首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A unique cytochrome P-450-dependent fatty acid monooxygenase from Bacillus megaterium ATCC 14581 is strongly induced by phenobarbital (Narhi, L. O., and Fulco, A. J. (1982) J. Biol. Chem. 257, 2147-2150) and many other barbiturates (Kim, B.-H., and Fulco, A. J. (1983) Biochem. Biophys. Res. Commun. 116, 843-850). This monooxygenase has now been purified to homogeneity from pentobarbital-induced bacteria as a single polypeptide with a molecular weight of 119,000 +/- 5,000 daltons. In the presence of NADPH and O2, it can catalyze the oxygenation of long chain fatty acids without the aid of any other protein. The enzyme has a catalytic center activity of 4,600 nmol of fatty acid oxygenated per nmol of P-450 (the highest activity yet reported for a P-450-dependent monooxygenase) and also functions as a highly active cytochrome c reductase in the presence of NADPH. The purified holoenzyme is a soluble protein containing 40 mol % hydrophobic amino acid residues and 1 mol each of FAD and FMN/mol of heme. It is isolated and purified in the low spin form but is converted to the high spin form in the presence of long chain fatty acids. The enzyme, which catalyzes the omega-2 hydroxylation of saturated fatty acids and the hydroxylation and epoxidation of unsaturated fatty acids has its highest affinity (Km = 2 +/- 1 microM) for the C15 and C16 chain lengths.  相似文献   

2.
Rat kidney microsomes have been found to catalyze the hydroxylation of medium-chained fatty acids to the omega- and (omego-1)-hydroxy derivatives. This reaction, which requires NADPH and molecular oxygen, is a function of monooxygenase system present in the kidney microsomes, containing NADPH-cytochrome c reductase and cytochrome P-450K. NADH is about half as effective as an electron donor as NADPH and there is an additive effect in the presence of both nucleotides. Cytochrome P-450K absorbs light maximally at 452-3 nm, when it is reduced and bound to carbon monoxide. The extinction coefficient of this complex is 91 mM(-1) cm(-1). Electrons from NADPH are transferred to cytochrome P-450K via the NADPH-cytochrome c reductase. The reduction rate of cytochrome P-450K is stimulated by added fatty acids and the reduction kinetics reveal the presence of endogenous substrates bound to cytochrome P-450K. Both cytochrome P-450K concentration and fatty acid hydroxylation activity in kidney microsomes are increased by starvation. On the other hand, phenobarbital treatment of the rats has no effect on either the hemoprotein or the overall hydroxylation reaction and 3,4-benzpyrene administration induces a new species of cytochrome P-450K not involved in fatty acid hydroxylation. Cytochrome P-450K shows, in contrast to liver P-450, high substrate specificity. The only substances forming enzyme-substrate complexes with cytochrome P-450K are the medium-chained fatty acids and certain derivatives of these acids. The chemical requirements for substrate binding include a carbon chain of medium length and at the end of the chain a carbonyl group and a free electron pair on a neighbouring atom. The distance between the binding site for the carbonyl group and the active oxygen is suggested to be in the order of 16 A. This distance fixes the ratio of omega- and (omega-1)-hydroxylated products formed from a certain fatty acid by the single species of cytochrome P-450K involved. The membrane microenvironment seems also to be of importance for the substrate specificity of cytochrome P-450K, since removal of the cytochrome from the membrane lowers its binding specificity to some extent. A comparison between the liver and kidney cytochrome P-450 systems suggests that the kidney cytochrome P-450K system is specialized for fatty acid hydroxylation.  相似文献   

