首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.

Background

Recent advances in non-invasive optical, radiographic and μCT imaging provide an opportunity to monitor biological processes longitudinally in an anatomical context. One particularly relevant application for combining these modalities is to study orthopaedic implant infections. These infections are characterized by the formation of persistent bacterial biofilms on the implanted materials, causing inflammation, periprosthetic osteolysis, osteomyelitis, and bone damage, resulting in implant loosening and failure.

Methodology/Principal Findings

An orthopaedic implant infection model was used in which a titanium Kirshner-wire was surgically placed in femurs of LysEGFP mice, which possess EGFP-fluorescent neutrophils, and a bioluminescent S. aureus strain (Xen29; 1×103 CFUs) was inoculated in the knee joint before closure. In vivo bioluminescent, fluorescent, X-ray and μCT imaging were performed on various postoperative days. The bacterial bioluminescent signals of the S. aureus-infected mice peaked on day 19, before decreasing to a basal level of light, which remained measurable for the entire 48 day experiment. Neutrophil EGFP-fluorescent signals of the S. aureus-infected mice were statistically greater than uninfected mice on days 2 and 5, but afterwards the signals for both groups approached background levels of detection. To visualize the three-dimensional location of the bacterial infection and neutrophil infiltration, a diffuse optical tomography reconstruction algorithm was used to co-register the bioluminescent and fluorescent signals with μCT images. To quantify the anatomical bone changes on the μCT images, the outer bone volume of the distal femurs were measured using a semi-automated contour based segmentation process. The outer bone volume increased through day 48, indicating that bone damage continued during the implant infection.

Conclusions/Significance

Bioluminescent and fluorescent optical imaging was combined with X-ray and μCT imaging to provide noninvasive and longitudinal measurements of the dynamic changes in bacterial burden, neutrophil recruitment and bone damage in a mouse orthopaedic implant infection model.  相似文献   

2.
Rifampicin is currently recognized as the most potent drug against Gram positive implant related infections. The use of rifampicin is limited by the emergence of bacterial resistance, which is often managed by coadministration of a second antibiotic. The purpose of this study was to determine the effectiveness of soluble rifampicin in combination with vancomycin tethered to titanium metal as a means to control bacterial growth and resistance in vitro. Bacterial growth was inhibited when the vancomycin-tethered titanium discs were treated with Staphylococcus aureus inocula of ≤2×106 CFU, however inocula greater than 2×106 CFU/disc adhered and survived. The combination of surface-tethered vancomycin with soluble rifampicin enhanced the inhibitory effect of rifampicin for an inoculum of 106 CFU/cm2 by one dilution (combination MIC of 0.008 mg/L versus 0.015 mg/L for rifampicin alone). Moreover, surface tethered vancomycin prevented the emergence of a rifampicin resistant population in an inoculum of 2×108 CFU.  相似文献   

3.
The effects of carvacrol, a natural biocide, on dual-species biofilms formed by Staphylococcus aureus and Salmonella enterica serovar Typhimurium were investigated with a constant-depth film fermentor. Biofilm development reached a quasi-steady state in 12 days at 25°C with S. aureus predominance (≈99%). Cryosectional analysis detected viable S. aureus and S. enterica serovar Typhimurium at depths of 320 and 180 μm from the film surface, respectively. Carvacrol pulses (1.0 mmol/h) inhibited S. aureus by 2.5 log CFU/biofilm during the early stages of film formation, ultimately causing a significant reduction (P < 0.001) of the staphylococcal population at quasi-steady state. Initial carvacrol pulsing elicited a 3 log CFU/biofilm reduction in viable S. enterica serovar Typhimurium, and additional periodic carvacrol pulses instigated significant inhibition of salmonellae (1 to 2 log CFU/biofilm) during biofilm development. Carvacrol pulsing reduced protein levels fivefold (P < 0.001) during initial biofilm development. Comparative studies with a peroxide-based commercial sanitizer (Spor-Klenz RTU) revealed that this commercial sanitizer was more biocidal than carvacrol during early biofilm development. When the biofilm reached quasi-steady state, however, periodic pulses with 1 mmol of carvacrol per h (P = 0.021) elicited a significantly higher inhibition than Spor-Klenz RTU (P = 0.772). Dual-species microcolonies formed under the influence of continuously fed low carvacrol concentrations (1.0 mmol/h) but failed to develop into a mature quasi-steady-state biofilm and did not reach any stage of film formation in the presence of high concentrations (5.0 mmol/h). These data show that carvacrol is an effective natural intervention to control dual-species biofilm formation.  相似文献   

