首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The purpose of this research was to prepare poly-(ε-caprolactone) (PCL) particles by an emulsion-diffusion-evaporation method using a blend of poly-(vinyl alcohol) and chitosan derivatives as stabilizers. The chitosan derivatives used were chitosan hydrochloride and trimethyl chitosans (TMC) with varying degrees of quaternization. Particle characteristics-size, zeta potential, surface morphology, cytotoxicity, and transfection efficiency-were investigated. The developed method yields PCL nanoparticles in the size range of 250 to 300 nm with a positive surface charge (2.5 to 6.8 mV). The cytotoxicity was found to be moderate and virtually independent of the stabilizers' concentration with the exception of the highly quaternized TMC (degree of substitution 66%) being significantly more toxic. In immobilization experiments with gel electrophoresis, it could be shown that these cationic nanoparticles (NP) form stable complexes with DNA at a NP:DNA ratio of 3:1. These nanoplexes showed a significantly higher transfection efficiency on COS-1 cells than naked DNA. Published: August 10, 2005  相似文献   

2.
In medium where in vitro transfection is routinely performed, DC-chol liposomes alone were nearly neutral, whereas the DC-chol liposome/DNA complexes were largely negatively charged which changed only slightly at all [liposome]/[DNA] ratios (zeta=-27.1 to -21.8 mV). Three other commercial transfection reagents, Lipofectin(R), LipofectAMINE 2000, and SuperFect, were also largely negatively charged when complexed with DNA. The aggregation of liposomes in medium was prevented by the addition of DNA. Incubation of the complexes in medium did not change their size, charge or lipofection activity for 30 min. These results suggest that, in medium, the liposome/DNA complexes were formed at the time of mixing with negative charges.  相似文献   

3.

Background

Biolistic transfection is proving an increasingly popular method of incorporating DNA or RNA into cells that are difficult to transfect using traditional methods. The technique routinely uses 'microparticles', which are ~1 μm diameter projectiles, fired into tissues using pressurised gas. These microparticles are efficient at delivering DNA into cells, but cannot efficiently transfect small cells and may cause significant tissue damage, thus limiting their potential usefulness. Here we describe the use of 40 nm diameter projectiles - nanoparticles - in biolistic transfections to determine if they are a suitable alternative to microparticles.

Results

Examination of transfection efficiencies in HEK293 cells, using a range of conditions including different DNA concentrations and different preparation procedures, reveals similar behaviour of microparticles and nanoparticles. The use of nanoparticles, however, resulted in ~30% fewer damaged HEK293 cells following transfection. Biolistic transfection of mouse ear tissue revealed similar depth penetration for the two types of particles, and also showed that < 10% of nuclei were damaged in nanoparticle-transfected samples, compared to > 20% in microparticle-transfected samples. Visualising details of small cellular structures was also considerably enhanced when using nanoparticles.

Conclusions

We conclude that nanoparticles are as efficient for biolistic transfection as microparticles, and are more appropriate for use in small cells, when examining cellular structures and/or where tissue damage is a problem.  相似文献   

4.
Zheng F  Shi XW  Yang GF  Gong LL  Yuan HY  Cui YJ  Wang Y  Du YM  Li Y 《Life sciences》2007,80(4):388-396
This study was designed to investigate the in vitro and in vivo transfection efficiency of chitosan nanoparticles used as vectors for gene therapy. Three types of chitosan nanoparticles [quaternized chitosan -60% trimethylated chitosan oligomer (TMCO-60%), C(43-45 KDa, 87%), and C(230 KDa, 90%)] were used to encapsulate plasmid DNA (pDNA) encoding green fluorescent protein (GFP) using the complex coacervation technique. The morphology, optimal chitosan-pDNA binding ratio and conditions for maximal in vitro transfection were studied. The in vivo transfection was conducted by feeding the chitosan/pDNA nanoparticles to 12 BALB/C-nu/nu nude mice. Both conventional and TMCO-60% could form stable nanoparticles with pDNA. The in vitro study showed the transfection efficiency to be in the following descending order: TMCO-60%>C(43-45 KDa, 87%)>C(230 KDa, 90%). TMCO-60% proved to be the most efficient and the optimal chitosan/pDNA ratio being 3.2:1. In vivo study showed most prominent GPF expression in the gastric and upper intestinal mucosa. GFP expression in the mucosa of the stomach and duodenum, jejunum, ileum, and large intestine were found, respectively, in 100%, 88.9%, 77.8% and 66.7% of the nude mice examined. TMCO-60%/pDNA nanoparticles had better in vitro and in vivo transfection activity than the other two, and with minimal toxicity, which made it a desirable non-viral vector for gene therapy via oral administration.  相似文献   

