首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Brassica juncea 3-hydroxy-3-methylglutaryl-CoA synthase (HMGS) is encoded by four isogenes (BjHMGS1-BjHMGS4). In vitro enzyme assays had indicated that the recombinant BjHMGS1 H188N mutant lacked substrate inhibition by acetoacetyl-CoA (AcAc-CoA) and showed 8-fold decreased enzyme activity. The S359A mutant demonstrated 10-fold higher activity, while the H188N/S359A double mutant displayed a 10-fold increased enzyme activity and lacked inhibition by AcAc-CoA. Here, wild-type and mutant BjHMGS1 were overexpressed in Arabidopsis to examine their effects in planta. The expression of selected genes in isoprenoid biosynthesis, isoprenoid content, seed germination and stress tolerance was analysed in HMGS overexpressors (OEs). Those mRNAs encoding enzymes 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), sterol methyltransferase 2 (SMT2), delta-24 sterol reductase (DWF1), C-22 sterol desaturase (CYP710A1) and brassinosteroid-6-oxidase 2 (BR6OX2) were up-regulated in HMGS-OEs. The total sterol content in leaves and seedlings of OE-wtBjHMGS1, OE-S359A and OE-H188N/S359A was significantly higher than OE-H188N. HMGS-OE seeds germinated earlier than wild-type and vector-transformed controls. HMGS-OEs further displayed reduced hydrogen peroxide (H(2) O(2) )-induced cell death and constitutive expression of salicylic acid (SA)-dependent pathogenesis-related genes (PR1, PR2 and PR5), resulting in an increased resistance to Botrytis cinerea, with OE-S359A showing the highest and OE-H188N the lowest tolerance. These results suggest that overexpression of HMGS up-regulates HMGR, SMT2, DWF1, CYP710A1 and BR6OX2, leading to enhanced sterol content and stress tolerance in Arabidopsis.  相似文献   

2.
3‐Hydroxy‐3‐methylglutaryl‐coenzyme A synthase (HMGS) in the mevalonate (MVA) pathway generates isoprenoids including phytosterols. Dietary phytosterols are important because they can lower blood cholesterol levels. Previously, the overexpression of Brassica juncea wild‐type (wt) and mutant (S359A) BjHMGS1 in Arabidopsis up‐regulated several genes in sterol biosynthesis and increased sterol content. Recombinant S359A had earlier displayed a 10‐fold higher in vitro enzyme activity. Furthermore, tobacco HMGS overexpressors (OEs) exhibited improved sterol content, plant growth and seed yield. Increased growth and seed yield in tobacco OE‐S359A over OE‐wtBjHMGS1 coincided with elevations in NtSQS expression and sterol content. Herein, the overexpression of wt and mutant (S359A) BjHMGS1 in a crop plant, tomato (Solanum lycopersicum), caused an accumulation of MVA‐derived squalene and phytosterols, as well as methylerythritol phosphate (MEP)‐derived α‐tocopherol (vitamin E) and carotenoids, which are important to human health as antioxidants. In tomato HMGS‐OE seedlings, genes associated with the biosyntheses of C10, C15 and C20 universal precursors of isoprenoids, phytosterols, brassinosteroids, dolichols, methylerythritol phosphate, carotenoid and vitamin E were up‐regulated. In OE‐S359A tomato fruits, increased squalene and phytosterol contents over OE‐wtBjHMGS1 were attributed to heightened SlHMGR2, SlFPS1, SlSQS and SlCYP710A11 expression. In both tomato OE‐wtBjHMGS1 and OE‐S359A fruits, the up‐regulation of SlGPS and SlGGPPS1 in the MEP pathway that led to α‐tocopherol and carotenoid accumulation indicated cross‐talk between the MVA and MEP pathways. Taken together, the manipulation of BjHMGS1 represents a promising strategy to simultaneously elevate health‐promoting squalene, phytosterols, α‐tocopherol and carotenoids in tomato, an edible fruit.  相似文献   

3.
4.

Key message

HMGS functions in phytosterol biosynthesis, development and stress responses. F-244 could specifically-inhibit HMGS in tobacco BY-2 cells and Brassica seedlings. An update on HMGS from higher plants is presented.

