首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M Numazawa  M Tsuji  Y Osawa 《Steroids》1986,48(5-6):347-359
2 alpha-Bromoacetoxy (II), 6-bromoacetoxy (VII and X), and 19-bromoacetoxy (XII) derivatives of androstenedione and 17 beta-bromoacetoxy compounds (III, IV, XIII-XVI) were synthesized as potential affinity-labeling reagents for aromatase. 6 alpha-Bromoacetoxy derivative VII was the most potent inhibitor of human placental microsomal aromatase activity among this series. Its inhibitory activity was higher than that of the parent 6 alpha-hydroxy compound V, although other bromoacetates showed weaker inhibition of aromatase than the corresponding alcohols. The bromoacetates (except the 6 beta-bromoacetate X) inhibited aromatase activity in a time-dependent manner in the absence of NADPH, and the enzyme inactivation was blocked by the addition of androstenedione to the incubates. Kinetic analysis of the time- and concentration-dependent inhibition by the 6 beta-bromo-17 beta-bromoacetoxy compound XV gave an apparent Ki of 25 microM and kinact of 0.027 min-1.  相似文献   

2.
3-Deoxy steroids having a 4-ene system were found to be competitive inhibitors of human placental aromatase. 19-Hydroxy-4-androsten-17-one (2) potently inhibits the enzyme with an apparent Ki of 12.5 nM, but does not produce a time-dependent inactivation of the enzyme.  相似文献   

3.
19-Hydroxyandrost-4-ene-3,6,17-trione (19-OHAT), its 19-oxo derivative (19-oxo AT) and 4β,5β-epoxyandrostane-3,6,17-trione (5) were synthesized as possible intermediates involved in a mechanism-based inactivation of aromatase caused by androst-4-ene-3,6,17-trione (AT). These compounds inhibited the enzyme in a competitive manner with Ki's of 0.61, 7.5 and 5.1 μM for 19-OHAT, 19-oxo AT, and compound 5. The two 19-oxygenated steroids showed a time-dependent, pseudo-first order rate of inactivation of aromatase with kinact's of 0.222 and 0.076 min−1 for 19-OHAT and 19-oxo AT, respectively, while compound 5 did not. NADPH and oxygen were required for the inactivation. Androstenedione blocked the inactivation, while -cycteine partially prevented that of 19-OHAT and almost completely that of 19-oxo AT. When the 19-oxygenated steroids were separately subjected to reaction with , these rapidly disappeared from the reaction mixture with of 25 min (19-OHAT) and 20 s (19-oxo AT). This finding indicates that -cysteine prevents inactivation by a chemical dependent elimination of the inhibitors from the incubate. These results suggest that the 19-oxygenation rather than the 4,5-epoxidation may be involved in the time-dependent inactivation by AT.  相似文献   

4.
(Z)-4',5'-Didehydro-5'-deoxy-5'-fluoroadenosine (I), 5'-deoxy-5'-difluoroadenosine (II), and 4',5'-didehydro-5'-deoxy-5'-fluoroarabinosyl-adenosine (III) are inhibitors of rat liver S-adenosyl-L-homocysteine hydrolase. Compounds I and II are time-dependent and irreversible inhibitors of the enzyme. Both I and II are oxidized by E.NAD to produce E.NADH, and fluoride anion is formed in the inactivation reaction (0.7 to 1.0 mole fluoride/mole of enzyme subunit, and 1.7 moles fluoride/mole of enzyme subunit from I and II, respectively). The enzyme is stoichiometrically labeled with [8-3H]-I, but the label is lost upon denaturation of the protein either with or without treatment of the labeled complex with sodium borohydride. The compound III, the arabino derivative of I, is a competitive inhibitor of the enzyme. The mechanism of the inhibition of S-adenosyl-L-homocysteine hydrolase by these inhibitors is discussed.  相似文献   