3.
Human liver microsomes and recombinant human P450 have been used as enzyme source in order to better understand the requirement for the optimal rate of omega and (omega;-1)-hydroxylations of fatty acids by cytochromes P450 2E1 and 4A. Three parameters were studied: alkyl chain length, presence and configuration of double bond(s) in the alkyl chain, and involvement of carboxylic function in the fatty acid binding inside the access channel of P450 active site. The total rate of metabolite formation decreased when increasing the alkyl chain length of saturated fatty acids (from C12 to C16), while no hydroxylated metabolite was detected when liver microsomes were incubated with stearic acid. However, unsaturated fatty acids, such as oleic, elaidic and linoleic acids, were omega and (omega;-1)-hydroxylated with an efficiency at least similar to palmitic acid. The (omega;-1)/omega ratio decreased from 2.8 to 1 with lauric, myristic and palmitic acids as substrates, while the reverse was observed for unsaturated C18 fatty acids which are mainly omega-hydroxylated, except for elaidic acid showing a metabolic profile quite similar to those of saturated fatty acids. The double bond configuration did not significantly modify the ability of hydroxylation of fatty acid, while the negatively charged carboxylic group allowed a configuration energetically favourable for omega and (omega;-1)-hydroxylation inside the access channel of active site.  相似文献   

4.
The soluble, cytochrome P-450 dependent fatty acid (ω-2) hydroxylase from Bacillus megaterium catalyzes the hydroxylation of both n-saturated and n-monohydroxyfatty acids. Continued hydroxylation of hydroxyfatty acids is dependent upon the position of the hydroxyl group since the ω-1, ω-2 and ω-3 monohydroxy products of the unsubstituted, saturated fatty acid series are not substrates. Utilizing a series of monohydroxystearate positional isomers this study demonstrates that there exists an optimal hydroxy position on the substrate's carbon chain. Competitive inhibition of palmitate hydroxylation by monohydroxystearates indicates that 6-hydroxystearate is a better substrate than palmitate, one of the more active substrates for hydroxylation. This suggests that substrate-binding at the active site is strongly influenced by a “non-hydrophobic” binding region on the enzyme.  相似文献   

5.
The microsomes from rabbit intestinal mucosa which had been washed quickly and thoroughly with phenylmethylsulfonyl fluoride were found to catalyze the hydroxylation of fatty acids in the presence of NADPH and molecular oxygen. Myristic and palmitic acids were converted to the corresponding omega-and (omega-1)-hydroxy fatty acids, whereas lauric acid was converted only to 12-hydroxylauric acid, and capric acid, to 9-and 10-hydroxycapric acids together with an unknown polar acid.Among these fatty acids, both myristic and lauric acids appeared to be the most efficient substrates. The inhibition of the hydroxylation by SKF 525-A and carbon monoxide suggested that the activity depended upon cytochrome P-450. The specific activity of the fatty acid hydroxylation was almost constant along the small intestine, while the aminopyrine N-demethylation activity and the cytochrome P-450 content were highest at the proximal end of the intestine and progressively declined toward the caudal end. The cytochrome P-450 was solubilized from the intestinal microsomes and purified by 6-amino-n-hexyl Sepharose 4B chromatography. The partially purified cytochrome P-450 was active in fatty acid hydroxylation in combination with intestinal NADPH-cytochrome c reductase and phosphatidylcholine.  相似文献   

6.
The cytochrome P-450K containing monooxygenase system of rat kidney cortex microsomes catalyzes the hydroxylation of various saturated fatty acids of medium chain length to the corresponding ω- and (ω-1)-hydroxy derivatives. The hydroxylation activity, as well as the ratio between the two hydroxylated products, vary with the carbon chain length of the fatty acid. Optimal hydroxylation activity is observed with myristic acid which yields the 13- and 14-hydroxylated products at a ratio of about 1. The ω/(ω-1)-hydroxylation ratio decreases with increasing carbon chain length of the fatty acid. On the other hand, with lauric acid as a substrate the ratio between ω- and (ω-1)-hydroxylation does not change significantly with varying time of incubation or substrate concentration, or incubation in a medium containing D2O or after induction of enhanced hydroxylation activity by starvation of the animals. Furthermore, 12-hydroxylauric acid and capric acid—which is almost exclusively ω-hydroxylated by rat kidney cortex microsomes—inhibit both 11- and 12-hydroxylation of lauric acid to a similar extent whereas 11-hydroxylauric acid does not seem to inhibit either 11- or 12-hydroxylation.C10-C16 fatty acids produce the type I spectral change upon addition to rat kidney cortex microsomes and seem to interact with similar amounts of the cytochrome P-450K present in these particles. In agreement with the metabolic studies, 12-hydroxylauric acid interacts with cytochrome P-450K giving rise to a reverse type I spectral change, whereas 11-hydroxylauric acid does not produce an observable spectral change. Finally, results of binding experiments with a series of derivatives of dodecane suggest that type I binding to cytochrome P-450K requires, besides a proper chain length, the presence of a carbonyl group together with an electron pair on a neighboring atom at the end of the carbon chain. A chain length of 14 carbon atoms seems to be optimal and it is suggested that this chain length may correspond to the distance between a possible binding site and the catalytic site of cytochrome P-450K  相似文献   