4.
Biofilms from drains in food processing facilities with a recent history of no detectable Listeria monocytogenes in floor drains were cultured for microorganisms producing antilisterial metabolites. A total of 413 microbial isolates were obtained from 12 drain biofilm samples and were assayed at 15 and 37°C for activities that were bactericidal or inhibitory to L. monocytogenes, by two agar plate assays. Twenty-one of 257 bacterial isolates and 3 of 156 yeast isolates had antilisterial activity. All 24 isolates which produced metabolites inhibitory to L. monocytogenes were assayed for antilisterial activity in coinoculated broth cultures containing tryptic soy broth with yeast extract (TSB-YE). A five-strain mixture of 103 CFU of L. monocytogenes/ml and 105 CFU of the candidate competitive-exclusion microorganism/ml was combined in TSB-YE and incubated at 37°C for 24 h, 15°C for 14 days, 8°C for 21 days, and 4°C for 28 days. Substantial inhibition of L. monocytogenes growth (4 to 5 log CFU/ml) was observed for nine bacterial isolates at 37°C, two at 15 and 8°C, and three at 4°C. The inhibitory isolates were identified as Enterococcus durans (six isolates), Lactococcus lactis subsp. lactis (two isolates), and Lactobacillus plantarum (one isolate). The anti-L. monocytogenes activity of these isolates was evaluated in biofilms of L. monocytogenes on stainless steel coupons at 37, 15, 8, and 4°C. Results revealed that two isolates (E. durans strain 152 and L. lactis subsp. lactis strain C-1-92) were highly inhibitory to L. monocytogenes (growth inhibition of >5 log10 CFU of L. monocytogenes/cm2). These two bacterial isolates appear to be excellent competitive-exclusion candidates to control L. monocytogenes in biofilms at environmental temperatures of 4 to 37°C.  相似文献   

5.
Mice intragastrically infected with Listeria monocytogenes EGDe and Staphylococcus aureus Xen 36 showed no visible signs of infection over 48 h. However, high numbers (6.2 × 105 cfu/mg feces) of S. aureus Xen 36 were detected 4 h, and 3.3 × 105 cfu/mg feces of L. monocytogenes EGDe 8 h, after administration. Mice intraperitoneally infected with S. aureus Xen 36 (1 × 107 cfu) developed infection immediately after administration and for at least the following 48 h. Injection with higher cell numbers of S. aureus Xen 36 (2 × 108 cfu) resulted in more intense bioluminescence (infection) of the peritoneal cavity. Injection of S. aureus Xen 36 in the tail and penile veins resulted in localized tissue infection for the first 120 h. Injection of S. aureus Xen 36 into the thigh produced a faint bioluminescent signal for 15 min. Nisin F injected into the peritoneal cavity at the same area of infection led to an immediate statistically significant decrease in infection (from 2 × 106 p/s/cm2/sr to 3 × 105 p/s/cm2/sr) within 2 h. Similar results were recorded when nisin F was injected subcutaneously. Intraperitoneal administration is an optimal administration route for bacterial infection and treatment with antimicrobial peptides.  相似文献   

6.
Proteomic studies with different Staphylococcus aureus isolates have shown that the cell surface-exposed and secreted proteins IsaA, LytM, Nuc, the propeptide of Atl (pro-Atl) and four phenol-soluble modulins α (PSMα) are invariantly produced by this pathogen. Therefore the present study was aimed at investigating whether these proteins can be used for active immunization against S. aureus infection in mouse models of bacteremia and skin infection. To this end, recombinant His-tagged fusions of IsaA, LytM, Nuc and pro-Atl were isolated from Lactococcus lactis or Escherichia coli, while the PSMα1-4 peptides were chemically synthesized. Importantly, patients colonized by S. aureus showed significant immunoglobulin G (IgG) responses against all eight antigens. BALB/cBYJ mice were immunized subcutaneously with a mixture of the antigens at day one (5 μg each), and boosted twice (25 μg of each antigen) with 28 days interval. This resulted in high IgG responses against all antigens although the response against pro-Atl was around one log lower compared to the other antigens. Compared to placebo-immunized mice, immunization with the octa-valent antigen mixture did not reduce the S. aureus isolate P load in blood, lungs, spleen, liver, and kidneys in a bacteremia model in which the animals were challenged for 14 days with a primary load of 3 × 105 CFU. Discomfort scores and animal survival rates over 14 days did not differ between immunized mice and placebo-immunized mice upon bacteremia with S. aureus USA300 (6 × 105 CFU). In addition, this immunization did not reduce the S. aureus isolate P load in mice with skin infection. These results show that the target antigens are immunogenic in both humans and mice, but in the used animal models do not result in protection against S. aureus infection.  相似文献   