5.
7 alpha-Substituted 4-androstene-3,17-diones are effective inhibitors of aromatase. The microsomal enzyme complex has a greater affinity for several of these inhibitors than for the substrate androstenedione, with 7 alpha-(4'amino)phenylthio-4-androstene-3,17-dione being the most potent competitive inhibitor of the series. A potential affinity analog, the bromoacetamide derivative of the amino compound, has been synthesized in both unlabeled and 14C-labeled forms via a condensation of bromoacetic acid with the amino compound using DCC. Inactivation studies with the unlabeled inhibitor showed a time-dependent, first-order inactivation of aromatase enzymatic activity. Androstenedione, when incubated in varying concentrations with the irreversible inhibitor, provided protection from inactivation. Binding studies with radiolabeled inhibitor and microsomal aromatase preparations showed that irreversible binding had occurred. SDS-electrophoresis, followed by fluorography, identified four major microsomal proteins that were radiolabeled, with the protein band at 52,000 mol. wt predominating. Similar studies with a solubilized aromatase preparation decreased the amount of nonspecific binding. Thus, covalent bonds between the irreversible inhibitor and the aromatase cytochrome P450 molecule were formed.  相似文献   

6.
The metabolism of 4-androstene-3,6,17-trione (AT), previously described as a suicide substrate for aromatase, and its irreversible binding to aromatase were studied by using human placental microsomes. AT was rapidly converted into 3 beta-reduced metabolite (3-OHAT) with an enzyme other than aromatase in the microsomes in the presence of NADPH under either aerobic or anaerobic conditions. The conversion was efficiently prevented by a steroid 5 alpha-reductase inhibitor. 3-OHAT was characterized as a competitive (Ki = 6.5 microM) and irreversible inhibitor of aromatase. Both 14C-labeled AT and 3-OHAT were demonstrated to be irreversibly bound to aromatase probably through a sulfur atom of the enzyme in time-dependent manners in the presence of NADPH, being accompanied with time-dependent losses of the enzyme activity. It was shown that the process of an apparent time-dependent loss of aromatase activity caused by AT even under conditions allowing its 3 beta-reduction should principally depend on the action of the parent inhibitor AT itself and not on that of the metabolite 3-OHAT.  相似文献   

7.
A series of 6-ester- (3 and 4) and 6-ether- (7 and 8) substituted androst-4-ene-3,17-diones (androstenediones) and their 1,4-diene analogs (5 and 6, and 9 and 10) as well as C6-substituted 4,6-diene and 1,4,6-triene steroids 11 and 12 were synthesized as aromatase inhibitors to gain insight into the structure-activity relationship between various substituents and inhibitory activity. All of the inhibitors synthesized blocked aromatase in a competitive manner. The inhibitory activities of all of the steroids, except for the 6beta-benzoates 4g and 6h and the 6beta-acetate 6a, were fairly effective to very powerful (K(i): 7.0-320 nM). The 6alpha-n-hexanoyloxy- and 6alpha-benzyloxyandrostenediones (3e and 7e) were the most potent inhibitors (K(i): 7.0 nM each). In the series of 4-ene and 1,4-diene steroids, the 6alpha-substituted steroids had higher affinity for the enzyme than the corresponding 6beta-isomers. In the 1,4-diene steroid series, 6beta-substituted steroids 6a, e, g, and 10a, b, e caused a time-dependent inactivation of aromatase, whereas their 6alpha-isomers 5 and 9 essentially did not. The ether-substituted 1,4,6-trienes 12 inactivated the enzyme in a time-dependent manner; in contrast, their 4,6-diene analogs 11 did not. The substrate androstenedione blocked the inactivation, but no significant effect of L-cysteine was observed. Based on molecular modeling with the PM3 method, along with the present inhibition and inactivation results, it is thought that both the steric effects of the 6-substituents as well as the electronic effects of the C-6 oxygen functions play a critical role in the binding of inhibitors to the active site of aromatase.  相似文献   

