首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Since the early genetic studies in yeast, regulation of the cell cycle has been associated to the sequential activation of several proline-directed serine-threonine protein kinases by cyclins. From yeast to humans, the activiy of these cyclin-dependent kinases (Cdks) have been thought to be essential for cell cycle regulation. Recent gene-targeted mouse models for different cyclins and Cdks have shown that members of these families show a certain level of redundancy and that specific complexes are not required for the mitotic cell cycle. However, the complexity of the Cdk-cyclin network and the promiscuity of their members makes it difficult to understand the relative contribution of these proteins to the mammalian cell division cycle. Compensatory roles by non-Cdk activities and Cdk-independent functions of cyclins are increasing the complexity of the current simplistic models. We still do not know whether at least one cyclin-dependent kinase activity is required for cell cycle progression in mammalian cells. Indeed, a relevant question for cancer therapy.  相似文献   

5.
New insights into cyclins, CDKs, and cell cycle control   总被引:12,自引:0,他引:12  
Since their initial discovery in yeast, cyclin-dependent kinases have proven to be universal regulators of the cell cycle in all eukaryotes. In unicellular eukaryotes, cell cycle progression is principally governed by one catalytic subunit (cyclin-dependent kinase) that pairs with cell cycle-specific regulatory subunits known as cyclins. Progression through a specific phase of the cell cycle is under the control of a specific class of cyclin. Cell cycle control in multicellular eukaryotes has an additional layer of complexity, as multiple CDKs and cyclins are required. In this review, we will discuss recent advances in the area of cyclins and CDKs, with emphasis on the role of the mammalian proteins in cell cycle control at the cellular and at the organismal level. Many recent surprises have come to light recently as a result of genetic manipulation of cells and mice, and these findings suggest that our understanding of the intricacies of the cell cycle is still rudimentary at best.  相似文献   

6.
Cyclin‐dependent kinases (CDKs), the master regulators of cell division, are activated by different cyclins at different cell cycle stages. In addition to being activators of CDKs, cyclins recognize various linear motifs to target CDK activity to specific proteins. We uncovered a cyclin docking motif, NLxxxL, that contributes to phosphorylation‐dependent degradation of the CDK inhibitor Far1 at the G1/S stage in the yeast Saccharomyces cerevisiae. This motif is recognized exclusively by S‐phase CDK (S‐CDK) Clb5/6‐Cdc28 and is considerably more potent than the conventional RxL docking motif. The NLxxxL and RxL motifs were found to overlap in some target proteins, suggesting that cyclin docking motifs can evolve to switch from one to another for fine‐tuning of cell cycle events. Using time‐lapse fluorescence microscopy, we show how different docking connections temporally control phosphorylation‐driven target degradation. This also revealed a differential function of the phosphoadaptor protein Cks1, as Cks1 docking potentiated degron phosphorylation of RxL‐containing but not of NLxxxL‐containing substrates. The NLxxxL motif was found to govern S‐cyclin‐specificity in multiple yeast CDK targets including Fin1, Lif1, and Slx4, suggesting its wider importance.  相似文献   

7.
In plants, different families of cyclin-dependent kinases (CDKs) and cyclins have been identified, indicating that also in plants the progression through the cell cycle is regulated by CDKs. In all eukaryotes, CDKs exert their activity through well-controlled phosphorylations of specific substrates on serine/threonine residues. Such post-translational modifications are universal mechanisms in signal transduction pathways. They allow the organism to differentiate, regulate growth and/or adapt to environmental changes, the latter being crucial for plants because of their sedentary life-style. This adaptation might explain the occurrence of a special CDK type with plant-specific features. This review focuses on the involvement of plant CDKs in different phases of the cell cycle in Arabidopsis thaliana and outlines their regulation by binding to other proteins, and by phosphorylation and dephosphorylation.  相似文献   

8.
9.
Selective degradation of cyclins, inhibitors of cyclin-dependent kinases and anaphase inhibitors is responsible for several major cell cycle transitions. The degradation of these cell cycle regulators is controlled by the action of ubiquitin—protein-ligase complexes, which target the regulators for degradation by the 26S proteasome. Recent results indicate that two types of multisubunit ubiquitin ligase complexes, which are connected to the protein kinase regulatory network of the cell cycle in different ways, are responsible for the specific and programmed degradation of many cell cycle regulators.  相似文献   