7.
[14C] Linolenic acid (18: omega 3) and [14C] linoleic acid (18:2 omega 6) were incubated with hepatic microsomes of the rabbit in the presence of NADPH (1 Mm) for 15 min at 37 degrees C. The products were extracted and purified by high performance liquid chromatography. The major metabolites of linolenic and linoleic acid were identified by capillary gas chromatography mass spectrometry as 15,16-dihydroxy-9,12-octadecadienoic acid, 12,13-dihydroxy-9,15-octadecadienoic acid and 9,10-dihydroxy-12,15-octadecadienoic acid and as 12,13-dihydroxy-9-octadecaenoic acid and 9,10-dihydroxy-12-octadecaenoic acid, respectively. The results were confirmed by comparison with mass spectra of the authentic compounds. These metabolites are presumably formed by cytochrome P-450 catalyzed epoxidation of the omega 3, omega 6 and omega 9 double bonds, followed by enzymatic hydrolysis to 1,2-diols. The ratio of omega 3, omega 6 and omega 9 oxygenated metabolites of linolenic acid was approximately 2:1:1 and the ratio of the omega 6 and omega 9 metabolites of linoleic acid was 2:1, indicating that the double bond closest the omega end is most easily oxygenated.  相似文献   

8.
Cytochrome P-450BM-3 is a catalytically self-sufficient fatty acid omega-hydroxylase with two domains. Functional and primary structure analyses of the hemo- and flavoprotein domains of cytochrome P-450BM-3 and the corresponding microsomal cytochrome P-450 system have shown that these proteins are highly homologous. Prior attempts to reconstitute the fatty acid hydroxylation function of cytochrome P-450BM-3, utilizing the two domains, obtained either by trypsinolysis or by recombinant methods, were unsuccessful. In this paper, we describe the reconstitution of the fatty acid hydroxylation activity of cytochrome P-450BM-3 utilizing the recombinantly produced flavoprotein domain (Oster, T., Boddupalli, S. S., and Peterson, J. A. (1991) J. Biol. Chem. 266, 22718-22725) and its hemoprotein counterpart. The rate of fatty acid-dependent oxygen consumption was shown to be linear when increasing concentrations of the hemoprotein domain are added to a fixed concentration of the flavoprotein domain and vice versa. The combination of the hemo- and flavoprotein domains in a ratio of 20:1 respectively, in the reaction mixture, results in the transfer of 80% of the reducing equivalents from NADPH for the hydroxylation of palmitate at 25 degrees C. The ratio of the regioisomeric products obtained for lauric, myristic, and palmitic acids was similar to that obtained with the holoenzyme form of cytochrome P-450BM-3. The reconstitution of the fatty acid omega-hydroxylase activity, using the soluble domains of cytochrome P-450BM-3, without added factors such as lipids, may be useful for structure/function comparisons to their eukaryotic counterparts.  相似文献   