5.
BACKGROUND: Chitosan has been shown to be a non-toxic and efficient vector for in vitro gene transfection and in vivo gene delivery through pulmonary and oral administrations. Recently, we have shown that chitosan/DNA nanoparticles could mediate high levels of gene expression following intrabiliary infusion 1. In this study, we have examined the possibility of using polyethylene glycol (PEG)-grafted chitosan/DNA complexes to deliver genes to the liver through bile duct and portal vein infusions. METHODS: PEG (Mw: 5 kDa) was grafted onto chitosan (Mw: 47 kDa, deacetylation degree: 94%) with grafting degrees of 3.6% and 9.6% (molar percentage of chitosan monosaccharide units grafted with PEG). The stability of chitosan-g-PEG/DNA complexes was studied by measuring the change in particle size and by agarose gel electrophoresis against bile or serum challenge. The influence of PEG grafting on gene transfection efficiency was evaluated in HepG2 cells using luciferase reporter gene. Chitosan and chitosan-g-PEG/DNA complexes were delivered to the liver through bile duct and portal vein infusions with a syringe pump. Gene expression in the liver and the distribution of gene expression in other organs were evaluated. The acute liver toxicity of chitosan and chitosan-g-PEG/DNA complexes was examined by measuring serum alanine aminotranferase (ALT) and aspartate aminotransferase (AST) activities as a function of time. RESULTS: Both chitosan and chitosan-g-PEG displayed comparable gene transfection efficiency in HepG2 cells. After challenge with serum and bile, chitosan-g-PEG/DNA complexes, especially those prepared with chitosan-g-PEG (GD = 9.6%), did not form large aggregates like chitosan/DNA complexes but remained stable for up to 30 min. In addition, chitosan-g-PEG prevented the degradation of DNA in the presence of serum and bile. On day 3 after bile duct infusion, chitosan-g-PEG (GD = 9.6%)/DNA complexes mediated three times higher gene expression in the liver than chitosan/DNA complexes and yielded background levels of gene expression in other organs. On day 1 following portal vein infusion, gene expression level induced by chitosan/DNA complexes was hardly detectable but chitosan-g-PEG (GD = 9.6%) mediated significant transgene expression. Interestingly, transgene expression by chitosan-g-PEG/DNA complexes in other organs after portal vein infusion increased with increasing grafting degree of PEG. The ALT and AST assays indicated that grafting of PEG to chitosan reduced the acute liver toxicity towards the complexes. CONCLUSION: This study demonstrated the potential of chitosan-g-PEG as a safe and more stable gene carrier to the liver.  相似文献   

6.
Intestinal trefoil factor (ITF) is a novel polypeptide with potential pharmacological value for the prevention and healing of tissue injury; however, poor production capacity limits its clinical application. Chitosan, as a non-viral vehicle, has been successfully used in gene delivery for its intrinsic characteristics. In this context, we prepared chitosan nanoparticles enwrapping ITF cDNA and investigated its size, zeta potential, stability, release profiles, loading efficiency and loading capacity. Gene transfer capability was assessed in HEK293 cells. The data revealed that the chitosan/DNA nanoparticles were successfully prepared with sizes less than 500 nm and positive zeta potentials. The nanoparticles could protect DNA from nuclease degradation, and release profiles of DNA were dependent on N/P ratios. In addition, transfection efficiency of chitosan/DNA nanoparticles was equivalent to Lipofectamine (TM). Collectively, the results suggest that chitosan/DNA nanoparticles could be a promising method for ITF gene therapy.  相似文献   