8.
Aromatase catalyzes the conversion of androgens to estrogens through three sequential oxygenations. To gain insight into the catalytic function of aromatase and its aromatization mechanism, we studied the inhibition of human placental aromatase by 4 beta,5 beta-epoxyandrostenedione (5) as well as its 19-hydroxy and 19-oxo derivatives (6 and 7, respectively), and we also examined the biochemical aromatization of these steroids. All of the epoxides were weak competitive inhibitors of aromatase with apparent K(i) values ranging from 5.0 microM to 30 microM. The 19-methyl and 19-oxo compounds 5 and 7 inactivated aromatase in a time-dependent manner with k(inact) of 0.048 and 0.110 min(-1), respectively, in the presence of NADPH. In the absence of NADPH, only the former inhibited aromatase with a k(inact) of 0.091 min(-1). However, 19-hydroxy steroid 6 did not cause irreversible inactivation either in the presence or absence of NADPH. Gas chromatography-mass spectrometric analysis of the metabolite produced by a 5-min incubation of the three epoxides with human placental microsomes in the presence of NADPH under air revealed that all three compounds were aromatized to produce estradiol with rates of 8.82, 0.51, and 1.62 pmol/min/mg protein for 5, 6, and 7, respectively. In each case, the aromatization was efficiently prevented by 19-hydroxyandrost-4-en-17-one, a potent aromatase inhibitor. On the basis of the aromatization and inactivation results, it seems likely that the two pathways, aromatization and inactivation, may proceed, in part, through a common intermediate, 19-oxo compound 7, although they may be principally different.  相似文献   

9.
Enzyme-activated inhibitors of aromatase would result in effective medicinal agents for modulating estrogen-dependent processes and thus may be useful in controlling reproductive processes and in treating estrogen-dependent diseases such as breast and endometrial cancer. A potential enzyme-activated inhibitor of aromatase, 7 alpha-(4'-amino)phenylthio-1,4-androstadiene-3,17-dione (7 alpha-APTADD), was synthesized and examined in vitro with placental aromatase. Under initial velocity conditions, 7 alpha-APTADD exhibited high affinity for the enzyme and is a potent inhibitor of aromatase with an apparent Ki of 9.9 +/- 1.0 nM and with a Km for androstenedione of 52.5 +/- 5.9 nM. This inhibitor produced a rapid time-dependent, first-order inactivation of aromatase in the presence of NADPH, while no inactivation of aromatase activity was observed in the absence of NADPH. Protection of aromatase from inactivation was observed when the substrate, androstenedione, was included in the incubation mixture containing enzyme, inhibitor, and NADPH. On the other hand, nucleophilic trapping agents such as cysteine did not protect the enzyme from inactivation by 7 alpha-APTADD. Additionally, second enzyme pulse experiments demonstrated identical rates of inactivation, suggesting that the enzyme-activated inhibitor was not being released from the active site of the enzyme. The apparent Kinact for 7 alpha-APTADD is 159 +/- 21 nM and represents the inhibitor concentration required to produce a half-maximal rate of inactivation. The half-time of inactivation at infinite inhibitor concentration was 1.38 +/- 0.92 min and is the most rapid enzyme-activated aromatase inhibitor reported to date. Thus, 7 alpha-APTADD is a potent enzyme-activated inhibitor of aromatase, exhibiting high affinity and rapid inactivation. This inhibitor will be useful in probing the biochemistry of aromatase and should also serve as an effective medicinal agent for the treatment of estrogen-dependent cancers.  相似文献   