7.
Photodynamic inactivation of Staphylococcus aureus planktonic and biofilm cells by a phtotosensitizer, merocyanine 540 (MC 540), was investigated. For the planktonic experiments, MC 540 binding efficiency to bacterial cells was found to increase with both increasing MC 540 concentration and increasing incubation time, but the binding became saturated following 10 min of incubation. The antimicrobial activity was enhanced with an increasing light dose, but an increase in the light dose could not further improve the antimicrobial activity if the maximum excitation level attainable was less than the necessary minimum threshold level. Complete inactivation was achieved when the excitation level of MC 540 was somewhere above the threshold level. The relationship between antimicrobial activity and the excitation level of MC 540 revealed that the more MC 540 was excited, the more S. aureus cells were killed. For the biofilm experiments, the antimicrobial activity was enhanced with an increase in the light dose. No viable cells were detected when organisms were exposed to 15 μg of MC 540 per ml and a light dose of 600 J/cm2 or to 20 μg of MC 540 per ml and a light dose of 450 J/cm2. A quantitative analysis of MC 540 bound to biofilms was also performed, and the images from confocal laser scanning microscopy provided direct evidence that revealed the difference between the MC 540 remaining in the biofilms prior to irradiation and the MC 540 remaining in the biofilms after irradiation. The results of both the planktonic and biofilm experiments suggest that the antimicrobial activity of photodynamic inactivation of S. aureus is closely related to the excitation level of MC 540.  相似文献   

8.
Copper particles were incorporated into nanofibers during the electrospinning of poly-D,L-lactide (PDLLA) and poly(ethylene oxide) (PEO). The ability of the nanofibers to prevent Pseudomonas aeruginosa PA01 and Staphylococcus aureus (strain Xen 30) to form biofilms was tested. Nanofibers containing copper particles (Cu-F) were thinner (326 ± 149 nm in diameter), compared to nanofibers without copper (CF; 445 ± 93 nm in diameter). The crystalline structure of the copper particles in Cu-F was confirmed by X-ray diffraction (XRD). Copper crystals were encapsulated, but also attached to the surface of Cu-F, as shown scanning transmission electron microscopy (STEM) and transmission electron microscopy (TEM), respectively. The copper particles had no effect on the thermal degradation and thermal behaviour of Cu-F, as shown by thermogravimetric analysis (TGA) and differential scanning calorimeter (DSC). After 48 h in the presence of Cu-F, biofilm formation by P. aeruginosa PA01 and S. aureus Xen 30 was reduced by 41% and 50%, respectively. Reduction in biofilm formation was ascribed to copper released from the nanofibers. Copper-containing nanofibers may be incorporated into wound dressings.  相似文献   

9.

Background

Extensive spread of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) in the United States, and the concomitant increase in severe invasive staphylococcal infections, including osteomyelitis, in healthy children, has led to renewed interest in Panton-Valentine leukocidin (PVL). However, the pathogenetic role of PVL in staphylococcal infections remains controversial, possibly because it depends on the site of infection.

Methodology/Principal Findings

We compared the course of experimental rabbit osteomyelitis due to the PVL-positive CA-MRSA strain USA 300 (LAC) and its PVL-negative isogenic derivative (LACΔpvl), using a low and a high inoculum (8×105 and 4×108 CFU). With the low inoculum, bone infection was less frequent on day 7 (D7) and day 28 (D28) with LACΔpvl than with LAC (respectively 12/19 and 18/19 animals, p = 0.042). With the high inoculum of both strains, all the animals were infected on D7 and the infection persisted on D28 in almost every case. However, tibial bacterial counts and the serum CRP concentration fell significantly between D7 and D28 with LACΔpvl but not with LAC. Respectively 67% and 60% of LAC-infected rabbits had bone deformation and muscle/joint involvement on D7, compared to 0% and 7% of LACΔpvl-infected rabbits (p = 0.001 and p = 0.005 respectively). Between D0 and D28, the anti-PVL antibody titer increased significantly only with the high inoculum of LAC.