7.
The generation of cell lines stably expressing recombinant material is a lengthy process and there has thus been much interest in the use of transient expression systems to rapidly produce recombinant material. To achieve this, the DNA of interest must be delivered into the nucleus of the target cell. The mechanisms by which this process occurs are poorly understood and the efficiency of various methods differs widely. Recently, nuclear localization signals (NLSs) have been investigated to target entry of DNA into the nucleus of mammalian cells. We have used NLSs from the SV40 and Tat antigens mixed with our model luciferase reporter gene plasmid for the transfection of Chinese hamster ovary (CHO) cells using calcium phosphate and FuGNE 6 transfection technology. The nocovalent complexation of NLSs with plasmid DNA before calcium phosphate-mediated transfection resulted in enhanced reporter gene expression with increasing ratios of NLS to plasmid until reaching a mximum. At higher ratios than maximum expression, the expression levels decreased. On the other hand, when using FuGENE 6 reagent NLSs did not enhance reporter gene expression. Cell cycle arrest in G2/M phase obliterated the effect of the NLS on reporter gene expression when using the calcium phosphate transfection method.  相似文献   

8.
Nanoparticles of compacted DNA transfect postmitotic cells   总被引:6,自引:0,他引:6  
Charge-neutral DNA nanoparticles have been developed in which single molecules of DNA are compacted to their minimal possible size. We speculated that the small size of these DNA nanoparticles may facilitate gene transfer in postmitotic cells, permitting nuclear uptake across the 25-nm nuclear membrane pore. To determine whether DNA nanoparticles can transfect nondividing cells, growth-arrested neuroblastoma and hepatoma cells were transfected with DNA/liposome mixtures encoding luciferase. In both models, growth-arrested cells were robustly transfected by compacted DNA (6,900-360-fold more than naked DNA). To evaluate mechanisms responsible for enhanced transfection, HuH-7 cells were microinjected with naked or compacted plasmids encoding enhanced green fluorescent protein. Cytoplasmic microinjection of DNA nanoparticles generated a approximately 10-fold improvement in transgene expression as compared with naked DNA; this enhancement was reversed by the nuclear pore inhibitor, wheat germ agglutinin. To determine the upper size limit for gene transfer, DNA nanoparticles of various sizes were microinjected into the cytoplasm. A marked decrease in transgene expression was observed as the minor ellipsoidal diameter approached 25 nm. In summary, suitably sized DNA nanoparticles productively transfect growth arrested cells by traversing the nuclear membrane pore.  相似文献   

9.
Mechanism of cell transfection with plasmid/chitosan complexes   总被引:26,自引:0,他引:26  
Chitosan is useful as a non-viral vector for gene delivery. Although there are several reports supporting the use of chitosan for gene delivery, studies regarding effects on transfection and the chitosan-specific transfection mechanism remain insufficient. In this report, the level of expression with plasmid/chitosan was observed to be no less than that with plasmid/lipofectin complexes in SOJ cells. The transfection mechanism of plasmid/chitosan complexes as well as the relationship between transfection activity and cell uptake was analyzed by using fluorescein isothiocyanate-labeled plasmid and Texas Red-labeled chitosan. In regard to effects on transfection, there were several factors to affect transfection activity and cell uptake, for example: the molecular mass of chitosan, stoichiometry of complex, as well as serum concentration and pH of transfection medium. The level of transfection with plasmid/chitosan complexes was found to be highest when the molecular mass of chitosan was 40 or 84 kDa, ratio of chitosan nitrogen to DNA phosphate (N/P ratio) was 5, and transfection medium contained 10% serum at pH 7.0. We also investigated the transfection mechanism, and found that plasmid/chitosan complexes most likely condense to form large aggregates (5-8 microm), which absorb to the cell surface. After this, plasmid/chitosan complexes are endocytosed, and possibly released from endosomes due to swelling of lysosomal in addition to swelling of plasmid/chitosan complex, causing the endosome to rupture. Finally, complexes were also observed to accumulate in the nucleus using a confocal laser scanning microscope.  相似文献   