9.
The techniques of theoretical chemistry embodied in ab initio and semiempirical quantum mechanical and empirical energy methods have been used to elucidate the relationship between structure, spectra and function of the oxidative metabolizing heme proteins, the cytochrome P-450s, using a recent X-ray structure of a P-450cam-camphor complex. Specifically, the origin of the spin state changes when substrate binds to the oxidized resting state and the nature of the transient biologically active oxygen transfer state have been described. Mechanisms of hydroxylation and epoxidation, the two fundamental oxidative reactions performed by these enzymes, have been deduced and the role of substrate binding and orientation on product distribution investigated.  相似文献   

10.
Oleic acid (18:1) is hydroxylated exclusively on the terminal methyl by a microsomal cytochrome P-450-dependent system ([omega]-OAH) from clofibrate-induced Vicia sativa L. (var minor) seedlings (F. Pinot, J.-P. Salaun, H. Bosch, A. Lesot, C. Mioskowski, F. Durst [1992] Biochem Biophys Res Commun 184: 183-193). This reaction was inactivated by two terminal acetylenes: (Z)-9-octadecen-17-ynoic acid (17-ODCYA) and the corresponding epoxide, (Z)-9,10-epoxyoctadecan-17-ynoic acid (17-EODCYA). Inactivation was mechanism-based, with an apparent binding constant of 21 and 32 [mu]M and half-lives of 16 and 19 min for 17-ODCYA and 17-EODCYA, respectively. We have investigated the participation of one or more [omega]-hydroxylase isoforms in the oxidation of fatty acids in this plant system. Lauric acid (12:0) is [omega]-hydroxylated by the cytochrome P-450 [omega]-hydroxylase [omega]-LAH (J.-P. Salaun, A. Simon, F. Durst [1986] Lipids 21: 776-779). Half-lives of [omega]-OAH and [omega]-LAH in the presence of 40 [mu]M 17-ODCYA were 23 and 41 min, respectively. Inhibition of oleic acid [omega]-hydroxylation was competitive with linoleic acid (18:2), but noncompetitive with lauric acid (12:0). In contrast, oleic acid did not inhibit [omega]-hydroxylation of lauric acid. Furthermore, 1-pentadecyltriazole inhibited [omega]-hydroxylation of oleic acid but not of lauric acid. These results suggest that distinct monooxygenases catalyze [omega]-hydroxylation of medium- and long-chain fatty acids in V. sativa microsomes.  相似文献   

11.
A novel human liver cytochrome P-450 isozyme (P-450-AA), which catalyzes arachidonic acid epoxidation, has been purified to electrophoretic homogeneity from human liver. As judged spectrally, the newly described isozyme is low spin in the oxidized state, with a soret band at 415 nm and an increased maximum at 451 nm in the CO-difference spectrum. Cytochrome P-450-AA appeared homogeneous as judged by the appearance of a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with an estimated molecular weight of 53,100. Although cytochrome P-450-AA had a relatively low specific content of 10.8 nmol/mg, it possessed a high activity of arachidonic acid epoxidation. The P-450-AA oxidized arachidonic acid in a reconstituted system into the four regioisomeric epoxyeicosatrienoic acids (EETs) (5, 6-, 8, 9-, 11, 12-, 14, 15-EETs) at a rate of 2,010 pmol/nmol/min, a rate which is 37-fold higher than that observed with the crude microsomal preparation. Moreover, the purified cytochrome P-450-AA catalyzed the de-ethylation of 7-ethoxyresorufin at the rate of 2970 pmol/nmol/min, whereas other cytochrome P-450-dependent reactions were carried out at 23-2,000-fold lower rates and ranged between 0.3-130 pmol/nmol/min. The amino acid composition is different from that of other cytochrome P-450 isozymes. The NH2-terminal sequence of 20-amino acid residues was compared to that of LM2 and PB2-B2, the phenobarbital-induced forms in rabbit and rats, respectively. Comparison was also made with two forms of human cytochrome P-450, HLc and HLd. There were 7/20 identical residues for P-450-AA and LM2 and 4/20 for P-450-AA and PB2-B2. There were 2/20 identical residues for P-450-AA and HLd, and no identical residues were found for HLc. We conclude that the biologically active EETs, are formed by a distinct and unique P-450 isozyme from human liver and that arachidonic acid can serve as a screen for detection of the novel P-450 isozyme.  相似文献   