Conclusions/Significance

PVL appears to play a role in the persistence and rapid local extension of rabbit osteomyelitis, in keeping with the greater severity of human bone infections due to PVL-positive S. aureus. The possible therapeutic implications of these findings are discussed.  相似文献   

10.
Water delivered by dental unit water systems (DUWS) in general dental practices can harbor high numbers of bacteria, including opportunistic pathogens. Biofilms on tubing within DUWS provide a reservoir for microorganisms and should be controlled. This study compared disinfection products for their ability to meet the American Dental Association's guideline of <200 CFU · ml−1 for DUWS water. Alpron, BioBlue, Dentosept, Oxygenal, Sanosil, Sterilex Ultra, and Ster4Spray were tested in DUWS (n = 134) in Denmark, Germany, Greece, Ireland, The Netherlands, Spain, and the United Kingdom. Weekly water samples were tested for total viable counts (TVCs) on yeast extract agar, and, where possible, the effects of products on established biofilm (TVCs) were measured. A 4- to 5-week baseline measurement period was followed by 6 to 8 weeks of disinfection (intermittent or continuous product application). DUWS water TVCs before disinfection ranged from 0 to 5.41 log CFU · ml−1. Disinfectants achieved reductions in the median water TVC ranging from 0.69 (Ster4Spray) to 3.11 (Dentosept) log CFU · ml−1, although occasional high values (up to 4.88 log CFU · ml−1) occurred with all products. Before treatment, 64% of all baseline samples exceeded American Dental Association guidelines, compared to only 17% following commencement of treatment; where tested, biofilm TVCs were reduced to below detectable levels. The antimicrobial efficacies of products varied (e.g., 91% of water samples from DUWS treated with Dentosept or Oxygenal met American Dental Association guidelines, compared to 60% of those treated with Ster4Spray). Overall, the continuously applied products performed better than those applied intermittently. The most effective products were Dentosept and Oxygenal, although Dentosept gave the most consistent and sustained antimicrobial effect over time.  相似文献   

11.
The sulfate kinetics in an anaerobic, sulfate-reducing biofilm were investigated with an annular biofilm reactor. Biofilm growth, sulfide production, and kinetic constants (Km and Vmax) for the bacterial sulfate uptake within the biofilm were determined. These parameters were used to model the biofilm kinetics, and the experimental results were in good agreement with the model predictions. Typical zero-order volume rate constants for sulfate reduction in a biofilm without substrate limitation ranged from 56 to 93 μmol of SO24-cm−3 h−1 at 20°C. The temperature dependence (Q10) of sulfate reduction was equivalent to 3.4 at between 9 and 20°C. The measured rates of sulfate reduction could explain the relatively high sulfide levels found in sewers and wastewater treatment systems. Furthermore, it has been shown that sulfate reduction in biofilms just a few hundred micrometers thick is limited by sulfate diffusion into biofilm at concentrations below 0.5 mM. This observation might, in some cases, be an explanation for the relatively poor capacity of the sulfate-reducing bacteria to compete with the methanogenic bacteria in anaerobic wastewater treatment in submerged filters.  相似文献   

12.

Background

We profiled the expression of circulating microRNAs (miRNAs) in mice using Illumina small RNA deep sequencing in order to identify the miRNAs that may potentially be used as biomarkers to distinguish between gram-negative and gram-positive bacterial infections.

Results

Recombinant-specific gram-negative pathogen Escherichia coli (Xen14) and gram-positive pathogen Staphylococcus aureus (Xen29) were used to induce bacterial infection in mice at a concentration of 1 × 108 bacteria/100 μL of phosphate buffered saline (PBS). Small RNA libraries generated from the serum of mice after exposure to PBS, Xen14, Xen29, and Xen14 + Xen29 via the routes of subcutaneous injection (I), cut wound (C), or under grafted skin (S) were analyzed using an Illumina HiSeq2000 Sequencer. Following exposure to gram-negative bacteria alone, no differentially expressed miRNA was found in the injection, cut, or skin graft models. Exposure to mixed bacteria induced a similar expression pattern of the circulating miRNAs to that induced by gram-positive bacterial infection. Upon gram-positive bacterial infection, 9 miRNAs (mir-193b-3p, mir-133a-1-3p, mir-133a-2-3p, mir-133a-1-5p, mir-133b-3p, mir-434-3p, mir-127-3p, mir-676-3p, mir-215-5p) showed upregulation greater than 4-fold with a p-value < 0.01. Among them, mir-193b-3p, mir-133a-1-3p, and mir-133a-2-3p presented the most common miRNA targets expressed in the mice exposed to gram-positive bacterial infection.