10.
Unscheduled expression of cyclins D1 and D3 in human tumour cell lines   总被引:2,自引:0,他引:2  
D-type cyclins are involved in regulation of cell traverse through G1 primarily by activating the cyclin-dependent kinase 4 (CDK4) and targeting it to the retinoblastoma tumour suppressor protein. There is a vast body of evidence that defective expression of D-type cyclins is associated with tumour development and/or progression. Immunocytochemical detection of D cyclins combined with multiparameter flow cytometry makes it possible to measure the expression of these proteins in individual cells in relation to their cell cycle position without the need for cell synchronization. This approach was used in the present study to compare the cell cycle phase specific expression of cyclins D3 and D1 in human normal proliferating lymphocytes and fibroblasts, respectively, with nine tumour cell lines of different lineage. During exponential, unperturbed growth, expression of cyclin D1 in fibroblasts from donors of different age, or cyclin D3 in lymphocytes, was limited to mid-G1 cells: Less than 7% of the cells entering S phase or progressing through S and G2 were cyclin D positive. In contrast, expression of either cyclin D1 or cyclin D3 in tumour cell lines of different lineage was not limited to G1 phase. Namely, over 80% of the cells in S and G2+M were cyclin D positive in eight of the nine cell lines studied. The data indicate that while expression of cyclin D1 or D3 in normal cells is discontinuous, occurring transiently in G1, these proteins are expressed in some tumour lines persistently throughout the cell cycle. This suggests that the partner kinase CDK4 is perpetually active throughout the cell cycle in these tumour lines.  相似文献   

11.
12.
Increasing evidence suggests that the eukaryotic cell cycle is controlled at several checkpoints by different members of a novel class of protein kinase, the cyclin-dependent kinases. To phosphorylate their substrates, these enzymes bind to proteins of the cyclin family--proteins that are synthesized and degraded at specific points in each cell cycle. The most well known of these kinases is the 34 kDa product of the cdc2 gene in fission yeast, p34cdc2; however, several putative cyclin-dependent kinases have now been cloned or identified. Some of these closely resemble p34cdc2. Here we review these new proteins, their potential roles in the cell cycle and the cyclins with which they may interact.  相似文献   

13.
Trypanosoma cruzi, the etiologic agent of Chagas disease, is a protozoan parasite with a life cycle that alternates between replicative and non-replicative forms, but the components and mechanisms that regulate its cell cycle are poorly described. In higher eukaryotes, cyclins are proteins that activate cyclin-dependent kinases (CDKs), by associating with them along the different stages of the cell cycle. These cyclin–CDK complexes exert their role as major modulators of the cell cycle by phosphorylating specific substrates. For the correct progression of the cell cycle, the mechanisms that regulate the activity of cyclins and their associated CDKs are diverse and must be controlled precisely. Different types of cyclins are involved in specific phases of the eukaryotic cell cycle, preferentially activating certain CDKs. In this work, we characterized TcCYC6, a putative coding sequence of T. cruzi which encodes a protein with homology to mitotic cyclins. The overexpression of this sequence, fused to a tag of nine amino acids from influenza virus hemagglutinin (TcCYC6-HA), showed to be detrimental for the proliferation of epimastigotes in axenic culture and affected the cell cycle progression. In silico analysis revealed an N-terminal segment similar to the consensus sequence of the destruction box, a hallmark for the degradation of several mitotic cyclins. We experimentally determined that the TcCYC6-HA turnover decreased in the presence of proteasome inhibitors, suggesting that TcCYC6 degradation occurs via ubiquitin–proteasome pathway. The results obtained in this study provide first evidence that TcCYC6 expression and degradation are finely regulated in T. cruzi.  相似文献   

14.
Left ventricle hypertrophy is induced by a number of stimuli and can lead to cardiomyopathy and heart failure. The hypertrophic response is achieved by enlargement of the cardiac myocytes and is regulated by multiple signaling pathways, with the D-type cyclins playing a crucial role. Induction of cyclin D in adult cardiac myocytes leads to activation of cyclin-dependent kinases 4 and 6 and a partial progress through the cell cycle. Therefore, these pathways are attractive therapeutic target for treatment of heart failure and hypertrophy. We discuss the activity of cyclin D and other cell cycle regulatory proteins in left ventricle hypertrophy and whether the hypertrophic signaling pathways converge at the D-type cyclins.  相似文献   

15.
16.
Left ventricle hypertrophy is induced by a number of stimuli and can lead to cardio-myopathy and heart failure. The hypertrophic response is achieved by enlargement of the cardiac myocytes and is regulated by multiple signaling pathways, with the D-type cyclins playing a crucial role. Induction of cyclin D in adult cardiac myocytes leads to activation of cyclin-dependent kinases 4 and 6 and a partial progress through the cell cycle. Therefore, these pathways are attractive therapeutic target for treatment of heart failure and hypertrophy. We discuss the activity of cyclin D and other cell cycle regulatory proteins in left ventricle hypertrophy and whether the hypertrophic signaling pathways converge at the D-type cyclins.  相似文献   