12.
The demonstration of in vivo arachidonic acid epoxidation and omega-hydroxylation established the cytochrome P450 epoxygenase and omega/omega-1 hydroxylase as formal metabolic pathways and as members of the arachidonate metabolic cascade. The characterization of the potent biological activities associated with several of the cytochrome P450-derived eicosanoids suggested new and important functional roles for these enzymes in cellular, organ, and body physiology, including the control of vascular reactivity and systemic blood pressures. Past and current advances in cytochrome P450 biochemistry and molecular biology facilitate the characterization of cytochrome P450 isoforms responsible for tissue/organ specific arachidonic acid epoxidation and omega/omega-1 hydroxylation, and thus, the analysis of cDNA and/or gene specific functional phenotypes. The combined application of physiological, biochemical, molecular, and genetic approaches is beginning to provide new insights into the physiological and/or pathophysiological significance of these enzymes, their endogenous substrates, and products.  相似文献   

13.
细胞色素P450 2B4的结构及其催化反应   总被引:1,自引:0,他引:1  
细胞色素P450是广泛存在于动物、植物和微生物中的含亚铁血红素单加氧酶,参与致癌作用和药物代谢、类固醇激素合成、脂溶性维生素代谢、多不饱和脂肪酸转换为生物活性分子等生理过程。P450能够催化完成伯、仲碳氢键羟基化、烯烃和芳烃环氧化、碳碳键耦合和断裂、α羟基化(去烷基化和杂原子氧化)、还原、1,2-迁移(卤素、氢和苯)等有机反应。本文综述了P450 2B4的结构与功能,讨论了细胞色素P450 2B4的活性中心和底物识别位点、与底物反应和产物释放的机理,以及P450在有机合成中的应用。  相似文献   

14.
15.
Incubation of valproic acid with rat liver microsomes led to the formation of 3-, 4- and 5-hydroxy-valproic acid. The latter two metabolites, which have been characterized previously from in vivo studies, may be regarded as products of fatty acid ω-1 and ω hydroxylation, respectively. 3-Hydroxy-valproic acid, however, had been thought to derive from the β-oxidation pathway in mitochondria. Conversion of valproic acid to all three metabolites in microsomes required NADPH (NADH was less effective), utilized molecular oxygen, was suppressed by inhibitors of cytochrome P-450 and was stimulated (notably at C-3 and C-4) by phenobarbital pretreatment of the rats. It is concluded that rat liver microsomal cytochrome P-450 catalyzes ω-2 hydroxylation of valproic acid, a reaction not detected previously with fatty acids in mammalian systems, and that the product, 3-hydroxyvalproic acid, should not be used to assess in vivo metabolism of valproate via the β-oxidation pathway.  相似文献   

16.
We have isolated cDNA clones of the mRNA for cytochrome P-450 that catalyzes the steroid C-21 hydroxylation (P-450(C21)), which specifically catalyzes 21-hydroxylation of steroids in the microsomes of bovine adrenal cortex by using synthetic oligonucleotides as probes. Sequence determination of the cloned cDNA showed that it contains 2157 nucleotides and a poly(A) chain and that a single open reading frame of 1488 nucleotides codes for a polypeptide of 496 amino acids with a molecular weight of 56,113. The deduced amino acid composition is in agreement with that determined by direct amino acid analysis of purified P-450(C21) and the predicted primary structure contained amino acid sequences of N-terminal region and two internal tryptic fragments of the protein so far analyzed. Comparing the amino acid sequence with those of other forms of P-450 reveals that a conserved amino acid sequence containing a putative heme-binding cysteine is present in the equivalent position, proximate to the COOH terminus of the molecules and that P-450(C21) is phylogenically situated in an intermediate position between steroidogenic mitochondrial cytochrome P-450 which catalyzes the side-chain cleavage of cholesterol (P-450(SCC)) and drug-metabolizing microsomal P-450s. However, the amino acid sequence of P-450(C21) is much closer to that of drug-metabolizing P-450s than to that of P-450(SCC).  相似文献   