Conclusions

This study identified mir-193b-3p, mir-133a-1-3p, and mir-133a-2-3p as potential circulating miRNAs for gram-positive bacterial infections.

Electronic supplementary material

The online version of this article (doi:10.1186/s12929-014-0106-y) contains supplementary material, which is available to authorized users.  相似文献   

13.
The potential of nisin F as an antimicrobial agent in treating subcutaneous skin infections was tested in vivo by infecting C57BL/6 mice with a bioluminescent strain of Staphylococcus aureus (Xen 36). Strain Xen 36 has the luxABCDE operon located on a native plasmid. Mice were grouped into four groups: Infected with strain Xen 36 and treated with nisin F, infected with strain Xen 36 and treated with saline (placebo), not infected and treated with nisin (control) and not infected and not treated (control). The immune systems of the mice were suppressed with deksamethasone. Mice were treated with either nisin F or sterile physiological saline 24 and 48 h after infection with subcutaneously injected S. aureus Xen 36 (4 × 106 CFU). Histology and bioluminescent flux measurements revealed no significant difference between infected mice treated with nisin and saline, respectively. However, infected mice treated with nisin F had an increased number of polymorphonuclear cells when compared with infected mice treated with saline. Also, not infected mice treated with nisin F had an influx of polymorphonuclear cells. Nisin F is thus ineffective in combating deep dermal staphylococcal infections. The apparent immune modulation of nisin when subcutaneously injected has to be investigated.  相似文献   

14.
Depending on its composition and metabolic activity, the natural flora that may be established in a meat plant environment can affect the survival, growth, and acid tolerance response (ATR) of bacterial pathogens present in the same niche. To investigate this hypothesis, changes in populations and ATR of inoculated (105 CFU/ml) Listeria monocytogenes were evaluated at 35°C in water (10 or 85°C) or acidic (2% lactic or acetic acid) washings of beef with or without prior filter sterilization. The model experiments were performed at 35°C rather than lower (≤15°C) temperatures to maximize the response of inoculated L. monocytogenes in the washings with or without competitive flora. Acid solution washings were free (<1.0 log CFU/ml) of natural flora before inoculation (day 0), and no microbial growth occurred during storage (35°C, 8 days). Inoculated L. monocytogenes died off (negative enrichment) in acid washings within 24 h. In nonacid (water) washings, the pathogen increased (approximately 1.0 to 2.0 log CFU/ml), irrespective of natural flora, which, when present, predominated (>8.0 log CFU/ml) by day 1. The pH of inoculated water washings decreased or increased depending on absence or presence of natural flora, respectively. These microbial and pH changes modulated the ATR of L. monocytogenes at 35°C. In filter-sterilized water washings, inoculated L. monocytogenes increased its ATR by at least 1.0 log CFU/ml from days 1 to 8, while in unfiltered water washings the pathogen was acid tolerant at day 1 (0.3 to 1.4 log CFU/ml reduction) and became acid sensitive (3.0 to >5.0 log CFU/ml reduction) at day 8. These results suggest that the predominant gram-negative flora of an aerobic fresh meat plant environment may sensitize bacterial pathogens to acid.  相似文献   

