首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
2.
Manganese-containing superoxide dismutases (MnSODs) are ubiquitous metalloenzymes involved in cell defence against endogenous and exogenous reactive oxygen species. In fungi, using this essential enzyme for phylogenetic analysis of Pneumocystis and Ganoderma genera, and of species selected among Ascomycota, Basidiomycota and Zygomycota, provided interesting results in taxonomy and evolution. The role of mitochondrial and cytosolic MnSODs was explored in some pathogenic Basidiomycota yeasts (Cryptococcus neoformans var. grubii, Cryptococcus neoformans var. gattii, Malassezia sympodialis), Ascomycota filamentous fungi (Aspergillus fumigatus), and Ascomycota yeasts (Candida albicans). MnSOD-based phylogenetic and pathogenic data are confronted in order to evaluate the roles of fungal MnSODs in pathophysiological mechanisms.  相似文献   

3.
Iron is an essential micronutrient for virtually all eukaryotic organisms and plays a central role during microbial infections. Invasive fungal diseases are associated with strikingly high rates of mortality, but their impact on human health is usually underestimated. Upon a fungal infection, hosts restrict iron availability in order to limit the growth and virulence of the pathogen. Here, we use two model yeasts, Saccharomyces cerevisiae and Schizosaccharomyces pombe, to delve into the response to iron deficiency of human fungal pathogens, such as Candida glabrata, Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans. Fungi possess common and species-specific mechanisms to acquire iron and to control the response to iron limitation. Upon iron scarcity, fungi activate a wide range of elegant strategies to capture and import exogenous iron, mobilize iron from intracellular stores, and modulate their metabolism to economize and prioritize iron utilization. Hence, iron homeostasis genes represent remarkable virulence factors that can be used as targets for the development of novel antifungal treatments.  相似文献   

4.
Dongmei Ma  Ruoyu Li 《Mycopathologia》2013,175(1-2):13-23
Aspergillus fumigatus is an important opportunistic fungal pathogen that causes lethal systemic invasive aspergillosis. It must be able to adapt to stress in the microenvironment during host invasion and systemic spread. The high-osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) signaling pathway is a key element that controls adaptation to environmental stress. It plays a critical role in the virulence of several fungal pathogens. In this review, we summarize the current knowledge about the functions of different components of the HOG-MAPK pathway in A. fumigatus through mutant analysis or inferences from the genome annotation, focusing on their roles in adaptation to stress, regulation of infection-related morphogenesis, and effect on virulence. We also briefly compare the functions of the HOG pathway in A. fumigatus with those in the model fungi Saccharomyces cerevisiae and Aspergillus nidulans as well as several other human and plant pathogens including Candida albicans, Cryptococcus neoformans, and Magnaporthe oryzae. The genes described in this review mainly include tcsB, fos1, skn7, sho1, pbs2, and sakA whose deletion mutants have already been established in A. fumigatus. Among them, fos1 has been considered a virulence factor in A. fumigatus, indicating that components of the HOG pathway may be suitable as targets for developing new fungicides. However, quite a few of the genes of this pathway, such as sskA (ssk1), sskB, steC, and downstream regulator genes, are not well characterized. System biology approaches may contribute to a more comprehensive understanding of HOG pathway functions with dynamic details.  相似文献   

5.
6.
韩琦  王铌翔 《微生物学报》2024,64(1):98-107
抑制真菌细胞壁的合成常作为防治真菌感染的安全有效手段。几丁质是真菌细胞壁及隔膜的重要结构成分,几丁质合酶是催化几丁质合成的关键酶。真菌细胞中几丁质合酶家族的不同成员在调控几丁质的合成中存在着差异,因此产生不同的生物学效应。本文通过综述几丁质合酶在人体三大条件致病真菌白色念珠菌、烟曲霉、新生隐球菌中的研究进展,分析了几丁质合酶对真菌致病性影响的机制,总结了几丁质合酶调控真菌细胞增殖、形态转换、病原菌与宿主的相互作用和细胞壁损伤诱导的补偿效应,展望了抗真菌感染的新策略及关于真菌几丁质合酶的未来研究方向。  相似文献   

7.
8.
9.
Calcineurin is a calcium-activated phosphatase that controls morphogenesis and stress responses in eukaryotes. Fungal pathogens have adopted the calcineurin pathway to survive and effectively propagate within the host. The difficulty in treating fungal infections stems from similarities between pathogen and host eukaryotic cells. Using calcineurin inhibitors such as cyclosporin A or tacrolimus (FK506) in combination with antifungal drugs, including azoles or echinocandins, renders these drugs fungicidal, even towards drug-resistant species or strains, making calcineurin a promising drug target. This article summarizes the current understanding of the calcineurin pathway and its roles in governing the growth and virulence of pathogenic fungi, and compares and contrasts the roles of calcineurin in fungal pathogens that infect humans (Candida albicans and Cryptococcus neoformans) or plants (Magnaporthe oryzae and Ustilago maydis). Further investigation of calcineurin biology will advance opportunities to develop novel antifungal therapeutic approaches and provide insight into the evolution of virulence.  相似文献   