Abstract

3-Hydroxy-3-methylglutaryl-coenzyme A synthase (HMGS) is the second enzyme in the mevalonate pathway of isoprenoid biosynthesis and catalyzes the condensation of acetoacetyl-CoA and acetyl-CoA to produce S-3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). Besides HMG-CoA reductase (HMGR), HMGS is another key enzyme in the regulation of cholesterol and ketone bodies in mammals. In plants, it plays an important role in phytosterol biosynthesis. Here, we summarize the past investigations on eukaryotic HMGS with particular focus on plant HMGS, its enzymatic properties, gene expression, protein structure, and its current status of research in China. An update of the findings on HMGS from animals (human, rat, avian) to plants (Brassica juncea, Hevea brasiliensis, Arabidopsis thaliana) will be discussed. Current studies on HMGS have been vastly promoted by developments in biochemistry and molecular biology. Nonetheless, several limitations have been encountered, thus some novel advances in HMGS-related research that have recently emerged will be touched on.  相似文献   

5.
The role of ethylene in regulating organ senescence in Arabidopsis has been investigated by studying the development of mutants that have an attenuated capacity to perceive the gas. The onset of leaf senescence and floral organ abscission was delayed in the ethylene-insensitive mutant etr1. The photosynthetic life span of rosette leaves was similarly extended in the gain-of-function mutant ers2, and this mutant also exhibited a delay in the timing of pod dehiscence primarily as a consequence of an extension in the final stages of senescence. A detailed analysis of yield revealed that whilst thousand grain weight was increased, by as much as 20 %, in etr1, ein4, and the loss-of-function mutant etr2, only the latter showed a significant increase in total weight of seeds produced per plant. The other studied mutants exhibited a reduction in total seed yield of almost 40 %. These observations are discussed in the context of the possible role of ethylene in regulating organ senescence and their significance in the breeding of crop plants with enhanced phenotypic characteristics.  相似文献   

6.
2S albumin seed storage proteins undergo a complex series of posttranslational proteolytic cleavages. In order to determine if this process is correctly carried out in transgenic plants, the gene AT2S1 encoding an Arabidopsis thaliana 2S albumin isoform has been expressed in transgenic tobacco. Initial experiments using a reporter gene demonstrated that the AT2S1 promoter directs seed specific expression in both transgenic tobacco and Brassica napus plants. The entire AT2S1 gene was then transferred into tobacco plants, where it showed a tissue specific and developmentally regulated expression. Arabidopsis 2S albumin accumulates up to 0.1% of the total high-salt extractable seed protein. Protein sequencing demonstrated that the amino termini of the two Arabidopsis 2S albumin subunits were correctly processed, suggesting that the protease(s) necessary for posttranslational processing of 2S albumin precursors may display common specificities among different dicot plant species. Immunocytochemical studies showed that the Arabidopsis 2S albumin is localized in the protein body matrix of tobacco endosperm and embryo. Correct processing and targeting of the 2S albumin in transgenic plants suggests that modified versions could be expressed, allowing the study of 2S albumin processing and in particular the possible roles of the processed fragments in protein stability and/or targeting.  相似文献   

7.
Expansins are cell wall proteins that promote cell wall loosening by inducing pH-dependent cell wall extension and stress relaxation. Expansins are required in a series of physiological developmental processes in higher plants such as seed germination. Here we identified an Arabidopsis expansin gene AtEXPA2 that is exclusively expressed in germinating seeds and the mutant shows delayed germination, suggesting that AtEXP2 is involved in controlling seed germination. Exogenous GA application increased the expression level of AtEXP2 during seed germination, while ABA application had no effect on AtEXP2 expression. Furthermore, the analysis of DELLA mutants show that RGL1, RGL2, RGA, GAI are all involved in repressing AtEXP2 expression, and RGL1 plays the most dominant role in controlling AtEXP2 expression. In stress response, exp2 mutant shows higher sensitivity than wild type in seed germination, while overexpression lines of AtEXP2 are less sensitive to salt stress and osmotic stress, exhibiting enhanced tolerance to stress treatment. Collectively, our results suggest that AtEXP2 is involved in the GA-mediated seed germination and confers salt stress and osmotic stress tolerance in Arabidopsis.  相似文献   