15.
Investigating the interactions between nanoscale materials and microorganisms is crucial to provide a comprehensive, proactive understanding of nanomaterial toxicity and explore the potential for novel applications. It is well known that nanomaterial behavior is governed by the size and composition of the particles, though the effects of small differences in size toward biological cells have not been well investigated. Palladium nanoparticles (Pd NPs) have gained significant interest as catalysts for important carbon-carbon and carbon-heteroatom reactions and are increasingly used in the chemical industry, however, few other applications of Pd NPs have been investigated. In the present study, we examined the antimicrobial capacity of Pd NPs, which provides both an indication of their usefulness as target antimicrobial compounds, as well as their potency as potential environmental pollutants. We synthesized Pd NPs of three different well-constrained sizes, 2.0±0.1 nm, 2.5±0.2 nm and 3.1±0.2 nm. We examined the inhibitory effects of the Pd NPs and Pd2+ ions toward gram negative Escherichia coli (E. coli) and gram positive Staphylococcus aureus (S. aureus) bacterial cultures throughout a 24 hour period. Inhibitory growth effects of six concentrations of Pd NPs and Pd2+ ions (2.5×10−4, 10−5, 10−6, 10−7, 10−8, and 10−9 M) were examined. Our results indicate that Pd NPs are generally much more inhibitory toward S. aureus than toward E. coli, though all sizes are toxic at ≥10−5 M to both organisms. We observed a significant difference in size-dependence of antimicrobial activity, which differed based on the microorganism tested. Our work shows that Pd NPs are highly antimicrobial, and that fine-scale (<1 nm) differences in size can alter antimicrobial activity.  相似文献   

16.
This protocol allows for a direct comparison between planktonic and biofilm resistance for a bacterial strain that can form a biofilm in vitro. Bacteria are inoculated into the wells of a 96-well microtiter plate. In the case of the planktonic assay, serial dilutions of the antimicrobial agent of choice are added to the bacterial suspensions. In the biofilm assay, once inoculated, the bacteria are left to form a biofilm over a set period of time. Unattached cells are removed from the wells, the media is replenished and serial dilutions of the antimicrobial agent of choice are added. After exposure to the antimicrobial agent, the planktonic cells are assayed for growth. For the biofilm assay, the media is refreshed with fresh media lacking the antimicrobial agent and the biofilm cells are left to recover. Biofilm cell viability is assayed after the recovery period. The MBC-P for the antimicrobial agent is defined as the lowest concentration of drug that kills the cells in the planktonic culture.  In contrast, the MBC-B for a strain is determined by exposing preformed biofilms to increasing concentrations of antimicrobial agent for 24 hr. The MBC-B is defined as the lowest concentration of antimicrobial agent that kills the cells in the biofilm.  相似文献   

17.
Two different real-time quantitative PCR (RTQ-PCR) approaches were applied for PCR-based quantification of Staphylococcus aureus cells by targeting the thermonuclease (nuc) gene. Purified DNA extracts from pure cultures of S. aureus were quantified in a LightCycler system using SYBR Green I. Quantification proved to be less sensitive (60 nuc gene copies/μl) than using a fluorigenic TaqMan probe (6 nuc gene copies/μl). Comparison of the LightCycler system and the well-established ABI Prism 7700 SDS with TaqMan probes revealed no statistically significant differences with respect to sensitivity and reproducibility. Application of the RTQ-PCR assay to quantify S. aureus cells in artificially contaminated cheeses of different types achieved sensitivities from 1.5 × 102 to 6.4 × 102 copies of the nuc gene/2 g, depending on the cheese matrix. The coefficients of correlation between log CFU and nuc gene copy numbers ranged from 0.979 to 0.998, thus enabling calculation of the number of CFU of S. aureus in cheese by performing RTQ-PCR.  相似文献   

18.

Objectives

Total joint arthroplasty is one of the most frequent and effective surgeries today. However, despite improved surgical techniques, a significant number of implant-associated infections still occur. Suitable in vitro models are needed to test potential approaches to prevent infection. In the present study, we aimed to establish an in vitro co-culture setup of human primary osteoblasts and S. epidermidis to model the onset of implant-associated infections, and to analyze antimicrobial implant surfaces and coatings.

Materials and Methods

For initial surface adhesion, human primary osteoblasts (hOB) were grown for 24 hours on test sample discs made of polystyrene, titanium alloy Ti6Al4V, bone cement PALACOS R®, and PALACOS R® loaded with antibiotics. Co-cultures were performed as a single-species infection on the osteoblasts with S. epidermidis (multiplicity of infection of 0.04), and were incubated for 2 and 7 days under aerobic conditions. Planktonic S. epidermidis was quantified by centrifugation and determination of colony-forming units (CFU). The quantification of biofilm-bound S. epidermidis on the test samples was performed by sonication and CFU counting. Quantification of adherent and vital primary osteoblasts on the test samples was performed by trypan-blue staining and counting. Scanning electron microscopy was used for evaluation of topography and composition of the species on the sample surfaces.

