bovine brain the relation between the logarithm of the residual activity and the radiation dose is strictly linear, which permits calculating 75-90 kDa (for 3 mM GTP and 10 mM p-NPP). Duck salt glands Na+, K+-ATPase reveals larger target sizes: 350 kDa for ATP hydrolysis in saturating concentrations and 145-190 kDa in the case of GTP and p-NPP or low concentration of ATP (30 microM). A conclusion is drawn that while hydrolyzing substrates with complex kinetics (ATP and CTP) the enzyme functions like oligomer. The interaction of nucleotide with substrate-binding site of low affinity induces the aggregation of monomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号