8.
The H subunit of Mg-chelatase (CHLH) was shown to regulate abscisic acid (ABA) signaling and the I subunit (CHLI) was also reported to modulate ABA signaling in guard cells. However, it remains essentially unknown whether and how the Mg-chelatase-catalyzed Mg-protoporphyrin IX-production differs from ABA signaling. Using a newly-developed surface plasmon resonance system, we showed that ABA binds to CHLH, but not to the other Mg-chelatase components/subunits CHLI, CHLD (D subunit) and GUN4. A new rtl1 mutant allele of the CHLH gene in Arabidopsis thaliana showed ABA-insensitive phenotypes in both stomatal movement and seed germination. Upregulation of CHLI1 resulted in ABA hypersensitivity in seed germination, while downregulation of CHLI conferred ABA insensitivity in stomatal response in Arabidopsis. We showed that CHLH and CHLI, but not CHLD, regulate stomatal sensitivity to ABA in tobacco (Nicotiana benthamiana). The overexpression lines of the CHLD gene showed wild-type ABA sensitivity in Arabidopsis. Both the GUN4-RNA interference and overexpression lines of Arabidopsis showed wild-type phenotypes in the major ABA responses. These findings provide clear evidence that the Mg-chelatase-catalyzed Mg-ProtoIX production is distinct from ABA signaling, giving information to understand the mechanism by which the two cellular processes differs at the molecular level.  相似文献   

9.
Ding G  Zhao Z  Liao Y  Hu Y  Shi L  Long Y  Xu F 《Annals of botany》2012,109(4):747-759

Background and Aims

One of the key targets of breeding programmes in rapeseed (Brassica napus) is to develop high-yield varieties. However, the lack of available phosphorus (P) in soils seriously limits rapeseed production. The aim of this study was to dissect the genetic control of seed yield and yield-related traits in B. napus grown with contrasting P supplies.

Methods

Two-year field trials were conducted at one site with normal and low P treatments using a population of 124 recombinant inbred lines derived from a cross between ‘B104-2’ and ‘Eyou Changjia’. Seed yield, seed weight, seed number, pod number, plant height, branch number and P efficiency coefficient (PEC) were investigated. Quantitative trait locus (QTL) analysis was performed by composite interval mapping.

Key Results

The phenotypic values of most of the tested traits were reduced under the low P conditions. In total, 74 putative QTLs were identified, contributing 7·3–25·4 % of the phenotypic variation. Of these QTLs, 16 (21·6 %) were detected in two seasons and in the mean value of two seasons, and eight QTLs for two traits were conserved across P levels. Low-P-specific QTLs were clustered on chromosomes A1, A6 and A8. By comparative mapping between Arabidopsis and B. napus, 161 orthologues of 146 genes involved in Arabidopsis P homeostasis and/or yield-related trait control were associated with 45 QTLs corresponding to 23 chromosomal regions. Four gene-based markers developed from genes involved in Arabidopsis P homeostasis were mapped to QTL intervals.

Conclusions

Different genetic determinants were involved in controlling seed yield and yield-related traits in B. napus under normal and low P conditions. The QTLs detected under reduced P supply may provide useful information for improving the seed yield of B. napus in soils with low P availability in marker-assisted selection.  相似文献   