10.
2 alpha-Cyanoprogesterone (I) and 2-hydroxymethyleneprogesterone (II) were synthesized and screened as irreversible active-site-directed inhibitors of the delta 5-3-oxosteroid isomerase (EC 5.3.3.1) from Pseudomonas testosteroni. Both compounds were found to inhibit the purified bacterial enzyme in a time-dependent manner. In either case the inactivated enzyme could be dialysed without return of activity, indicating that a stable covalent bond had formed between the inhibitor and the enzyme. Inactivation mediated by compounds (I) and (II) followed pseudo-first-order kinetics, and at higher inhibitor concentrations saturation was observed. The competitive inhibitor 17 beta-oestradiol offered protection against the inactivation mediated by both compounds, and initial-rate studies indicated that compounds (I) and (II) can also act as competitive inhibitors yielding Ki values identical with those generated during inactivation experiments. 2 alpha-Cyanoprogesterone (I) and 2-hydroxymethyleneprogesterone (II) thus appear to be active-site-directed. To compare the reactivity of these 2-substituted progesterones with other irreversible inhibitors of the isomerase, 3 beta-spiro-oxiranyl-5 alpha-pregnan-20 beta-ol (III) was synthesized as the C21 analogue of 3 beta-spiro-oxiranyl-5 alpha-androstan-17 beta-ol, which is a potent inactivator of the isomerase [Pollack, Kayser & Bevins (1979) Biochem. Biophys. Res. Commun. 91, 783-790]. Comparison of the bimolecular rate constants for inactivation (k+3/Ki) mediated by compounds (I)-(III) indicated the following order of reactivity: (III) greater than (II) greater than (I). 2-Mercaptoethanol offers complete protection against the inactivation of the isomerase mediated by 2 alpha-cyanoprogesterone (I). Under the conditions of inactivation compound (I) appears to be completely stable, and no evidence could be obtained for enolate ion formation in the presence or absence of enzyme. It is suggested that cyanoprogesterone inactivates the isomerase after direct nucleophilic attack at the electropositive 2-position, and that tautomerization plays no role in the inactivation event. By contrast, 2-mercaptoethanol offers no protection against the inactivation mediated by 2-hydroxymethyleneprogesterone, and under the conditions of inactivation this compound appears to exist in the semi-enolized form.  相似文献   

11.
7-Phenyl-1,4,6-androstatriene-3,17-dione (4), 7-benzyl-1,4,6-androstatriene-3,17-dione (5) and 7-phenethyl-1,4,6-androstatriene-3,17-dione (6) were synthesized and evaluated in vitro in human placental microsomes as enzyme-activated irreversible inhibitors of aromatase. The compounds were synthesized from appropriate 7-substituted 4,6-androstadiene-3,17-diones by reaction with DDQ under neutral conditions. All the compounds produced a first order inactivation of aromatase in the presence of NADPH but not in the absence of NADPH. Substrate 4-androstene-3,17-dione protected the enzyme from inactivation by the inhibitors. Furthermore, cysteine failed to protect aromatase from inactivation by compounds 5 and 6. In contrast, cysteine partially protected aromatase from inactivation by compound 4. Irreversibility studies illustrated the covalent nature of the inactivation by 4, 5 and 6. The above experimental evidence demonstrated that compounds 5 and 6 are effective enzyme-activated irreversible inhibitors of aromatase.  相似文献   

12.
Dipeptidyl peptidase III (DPP III), also known as enkephalinase B, is a zinc-hydrolase with an indicated role in the mammalian pain modulatory system. In order to find a potent antagonist of this enzyme, we synthesized and screened the effect of a small set of benzimidazole derivatives on its activity. To improve the inhibitory potential, a cyclobutane ring was introduced as rigid conformation support to the diamidino substituted dibenzimidazoles. Two such compounds (1' and 4') from the group of cyclobutane derivatives containing amidino-substituted benzimidazole moieties, obtained by photochemical cyclization in water and by respecting rules of the "green chemistry" approach, were found to be strong DPP III inhibitors, with IC(50) value below 5 microM. Compound 1' displayed time-dependent inhibition towards human DPP III, characterized by the second-order rate constant of 6924+/-549 M(-1)min(-1) (K(i)=0.20 microM). The peptide substrate valorphin protected the enzyme from inactivation by 1'.  相似文献   