10.
Normal human epidermal keratinocytes were isolated and cultivated in serum-free medium. The expression of the integrin subunits alpha6 and beta1 indicated that a high number of keratinocytes from the stem cell system was present. These cells were transfected with complexes made of different cationic lipids and marker genes. Effectene showed a 20-fold higher transfection efficiency, compared to Lipofectin and Lipofectamine, and a similar low toxicity. The transfection protocol was optimised. A DNA/lipid ratio of 0.133 showed the highest transfection efficiency. Keratinocytes expressed the marker gene luciferase for 20 days. The maximum expression occurred after 3-4 days, where individual patches of fluorescent keratinocytes were detected. Transfected keratinocytes, cultivated at the air-liquid interface, expressed the marker gene beta-galactosidase for at least 7 weeks.  相似文献   

11.
In malignant mesothelioma (MM) cells, secreted frizzled-related protein 4 (SFRP4) expression is downregulated by promoter methylation. In this study, we evaluated the effect of encapsulated chitosan–dextran (CS–DS) nanoparticle formulations of SFRP4 and its cysteine-rich domain (CRD) and netrin-like domain (NLD) as means of SFRP4-GFP protein delivery and their effects in JU77 and ONE58 MM cell lines. CS–DS formulations of SFRP4, CRD, and NLD nanoparticles were prepared by a complex coacervation technique, and particle size ranged from 300 nm for empty particles to 337 nm for particles containing the proteins. Measurement of the zeta potential showed that all preparations were around 25 mV or above, suggesting stable formulation and good affinity for the DNA molecules. The CS–DS nanoparticle formulation maintained high integrity and entrapment efficiency. Gene delivery of SFRP4 and its domains showed enhanced biological effects in both JU77 and ONE58 cell lines when compared to the non-liposomal FUGENE® HD transfection reagent. In comparison to the CRD nanoparticles, both the SFRP4 and NLD nanoparticles significantly reduced the viability of MM cells, with the NLD showing the greatest effect. The CS–DS nanoparticle effects were observed at an earlier time point and with lower DNA concentrations. Morphological changes in MM cells were characterized by the formation of membrane-associated vesicles and green fluorescent protein expression specific to SFRP4 and the NLD. The findings from our proof-of-concept study provide a stepping stone for further investigations using in vivo models.  相似文献   

12.
合成基序为LLLRRRDNEY*FY*VRRLL的短肽(pSP),其中含有两个可被JaK2蛋白激酶磷酸化的酪氨酸残基.将此短肽与壳聚糖(CS)相偶联,体外磷酸化及DNA释放实验检测哺乳动物细胞裂解液对短肽的磷酸化及pSP-CS/DNA复合物中DNA释放的影响.放射性标记DNA转移实验验证pSP-CS/DNA复合物的入胞能力后,将荷荧光素酶或GFP报告基因的质粒与pSP-CS制成pSP-CS/DNA复合物,转染体外培养的C2C12小鼠成肌细胞,观察GFP的分布及细胞裂解液中的荧光素酶活性以表征转染效率.继而进行多种细胞系的转染,衡量pSP偶联的壳聚糖对不同种属细胞的转染效率.结果表明,哺乳动物细胞裂解液可有效地使短肽发生磷酸化,并藉此促进DNA与壳聚糖载体的解离.以pSP修饰的壳聚糖进行转染时,细胞裂解液的荧光素酶活性可达普通壳聚糖转染的两倍,细胞中GFP的含量也明显增加.据此推论,短肽被磷酸化后产生电荷属性的改变,促进DNA与壳聚糖载体的解离从而显著提高壳聚糖的转染效率.  相似文献   