10.
The pathogenic fungi Candida albicans, Aspergillus fumigatus, and Cryptococcus neoformans are an increasing cause of human mortality, especially in immunocompromised populations. During colonization and adaptation to various host environments, these fungi undergo morphogenetic alterations that allow for survival within the host. One key environmental cue driving morphological changes is external temperature. The Hsp90 chaperone protein provides one mechanism to link temperature with the signalling cascades that regulate morphogenesis, fungal development and virulence. Candida albicans is a model system for understanding the connections between morphogenesis and Hsp90. Due to the high degree of conservation in Hsp90, many of the connections in C. albicans may be extrapolated to other fungal pathogens or parasites. Examining the role of Hsp90 during development and morphogenesis in these three major fungal pathogens may provide insight into key aspects of adaptation to the host, leading to additional avenues for therapy.  相似文献   

11.
Certain non-steroidal anti-inflammatory drugs can inhibit fungal growth, fungal prostaglandin E2 production, and enzyme activation. This study aims to investigate the antifungal effect of nimesulide against pathogenic filamentous fungi and yeast. The experiments detailed below were also designed to investigate whether the action is dependent on E2 fungal prostaglandins. Our data showed that nimesulide exhibited potent antifungal activity, mainly against Trichophyton mentagrophytes (ATCC 9533) and Cryptococcus neoformans with MIC values of 2 and 62 μg/mL, respectively. This drug was also able to inhibit the growth of clinic isolates of filamentous fungi, such as Aspergillus fumigatus, and dermatophytes, such as T. rubrum, T. mentagrophytes, Epidermophyton floccosum, Microsporum canis, and M. gypseum, with MIC values ranging from 112 to 770 μg/mL. Our data also showed that the inhibition of fungal growth by nimesulide was mediated by a mechanism dependent on PGE2, which led to the inhibition of essential fungal enzymes. Thus, we concluded that nimesulide exerts a fungicidal effect against pathogenic filamentous fungi and yeast, involving the inhibition of fungal prostaglandins and fungal enzymes important to the fungal growth and colonization.  相似文献   

12.
There is well-conserved PacC/Rim101 signaling among ascomycete fungi to mediate environmental pH sensing. For pathogenic fungi, this pathway not only enables fungi to grow over a wide pH range, but it also determines whether these fungi can successfully colonize and invade the targeted host. Within the pal/PacC pathway, palH is a putative ambient pH sensor with a seven-transmembrane domain. To characterize the function of a palH homolog, AopalH, in the nematophagous fungus Arthrobotrys oligospora, we knocked out the encoding gene of AopalH through homologous recombination, and the transformants exhibited slower growth rates, greater sensitivities to cationic and hyperoxidation stresses, as well as reduced conidiation and reduced trap formation, suggesting that the pH regulatory system has critical functions in nematophagous fungi. Our results provide novel insights into the mechanisms of pH response and regulation in fungi.  相似文献   

13.
The synthesis, in vitro evaluation and conformational study of KKWKMRRNQFWIKIQR-NH2, HFRWRQIKIWFQNRRMKWKK-NH2 and RQPKIWFPNRRKPWKK-NH2 acting as antifungal agents are reported. These peptides displayed a moderate but significant antifungal effect against both pathogenic fungi Candida albicans and Cryptococcus neoformans. The conformational analysis of these peptides was carried out using both theoretical and experimental methods.  相似文献   

14.
15.
Aspergillus fumigatus causes severe problems in poultry production systems. Seven South African tree species were selected from the database of the Phytomedicine Programme based on its antifungal activity against the fungus Cryptococcus neoformans. The acetone leaf extracts of the selected species had minimum inhibitory concentrations (MICs) of 0.16 mg/ml and lower in the preliminary screening. The antibacterial and antifungal activities of hexane, dichloromethane, acetone and methanol extracts of the leaves were determined using a two-fold serial microdilution method against a range of commonly encountered animal pathogenic fungi (A. fumigatus, Candida albicans, C. neoformans, Microsporum canis and Sporothrix schenckii) and four nosocomial bacteria (Staphylococcus aureus, Enterococcus faecalis, Escherichia coli and Pseudomonas aeruginosa). The plant species investigated were Combretum vendae (A.E. van Wyk) (Combretaceae), Commiphora harveyi (Engl.) Engl. (Burseraceae), Khaya anthotheca (Welm.) C.DC (Meliaceae), Kirkia wilmsii Engl. (Kirkiaceae), Loxostylis alata A. Spreng. ex Rchb. (Anacardiaceae), Ochna natalitia (Meisn.) Walp. (Ochnaceae) and Protorhus longifolia (Bernh.) Engl. (Anacardiaceae). All the extracts had activity against at least one of the test organisms over an incubation period of 24 or 48 h. The MIC values of the non-polar and intermediate polarity extracts of O. natalitia, K. anthotheca, C. vendae, C. harveyi, and P. longifolia had MICs as low as 0.08 mg/ml against at least one of the tested bacteria. Furthermore, the acetone extracts of L. alata, K. wilmsii, O. natalitia and C. vendae had antifungal activities with MIC values ranging from 0.04 to 0.08 mg/ml against at least one of the tested fungi. The average MIC values of the plant extracts against the different bacteria ranged from 0.17 to 2.11 mg/ml, while the range was 0.23–1.98 mg/ml for fungi. The Gram-positive bacteria (S. aureus and E. faecalis) were more susceptible to the plant extracts than the Gram-negative bacteria (E. coli and P. aeruginosa). E. faecalis was the most susceptible microbe and C. vendae extracts were the most active against nearly all the bacteria tested. The acetone extract of L. alata was the most active against fungal pathogens, with activity against at least 3 fungal organisms. L. alata was selected for further work to isolate compounds active against A. fumigatus and other fungal pathogens.  相似文献   