13.
To gain insight into the mechanistic features for aromatase inactivation by the typical suicide substrates, androsta-1,4-diene-3,17-dione (ADD, 1) and its 6-ene derivative 2, we synthesized 19-substituted (methyl and halogeno) ADD and 1,4,6-triene derivatives 8 and 10 along with 4,6-diene derivatives 9 and tested for their ability to inhibit aromatase in human placental microsomes as well as their ability to serve as a substrate for the enzyme. 19-Methyl-substituted steroids were the most powerful competitive inhibitors of aromatase (Ki: 8.2–40 nM) in each series. Among the 19-substituted inhibitors examined, 19-chloro-ADD and its 6-ene derivatives (7b and 9b) inactivated aromatase in a time-dependent manner in the presence of NADPH in air while the other ones did not. The time-dependent inactivation was blocked by the substrate AD and required NADPH. Only the time-dependent inactivators 7b and 9b in series of 1,4-diene and 1,4,6-triene steroids as well as all of 4,6-diene steroids 9, except for the methyl compound 9a, served as a substrate for aromatase to yield estradiol and/or its 6-ene estradiol with lower conversion rates compared to the corresponding parent steroids 1,4-diene, 1,4,6-triene and 4,6-diene derivatives. The present findings strongly suggest that the aromatase reaction, 19-oxygenation, at least in part, would be involved in the time-dependent inactivation of aromatase by the suicide substrates 1 and 2, where the 19-substitutent would play a critical role in the aromatase reaction probably though steric and electronic reasons.  相似文献   

14.
1. Crithidia fasciculata was grown in a serum-free medium. 2. Twenty-six hours after addition of 2, 5, 20, 50, and 150 microM acivicin to logarithmically growing organisms, cell counts were decreased to 46, 23, 14, 9.1, and 8.6% of the control, respectively. 3. Guanosine plus cytidine (0.1 mM each) provided complete protection against growth inhibition by 5 microM acivicin. 4. Cells exposed to 10 microM acivicin showed a time-dependent, irreversible inactivation of L-glutamine-dependent carbamoyl-phosphate synthetase II activity; ammonia-dependent synthetase II activity was increased up to 34% of the control. 5. Glutamine (20 mM) protected the enzyme from inactivation in vivo. 6. These results indicate that acivicin acts as an affinity analog of L-glutamine in vivo as it does in vitro.  相似文献   

15.
Three iso-alkyldithiocarbonates (xanthates), as sodium salts, C3H7OCS2Na (I), C4H9OCS2Na (II) and C5H11OCS2Na (III), were synthesized, by the reaction between CS2 with the corresponding iso-alcohol in the presence of NaOH, and examined for inhibition of both cresolase and catecholase activities of mushroom tyrosinase (MT) from a commercial source of Agricus bisporus. 4-[(4-methylbenzo)azo]-1,2-benzendiol (MeBACat) and 4-[(4-methylphenyl)azo]-phenol (MePAPh) were used as synthetic substrates for the enzyme for the catecholase and cresolase reactions, respectively. Lineweaver-Burk plots showed different patterns of mixed and competitive inhibition for the three xanthates and also for cresolase and catecholase activities of MT. For cresolase activity, I and II showed a mixed inhibition pattern but III showed a competitive inhibition pattern. For catecholase activity, I showed mixed inhibition but II and III showed competitive inhibition. These new synthesized compounds are potent inhibitors of MT with K(i) values of 9.8, 7.2 and 6.1 microM for cresolase inhibitory activity, and also 12.9, 21.8 and 42.2 microM for catecholase inhibitory activity for I, II and III, respectively. They showed a greater inhibitory potency towards the cresolase activity of MT. Both substrate and inhibitor can be bound to the enzyme with negative cooperativity between the binding sites (alpha > 1) and this negative cooperativity increases with increasing length of the aliphatic tail in these compounds in both cresolase and catecholase activities. The cresolase inhibition is related to the chelating of the copper ions at the active site by a negative head group (S-) of the anion xanthate, which leads to similar values of K(i) for all three xanthates. Different K(i) values for catecholase inhibition are related to different interactions of the aliphatic chains of I, II and III with hydrophobic pockets in the active site of the enzyme.  相似文献   