13.
To develop improved strategies for gene transfer to hematopoietic cells, we have explored targeted gene transfer using molecular conjugate vectors (MCVs). MCVs are constructed by condensing plasmid DNA containing the gene of interest with polylysine (PL), PL linked to a replication-incompetent adenovirus (endosomolytic agent), and PL linked to streptavidin for targeting with biotinylated ligands. In this report, we compare gene transfer to K562 cells by using the previously described transferrin-targeted MCV (Trans-MCV) to a novel transferrin-targeted MCV. In the novel MCV, the transferred gene (luciferase) is in the genome of recombinant replication-incompetent adenovirus (recMCV), which also acts as the endosomolytic agent. The level of luciferase gene expression was fivefold higher in K562 cells transfected with Trans-recMCV than in cells transfected with Trans-MCV. Furthermore, targeted transfection with recMCV resulted in prolonged luciferase expression that declined 14 to 20 days after transfection, in comparison with Trans-MCV, where luciferase expression declined by 4 to 8 days. Moreover, targeted transfection of K562 cells with the Trans-recMCV resulted in persistent luciferase gene expression for 6 months. Analysis of luciferase gene expression in K562 single-cell clones that were subcloned 5 weeks after transfection with Trans-recMCV showed that 35 to 50% of the single-cell clones had intermediate to high levels of luciferase gene expression that was stable for 6 months, with the remaining clones showing low or no luciferase gene expression. Stable gene expression was associated with integration of adenovirus sequences into genomic DNA.  相似文献   

14.
Reverse microemulsion was used as a template to fabricate chitosan-alginate core-shell nanoparticles encapsulated with enhanced green fluorescent protein (EGFP)-encoded plasmids. The average size of DNA-entrapped nanoparticles measured by dynamic light scattering was increased proportionally, with the N/P ratios ranging from 5 to 20. These alginate-coated chitosan nanoparticles endocytosed by NIH 3T3 cells trigged swelling of transport vesicles which render gene escape before entering digestive endolysosomal compartment and concomitantly promote gene transfection rate. Results showed that DNA-encapsulated chitosan-alginate nanoparticles with average size of 64nm (N/P ratio of 5) could achieve the level of gene expression comparable with the one obtained by using polyethyleneimine-DNA complexes.  相似文献   

15.
Previously reported 1,4-butanediol diglycidyl ether (BDE) crosslinked PEI (branched polyethylenimine, 25 k) nanoparticles (A. Swami, R. Kurupati, A. Pathak, Y. Singh, P. Kumar and K. C. Gupta, A unique and highly efficient non-viral DNA/siRNA delivery system based on PEI-bisepoxide nanoparticles, Biochem. Biophys. Res. Commun., 2007, 362, 835-841) (PN NPs) were reacted with varying proportions of a novel linker, 2-(N-1-tritylimidazol-4-yl)-N-(6-glycidyloxyhexyl)-acetamide (IGA linker, 3), to yield PN-g-imidazolyl nanoparticles (PNIm) with improved transfection efficiency. Here, the IGA linker (3) reacted through an epoxy ring to partially convert the residual 1° and 2° amines present in PN NPs to 2° and 3°, respectively, without altering the total number of amines and additionally incorporating the delocalized positive charge of the imidazolyl moiety. The resulting particles were characterized for their size, zeta potential and DNA complexing ability. PNIm/DNA nanoplexes, in the size range of 120-400 nm, were evaluated for transfection efficiency in HeLa, HEK293 and CHO cell lines, which was found to be ~11, ~2-3 and ~2-17 folds higher than PEI, PN-2 (the best working sample of the PN series) (A. Swami, R. Kurupati, A. Pathak, Y. Singh, P. Kumar and K. C. Gupta, A unique and highly efficient non-viral DNA/siRNA delivery system based on PEI-bisepoxide nanoparticles, Biochem. Biophys. Res. Commun., 2007, 362, 835-841) and commercial transfection reagents tested in this study, respectively. Also, flow cytometric analysis showed ~78% (ca.~43% in PN-2) cells transfected with the PNIm 10(6)/DNA complex (the best working sample of the PNIm series) in HEK293 cells. Transfection of GFP specific siRNA in HEK293 cells suppressed the gene expression by ~90% (ca.~70% in PN-2). All the cell lines treated with PNIm/DNA nanoplexes showed >90% viability. In vivo gene expression of luciferase enzyme in Balb/c mice showed highest expression in spleen after seven days.  相似文献   