16.
Invasive fungal infections are a major complication for individuals with compromised immune systems. One of the most significant challenges in the treatment of invasive fungal infections is the increased resistance of many organisms to widely used antifungals, making the development of novel antifungal agents essential. Many naturally occurring products have been found to be effective antimicrobial agents. In particular, saponins with spirostane glycosidic moieties—isolated from plant or marine species—have been shown to possess a range of antimicrobial properties. In this report, we outline a novel approach to the synthesis of a number of functionalized spirostane molecules that can be further used as building blocks for novel spirostane-linked glycosides and present results from the in vitro screenings of the antifungal potential of each derivative against four fungal species, including Candida albicans, Cryptococcus neoformans, Candida glabrata, and the filamentous fungus Aspergillus fumigatus.  相似文献   

17.
To further enhance the anti-Aspergillus efficacy of our previously discovered antifungal lead compound 1, a series of benzoheterocycle analogues were designed, synthesized and evaluated for their in vitro antifungal activity. The most promising compounds 13s and 14a exhibited excellent antifungal activity against C. albicans, C. neoformans, A. fumigatus and fluconazole-resistant C. albicans strains, that was superior or comparable to those of the reference drugs fluconazole and voriconazole. GC–MS analyses suggested that the novel compound 13s might have a similar mechanism to fluconazole by inhibiting fungal lanosterol 14α-demethylase (CYP51). Furthermore, compounds 13s and 14a exhibited low inhibition profiles for various human cytochrome P450 isoforms as well as excellent blood plasma stability.  相似文献   

18.
Antimicrobial peptides (AMPs) are key elements of innate immunity, which can directly kill multiple bacterial, viral, and fungal pathogens. The medically important fungus Candida albicans colonizes different host niches as part of the normal human microbiota. Proliferation of C. albicans is regulated through a complex balance of host immune defense mechanisms and fungal responses. Expression of AMPs against pathogenic fungi is differentially regulated and initiated by interactions of a variety of fungal pathogen-associated molecular patterns (PAMPs) with pattern recognition receptors (PRRs) on human cells. Inflammatory signaling and other environmental stimuli are also essential to control fungal proliferation and to prevent parasitism. To persist in the host, C. albicans has developed a three-phase AMP evasion strategy, including secretion of peptide effectors, AMP efflux pumps, and regulation of signaling pathways. These mechanisms prevent C. albicans from the antifungal activity of the major AMP classes, including cathelicidins, histatins, and defensins leading to a basal resistance. This minireview summarizes human AMP attack and C. albicans resistance mechanisms and current developments in the use of AMPs as antifungal agents.  相似文献   

19.
A series of novel 2,3-dihydro-4H-1-benzoselenin-4-one (thio)semicarbazone derivatives were designed and synthesized by using molecular hybridization approach. All the target compounds were characterized by HRMS and NMR and evaluated in vitro antifungal activity against five pathogenic strains. In comparison with precursor selenochroman-4-ones, the hybrid molecules in this study showed significant improvement in antifungal activities. Notably, compound B8 showed significant antifungal activity against other strains excluding Aspergillus fumigatus (0.25 μg/mL on Candida albicans, 2 μg/mL on Cryptococcus neoformans, 8 μg/mL on Candida zeylanoides and 2 μg/mL on fluconazole-sensitive strains of Candida albicans). Moreover, compounds B8, B9 and C2 also displayed most potent activities against four fluconazole-resistance strains. Especially the MIC values of the hybrid molecule B8 against fluconazole-resistant strains were in the range of 0.5–2 μg/mL. Therefore, the molecular hybridization approach in this study provided new ideas for the development of antifungal drug.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号