16.
An inhibition study of several carbonic anhydrase (CA, EC 4.2.1.1) isoforms with flavones and aminoflavones, compounds possessing a rather similar scaffold with the coumarins, recently discovered inhibitors of this enzyme, is reported. The natural product flavone and some of its hydroxylated derivatives did not show time-dependent inhibition of the CAs, sign that they are not hydrolyzed within the enzyme active site as the (thio)coumarins and lactones. These compounds were low micromolar inhibitors of hCA I, II, IX and XII, with K(I)s in the range of 1.88-9.07 μM. A series of substituted 2-amino-3-phenyl-4H-chromen-4-ones, incorporating chloro- and methoxy substituents in various positions of the heterocycle, were then prepared and assayed as hCA I and II inhibitors, showing activity in the micromolar range. Some of these derivatives, as well as cis+trans resveratrol, were then assayed for the inhibition of all catalytically active mammalian CA isoforms, hCA I, II, III, IV, VA, VB, VI, VII, IX, XII, XIII, XIV and mCA XV (h=human, m=murine enzyme). These derivatives inhibited these CAs in the submicromolar-low micromolar range. Flavones, although not as active as the coumarins, may be considered as interesting leads for the design of non-sulfonamide CA inhibitors.  相似文献   

17.
M Numazawa  S Yamaguchi 《Steroids》1999,64(3):187-196
A series of 6alpha- and 6beta-phenylaliphatic-substituted androsta-1,4-diene-3,17-diones [9b-f and 10b-f; (CH2)nPh, n = 1-5] and their 4,6-diene and 1,4,6-triene analogs (11b-f and 12b-f) along with their respective phenyl analogs 9a-12a were synthesized and tested as aromatase inhibitors. All of the steroids examined were very powerful competitive inhibitors of aromatase in human placental microsomes with apparent Ki values ranging from 8.5 to 80 nM. The inhibitory activities of the benzyl- and phenethyl-4,6-dienes 11b and 11c (Ki, 9.0 and 10 nM) as well as the 6-phenethyl-1,4,6-triene 12c (Ki, 8.5 nM) were extremely high among them. All of the phenylaliphatic steroids, except for the 6beta-phenethyl compound 10c, and the 6-phenyl-4,6-diene 11a had higher affinity for aromatase than the corresponding parent 1,4-diene, 4,6-diene, and 1,4,6-triene steroids 9g, 11g, and 12g. All of the 6alpha-substituted 1,4-dienes (9a-9g) and the 6-substituted 1,4,6-trienes (12a-12g) caused a time-dependent inactivation of aromatase. On the other hand, only the 6beta-substituted 1,4-dienes (10a-10d) having no or less than four carbon atoms between the steroid nucleus and the phenyl group also caused a time-dependent inactivation of aromatase. Their inactivation rates (k(inact) 0.076-0.156 min(-1)) were higher than the respective parent steroids, 9g and 12g. In contrast, in the 4,6-diene series, only the 6-phenpropyl steroids 11d inactivated aromatase in a time-dependent manner with 0.155 min(-1) of k(inact) value. The inactivation was prevented by the substrate androstenedione, and no significant effect of L-cysteine on the inactivation was observed in each case. These results indicate that length and/or stereochemistry of the C-6 substituent of steroids 9-12 as well as a terminal phenyl group incorporated in the C-6 substituent play a critical role not only in tight binding to the active site of aromatase but also in the cause of a time-dependent inactivation of the enzyme.  相似文献   