17.
Cyclins and their partners: from a simple idea to complicated reality.   总被引:23,自引:0,他引:23  
The cyclins comprise a family of proteins which combine with protein kinase subunits encoded by members of the cdc2 family. The active protein kinase thus formed phosphorylates target proteins in the cell and promotes certain cell cycle transitions. Cyclins A and B show the unusual property of sudden and specific proteolysis shortly before the metaphase-anaphase transition during mitosis. The destruction of the cyclins leads to rapid loss of activity of their kinase companions. The 'simple idea' referred to in the title of this article was that accumulation of cyclin formed maturation promoting factor (MPF), the enzyme that promotes the G2-M transition, and cyclin destruction turned off MPF. The complexity refers to additional controls of cdc2 activity, such as its reversible phosphorylation. Furthermore, many new members of the cyclin family have recently been discovered that may play a role in the regulation of the G1-S transition, and in higher organisms, the cdc2 family is also more numerous than was at first appreciated. Cyclins make important contributions both to subcellular localization and the substrate specificity of their companion kinase subunits. It is too early to say if the entire range of cyclin-like and cdc2-like protein kinases are involved in the control of the cell cycle.  相似文献   

18.
Plants have capability to optimize its architecture by using CDK pathways. It involves diverse types of cyclin dependent kinase enzymes (CDKs). CDKs are classified in to eight classes (CDKA to CDKG and CKL) based on the recognized cyclin-binding domains. These enzymes require specific cyclin proteins to get activated. They form complex with cyclin subunits and phosphorylate key target proteins. Phosphorylation of these target proteins is essential to drive cell cycle further from one phase to another phase. During cell division, the activity of cyclin dependent kinase is controlled by CDK interactor/inhibitor of CDKs (ICK) and Kip-related proteins (KRPs). They bind with specific CDK/cyclin complex and help in controlling CDKs activity. Since cell cycle can be progressed further only by synthesis and destruction of cyclins, they are quickly degraded using ubiquitination-proteasome pathway. Ubiquitylation reaction is followed by DNA duplication and cell division process. These two processes are regulated by two complexes known as Skp1/cullin/F-box (SCF)-related complex and the anaphase-promoting complex/cyclosome (APC/C). SCF allows cell to enter from G1 to S phase and APC/C allows cell to enter from G2 to M phase. When all these above processes of cell division are going on, genes of cyclin dependent kinases gets activated one by one simultaneously and help in regulation of CDK pathways. How cell cycle is regulated by CDKs is discussed.  相似文献   

19.
Progression through the cell cycle is regulated by cyclin-dependent kinases (CDKs), which associate with activating partners, named cyclins, to phosphorylate substrates efficiently. Cyclins are periodically synthesized and degraded during the cell cycle, playing a key role in the precise activation and inactivation of CDKs. However, CDKs can also be activated by other proteins, which lack sequence similarity to cyclins. These include the RINGO/Speedy proteins, which were originally identified as regulators of the meiotic cell cycle in Xenopus oocytes. Recently, five different mammalian RINGO/Speedy family members have been reported, all of which can bind to and directly activate Cdk1 and Cdk2.  相似文献   

20.
Lung cancer is globally widespread and associated with high morbidity and mortality. DDA1 (DET1 and DDB1 associated 1) was first discovered and registered in the GenBank database by our colleagues. DDA1, an evolutionarily conserved gene, might have significant functions. Recent reports have demonstrated that DDA1 is linked to the ubiquitin–proteasome pathway and facilitates the degradation of target proteins. However, the function of DDA1 in lung cancer was previously unknown. This study aimed to investigate whether DDA1 contributes to tumorigenesis and progression of lung cancer. We found that the expression of DDA1 in normal lung cells and tissue was significantly lower than that in lung cancer and was associated with poor prognosis. DDA1 overexpression promoted proliferation of lung tumour cells and facilitated cell cycle progression in vitro and subcutaneous xenograft tumour progression in vivo. Mechanistically, this was associated with the regulation of S phase and cyclins including cyclin D1/D3/E1. These results indicate that DDA1 promotes lung cancer progression, potentially through promoting cyclins and cell cycle progression. Therefore, DDA1 may be a potential novel target for lung cancer treatment, and a biomarker for tumour prognosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号