16.
Delivery of DNA and siRNA into mammalian cells is a powerful technique in treating various diseases caused by single gene defects. Herein, we report a highly efficient delivery system using 1,4-butanediol diglycidyl ether (bisepoxide) crosslinked polyethylenimine (PEI) nanoparticles (PN). The nanoparticle/DNA complexes (nanoplexes) exibited approximately 2.5- to 5.0-fold gene transfer efficacy and decreased cytotoxicity in cultured cell lines, compared to the native PEI (25 kDa) (gold standard) and commercially available transfection agents such as Lipofectamine 2000 and Fugene. The bisepoxide crosslinking results in change in amine ratio in PEI; however, it retains the net charge on PN unaltered. A series of nanoparticles obtained by varying the degree of crosslinking was found to be in the size range of 69-77 nm and the zeta potential varying from +35 to 40 mV. The proposed system was also found to deliver siRNA efficiently into HEK cells, resulting in approximately 70% suppression of the targetted gene (GFP).  相似文献   

17.
The bioluminescence system (luciferase reporter assay system) is widely used to study gene expression, signal transduction and other cellular activities. Although transfection of reporter plasmid DNA to mammalian cell lines is an indispensable experimental step, the transfection efficiency of DNA varies among cell lines, and several cell lines are not suitable for this type of assay because of the low transfection efficiency. In this study, we confirm the transfection efficiency of reporter DNA to several cancer and normal cell lines after transient transfection by single‐cell imaging. Luminescence images could be obtained from living single cells after transient transfection, and the calculated transfection efficiency of this method was similar to that of the conventional reporter assay using a luminometer. We attempted to measure the activity of the Bip promoter under endoplasmic reticulum stress conditions using both high and low transfection efficiency cells for plasmid DNA at the single‐cell level, and observed activation of this promoter even in cells with the lowest transfection efficiency. These results show that bioluminescence imaging of single cells is a powerful tool for the analysis of gene expression based on a reporter assay using limited samples such as clinical specimens or cells from primary culture, and could provide additional information compared with the conventional assay. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Nonviral gene therapy has been a rapidly growing field. However, delivery systems that can provide protection for pDNA and potential targeting are still desired. A novel pDNA-nanoparticle delivery system was developed by entrapping hydrophobized pDNA inside nanoparticles engineered from oil-in-water (O/W) microemulsion precursors. Plasmid DNA was hydrophobized by complexing with cationic surfactants DOTAP and DDAB. Warm O/W microemulsions were prepared at 50-55 degrees C with emulsifying wax, Brij 78, Tween 20, and Tween 80. Nanoparticles were engineered by simply cooling the O/W microemulsions containing the hydrophobized pDNA in the oil phase to room temperature while stirring. The nanoparticles were characterized by particle sizing, zeta-potential, and TEM. Nanoparticles were challenged with serum nucleases to assess pDNA stability. In addition, the nanoparticles were coincubated with simulated biological media to assess their stability. In vitro hepatocyte transfection studies were completed with uncoated nanoparticles or nanoparticles coated with pullulan, a hepatocyte targeting ligand. In vivo biodistribution of the nanoparticles containing I-125 labeled pDNA was monitored 30 min after tail-vein injection to Balb/C mice. Depending on the hydrophobizing lipid agent employed, uniform pDNA-entrapped nanoparticles (100-160 nm in diameter) were engineered within minutes from warm O/W microemulsion precursors. The nanoparticles were negatively charged (-6 to -15 mV) and spherical. An anionic exchange column was used to separate unentrapped pDNA from nanoparticles. Gel permeation chromatography of pDNA-entrapped and serum-digested nanoparticles showed that the incorporation efficiency was approximately 30%. Free 'naked' pDNA was completely digested by serum nucleases while the entrapped pDNA remained intact. Moreover, in vitro transfection studies in Hep G2 cells showed that pullulan-coated nanoparticles resulted in enhanced luciferase expression, compared to both pDNA alone and uncoated nanoparticles. Preincubation of the cells with free pullulan inhibited the transfection. Finally, 30 min after tail vein injection to mice, only 16% of the 'naked' pDNA remained in the circulating blood compared to over 40% of the entrapped pDNA. Due to the apparent stability of these pDNA-entrapped nanoparticles in the blood, they may have potential for systemic gene therapy applications requiring cell and/or tissue-specific delivery.  相似文献   