18.
Several steroid analogues containing conjugated acetylenic ketone groups as part of a seco-ring structure or as substituents on the intact steroid system are irreversible inhibitors of delta 5-3-oxo steroid isomerase (EC 5.3.3.1) from Pseudomonas testosteroni. Thus 10 beta-(1-oxoprop-2-ynyl)oestr-4-ene-3,17-dione (I), 5,10-seco-oestr-4-yne-3,10,17-trione (II), 17 beta-hydroxy-5,10-seco-oestr-4-yne-3,10-dione (III) and 17 beta-(1-oxoprop-2-ynyl)androst-4-en-3-one (IV) irreversibly inactivate isomerase in a time-dependent manner. In all cases saturation kinetics are observed. Protection against inactivation is afforded by the powerful competitive inhibitor 19-nortestosterone. The inhibition constants (Ki) for 19-nortestosterone obtained from such experiments are in good agreement with those determined from conventional competitive-inhibition studies of enzyme activity. These compounds thus appear to be active-site directed. In every case the inactivated enzyme could be dialysed without return of activity, indicating that a stable covalent bond probably had formed between the steroid and enzyme. Compound (I) is a very potent inhibitor of isomerase [Ki = 66.0 microM and k+2 = 12.5 x 10(-3) s-1 (where Ki is the dissociation constant of the reversible enzyme-inhibitor complex and k+2 is the rate constant for the inactivation reaction of the enzyme-inhibitor complex)] giving half-lives of inactivation of 30-45 s at saturation. It is argued that the basic-amino-acid residue that abstracts the intramolecularly transferred 4 beta-proton in the reaction mechanism could form a Michael-addition product with compound (I). In contrast, although compound (IV) has a lower inhibition constant (Ki = 14.5 microM), it is a relatively poor alkylating agent (k+2 = 0.13 x 10(-3) s-1). If the conjugated acetylenic ketone groups are replaced by alpha-hydroxyacetylene groups, the resultant analogues of steroids (I)-(IV) are reversible competitive inhibitors with Ki values in the range 27-350 microM. The enzyme binds steroids in the C19 series with functionalized acetylenic substituents at C-17 in preference to steroids in the C18 series bearing similar groups in the ring structure or as C-10 substituents. In the 5,10-seco-steroid series the presence of hydroxy groups at both C-3 and C-17 is deleterious to binding by the enzyme.  相似文献   

19.
4-Hydroxy-4-androstene-3,17-dione (4-OHA) and 4-acetoxy-4-androstene-3,17-dione (4-AcA), in addition to being competitive inhibitors of aromatase, cause time-dependent, irreversible, loss of enzyme activity in both human placental and rat ovarian microsomes. In vivo, treatment of rats with 4-OHA also causes loss of ovarian aromatase activity. To test whether this loss of activity could have in vivo significance, rats with hormone-dependent, mammary tumors were treated with 4-OHA on alternate weeks. Tumor regression continued to occur during the weeks without treatment. These findings suggest that inactivation of aromatase is important in the mechanism of action of the compounds in vivo.  相似文献   

20.
Sodium salts of four n-alkyl xanthate compounds, C2H5OCS2Na (I), C3H7OCS2Na (II), C4H9OCS2Na (III), and C6H13OCS2Na (IV) were synthesized and examined for inhibition of both cresolase and catecholase activities of mushroom tyrosinase (MT) in 10 mM sodium phosphate buffer, pH 6.8, at 293 K using UV spectrophotometry. 4-[(4-Methylbenzo)azo]-1,2-benzendiol (MeBACat) and 4-[(4-methylphenyl)azo]-phenol (MePAPh) were used as synthetic substrates for the enzyme for catecholase and cresolase reactions, respectively. Lineweaver-Burk plots showed different patterns of mixed, competitive or uncompetitive inhibition for the four xanthates. For the cresolase activity, I and II showed uncompetitive inhibition but III and IV showed competitive inhibition pattern. For the catecholase activity, I and II showed mixed inhibition but III and IV showed competitive inhibition. The synthesized compounds can be classified as potent inhibitors of MT due to their Ki values of 13.8, 11, 8 and 5 microM for the cresolase activity, and 1.4, 5, 13 and 25 microM for the catecholase activity for I, II, III and IV, respectively. For the catecholase activity both substrate and inhibitor can be bound to the enzyme with negative cooperativity between the binding sites (alpha > 1) and this negative cooperativity increases with increasing length of the aliphatic tail of these compounds. The length of the hydrophobic tail of the xanthates has a stronger effect on the Ki values for catecholase inhibition than for cresolase inhibition. Increasing the length of the hydrophobic tail leads to a decrease of the Ki values for cresolase inhibition and an increase of the Ki values for catecholase inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号