Results

After 2 days, we observed approximately 104 CFU/ml biofilm-bound S. epidermidis (103 CFU/ml initial population) on the antibiotics-loaded bone cement samples in the presence of hOB, while no bacteria were detected without hOB. No biofilm-bound bacteria were detectable after 7 days in either case. Similar levels of planktonic bacteria were observed on day 2 with and without hOB. After 7 days, about 105 CFU/ml planktonic bacteria were present, but only in the absence of hOB. Further, no bacteria were observed within the biofilm, while the number of hOB was decreased to 10% of its initial value compared to 150% in the mono-culture of hOB.

Conclusion

We developed a co-culture setup that serves as a more comprehensive in vitro model for the onset of implant-associated infections and provides a test method for antimicrobial implant materials and coatings. We demonstrate that observations can be made that are unavailable from mono-culture experiments.  相似文献   

19.
This study investigated the effects of varied sodium, calcium, and magnesium concentrations in specialty milk formulations on biofilm formation by Geobacillus spp. and Anoxybacillus flavithermus. The numbers of attached viable cells (log CFU per square centimeter) after 6 to 18 h of biofilm formation by three dairy-derived strains of Geobacillus and three dairy-derived strains of A. flavithermus were compared in two commercial milk formulations. Milk formulation B had relatively high sodium and low calcium and magnesium concentrations compared with those of milk formulation A, but the two formulations had comparable fat, protein, and lactose concentrations. Biofilm formation by the three Geobacillus isolates was up to 4 log CFU cm−2 lower in milk formulation B than in milk formulation A after 6 to 18 h, and the difference was often significant (P ≤ 0.05). However, no significant differences (P ≤ 0.05) were found when biofilm formations by the three A. flavithermus isolates were compared in milk formulations A and B. Supplementation of milk formulation A with 100 mM NaCl significantly decreased (P ≤ 0.05) Geobacillus biofilm formation after 6 to 10 h. Furthermore, supplementation of milk formulation B with 2 mM CaCl2 or 2 mM MgCl2 significantly increased (P ≤ 0.05) Geobacillus biofilm formation after 10 to 18 h. It was concluded that relatively high free Na+ and low free Ca2+ and Mg2+ concentrations in milk formulations are collectively required to inhibit biofilm formation by Geobacillus spp., whereas biofilm formation by A. flavithermus is not impacted by typical cation concentration differences of milk formulations.  相似文献   

20.

Background

Post-arthroplasty infections represent a devastating complication of total joint replacement surgery, resulting in multiple reoperations, prolonged antibiotic use, extended disability and worse clinical outcomes. As the number of arthroplasties in the U.S. will exceed 3.8 million surgeries per year by 2030, the number of post-arthroplasty infections is projected to increase to over 266,000 infections annually. The treatment of these infections will exhaust healthcare resources and dramatically increase medical costs.

Methodology/Principal Findings

To evaluate novel preventative therapeutic strategies against post-arthroplasty infections, a mouse model was developed in which a bioluminescent Staphylococcus aureus strain was inoculated into a knee joint containing an orthopaedic implant and advanced in vivo imaging was used to measure the bacterial burden in real-time. Mice inoculated with 5×103 and 5×104 CFUs developed increased bacterial counts with marked swelling of the affected leg, consistent with an acute joint infection. In contrast, mice inoculated with 5×102 CFUs developed a low-grade infection, resembling a more chronic infection. Ex vivo bacterial counts highly correlated with in vivo bioluminescence signals and EGFP-neutrophil fluorescence of LysEGFP mice was used to measure the infection-induced inflammation. Furthermore, biofilm formation on the implants was visualized at 7 and 14 postoperative days by variable-pressure scanning electron microscopy (VP-SEM). Using this model, a minocycline/rifampin-impregnated bioresorbable polymer implant coating was effective in reducing the infection, decreasing inflammation and preventing biofilm formation.

Conclusions/Significance

Taken together, this mouse model may represent an alternative pre-clinical screening tool to evaluate novel in vivo therapeutic strategies before studies in larger animals and in human subjects. Furthermore, the antibiotic-polymer implant coating evaluated in this study was clinically effective, suggesting the potential for this strategy as a therapeutic intervention to combat post-arthroplasty infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号