19.
We describe transfection of DNA into parenchymal and individual non-parenchymal cell populations from adult rat liver in early primary culture, using cationic lipid as the carrier. All cell populations were transfectable, although lipid requirements varied by cell type and, for hepatocytes, with the age of the culture. For hepatocytes in early primary culture (2-10 hours after plating), pure DOTMA (N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride) was strikingly more effective than commercial formulations (Lipofectin or TransfectACE) containing components in addition to, or other than DOTMA. For hepatocytes fully adapted to culture (approximately 48 hours after plating), pure DOTMA and Lipofectin were similarly effective. Under optimal conditions, about 10% of hepatocytes expressed the transfected reporter gene. CAT expression in hepatocytes doubled from 48 hours to 7 days after transfection. The effect of culture substratum on transfection efficiency also was examined. The presence of basement membrane-like matrix (EHS gel) reduced uptake of the DNA-lipid complex. However, cells in early culture that were transfected on collagen and then replated on EHS gel, displayed significantly greater reporter gene activity than did cells maintained throughout on collagen. In contrast to hepatocytes, non-parenchymal cells (lipocytes, Kupffer cells and endothelial cells, respectively) were transfected most efficiently by Lipofectin; DOTMA alone was inactive. The methods described will facilitate studies of gene regulation in individual liver cell populations.  相似文献   

20.
摘要:目的:气道给予12-烷基化壳聚糖纳米粒(12-ACSs)包裹的反义内皮素转换酶(ECE)核酸表达质粒,观察对OVA致敏的小鼠变应性气道炎症的影响。方法:通过透射电镜观察12-ACSs/ 反义 ECE质粒复合体纳米粒的形成、形态及大小;应用凝胶阻滞、结合平衡、DNA沉淀和DNA酶消化实验等检测12-ACSs对反义ECE核酸表达质粒的结合保护作用;通过MTT实验检测12-ACSs对细胞的毒性;通过离体培养细胞及活体动物转染实验观察12-ACSs能否携带反义ECE核酸表达质粒成功转染。结果:电镜观察示纳米粒粒径在100-150 nm之间。12-ACSs与反义ECE核酸表达质粒在质量比为1:1时,全部反义ECE质粒被结合。应用DNase I消化后可见,12-ACSs可保护核酸免受破坏。MTT检测结果显示12-ACSs 对16HBE细胞在低浓度下几乎没有毒性。12-ACSs包裹的反义ECE核酸表达质粒的纳米粒能成功转染离体培养的气道上皮细胞及活体动物。结论:12-ACSs能够成功包裹反义ECE质粒并且成功转染16HBE及小鼠,其有可能作为一种基因治疗的载体选择之一。 关键词:哮喘 壳聚糖 纳米粒 内皮素转换酶 基因治疗  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号