17.
Incubation of prostaglandin E1 (PGE1) with liver microsomes from control rabbits and from rabbits treated with ethanol or imidazole yielded 18-, 19-, and 20-hydroxy metabolites, representing hydroxylation at omega-2, omega-1, and omega carbons, respectively. The current investigation demonstrates that rabbit liver P-450 isozyme 6 effectively catalyzes the omega-1 and omega-2 hydroxylation of PGE1 and PGE2. Additionally, a small amount of product with chromatographic characteristics of the corresponding 20-hydroxy metabolite has been detected. The incorporation of cytochrome b5 into the reconstituted system did not enhance the rate of PGE1 hydroxylation and had no effect on the ratio of products formed. The Km value for the omega-1 and omega-2 hydroxylation of PGE1 with P-450 isozyme 6 from imidazole-treated rabbits was approximately 140 microM; the Vmax's (nmol product min-1 nmol P-450-1) were 2.1 and 1.1 for the omega-1 and omega-2 hydroxylations, respectively. These rates represent the highest activities by hepatic P-450 isozymes for hydroxylation of PGs, and suggest that isozyme 6 is responsible for the omega-2 hydroxylation of PGEs observed in rabbit liver microsomes.  相似文献   

18.
经苯巴比妥钠诱导的雄性大白鼠的肝微粒体纯化的细胞色素P-450同功酶组份,经SDS-PAGE鉴定呈电泳纯,分子量为55kD。部分纯化的NADPH-细胞色素P-450还原酶,含72和77kD两个蛋白质组分。上述细胞色素P-450和NADPH-细胞色素P-450还原酶与卵磷脂制备的脂质体重组后的活性试验表明,对艾氏剂有环氧化作用,对环已烷有羟化作用,对溴氰菊酯的羟化作用微弱。当重组系统中缺少细胞色素P-450组份时,对环已烷不再起作用。同时还研究了纯化的细胞色素P-450的光谱特性。  相似文献   

19.
The cell-free extract of a cytochrome P-450-producing fungus, Fusarium oxysporum, was found to catalyze the hydroxylation of fatty acids. Three product isomers were formed from a single fatty acid. The products from lauric acid were identified by mass-spectrometry as 9-, 10-, and 11-hydroxydodecanoic acids, and those from palmitic acid as 13-, 14-, and 15-hydroxyhexadecanoic acids. The ratio of the isomers formed was 50 : 36 : 14 in the case of laurate hydroxylation, and 37 : 47 : 16 in the case of palmitate. The reaction was dependent on both NADPH (or NADH) and molecular oxygen,and was strongly inhibited by carbon monoxide, menadione, or the antibody to purified Fusarium P-450. Further, lauric acid induced a type I spectral change in purified Fusarium P-450. Further, lauric acid induced a type I spectral change in purified Fusarium P-450 with an apparent Kd of 0.3 mM. The hydroxylase activity together with cytochrome P-450 could be detected in both the soluble and microsome fractions, and the activity was almost proportional to the amount of cytochrome P-450 reducible with NADPH. It can be concluded from these results that Fusarium P-450 reducible with NADPH. It can be concluded from these results that Fusarium P-450 is involved in the (omega-1)-, (omega-2)-, and (omega-3)-hydroxylation of fatty acids catalyzed by the cell-free extract of the fungus.  相似文献   

20.
Crude extracts of Streptomyces griseus grown on soybean flour-enriched medium contain high levels of cytochrome P-450. The cytochrome P-450-enriched fractions, obtained by ammonium sulfate fractionation (30-50% saturation), catalyze the NADPH-dependent oxidation of a variety of xenobiotics when complemented with both spinach ferredoxin:NADP+ oxidoreductase and spinach ferredoxin. Reactions observed are aromatic, benzylic and alicyclic hydroxylations, O-dealkylation, non-aromatic double bond epoxidation, N-oxidation and N-acetylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号