10.
The maturation and ripening of fleshy fruits is a developmental program that synchronizes seed maturation with metabolism, rendering fruit tissues desirable to seed dispersing organisms. Through RNA interference repression, we show that Tomato AGAMOUS-LIKE1 (TAGL1), the tomato (Solanum lycopersicum) ortholog of the duplicated SHATTERPROOF (SHP) MADS box genes of Arabidopsis thaliana, is necessary for fruit ripening. Tomato plants with reduced TAGL1 mRNA produced yellow-orange fruit with reduced carotenoids and thin pericarps. These fruit are also decreased in ethylene, indicating a comprehensive inhibition of maturation mediated through reduced ACC Synthase 2 expression. Furthermore, ectopic expression of TAGL1 in tomato resulted in expansion of sepals and accumulation of lycopene, supporting the role of TAGL1 in ripening. In Arabidopsis, the duplicate SHP1 and SHP2 MADS box genes regulate the development of separation layers essential for pod shatter. Expression of TAGL1 in Arabidopsis failed to completely rescue the shp1 shp2 mutant phenotypes, indicating that TAGL1 has evolved distinct molecular functions compared with its Arabidopsis counterparts. These analyses demonstrate that TAGL1 plays an important role in regulating both fleshy fruit expansion and the ripening process that together are necessary to promote seed dispersal of fleshy fruit. From this broad perspective, SHP1/2 and TAGL1, while distinct in molecular function, regulate similar activities via their necessity for seed dispersal in Arabidopsis and tomato, respectively.  相似文献   

11.
Acyl-CoA:lysophosphatidylcholine acyltransferase (LPCAT), which acylates lysophosphatidylcholine (LPC) to produce phosphatidylcholine (PC), is a key enzyme in the Lands cycle. There is evidence that acyl exchange involving LPCAT is a prevailing metabolic process during triacylglycerol (TAG) synthesis in seeds. In this study, by complementing the yeast lca1Δ mutant deficient in LPCAT activity with an Arabidopsis seedling cDNA library, it was found that the previously reported lysophospholipid acyltransferases (LPLATs), At1g12640 and At1g63050, were the only two acyltransferase genes that restored hyposensitivity of the lca1Δ mutant to lyso-platelet-activating factor (lyso-PAF). A developing seed cDNA library from Brassica napus L. cv Hero was constructed to further explore the heterologous yeast complementation approach. Three B. napus LPCAT homologs were identified, of which BnLPCAT1-1 and BnLPCAT1-2 are orthologous to Arabidopsis AtLPLAT1 (At1g12640) while BnLPCAT2 is an ortholog of AtLPLAT2 (At1g63050). The proteins encoded by BnLPCAT1-1 and BnLPCAT2 were chosen for further study. Enzymatic assays demonstrated that both proteins exhibited a substrate preference for LPCs and unsaturated fatty acyl-CoAs. In addition to the enzymatic properties of plant lysophosphatidylcholine acyltransferases uncovered in this study, this report describes a useful technique that facilitates subsequent analyses into the role of LPCATs in PC turnover and seed oil biosynthesis.  相似文献   

12.
Cao D  Hussain A  Cheng H  Peng J 《Planta》2005,223(1):105-113
The Arabidopsis severe gibberellin-deficient mutant ga1-3 does not germinate even when the optimal light and temperature conditions are provided. This fact suggests that (1) gibberellin (GA) is absolutely necessary for the germination of an intact seed and (2) the ga1-3 mutant can be used as a good system to identify factors that repress seed germination. In this report, using ga1-3 mutation as the genetic background, we confirm that RGL2, one member of the DELLA family, encodes the predominant repressor of seed germination in Arabidopsis and show that the other DELLA genes GAI,RGA and RGL1 enhance the function of RGL2. More importantly, we show that ga1-3 seeds lacking RGA, RGL1 and RGL2 or GAI, RGL1 and RGL2, confer GA-independent germination in the light but not in the darkness whilst ga1-3 seeds lacking GAI, RGA and RGL2 germinate both in the light and darkness. This suggests that the destabilization or inactivation of RGA and GAI is not only triggered by GA but also possibly by light. In addition, ga1-3 seeds lacking in all the aforementioned four DELLA genes have elongated epidermal cells and confer light-, cold- and GA-independent seed germination. Therefore, DELLA proteins likely act as integrators of environmental and endogenous cues to regulate seed germination.  相似文献   

13.
Seed size in higher plants is determined by the coordinated growth of the embryo, endosperm, and maternal tissue. Several factors that act maternally to regulate seed size have been identified, such as AUXIN RESPONSE FACTOR2, APETALA2, KLUH, and DA1, but the genetic and molecular mechanisms of these factors in seed size control are almost totally unknown. We previously demonstrated that the ubiquitin receptor DA1 acts synergistically with the E3 ubiquitin ligase ENHANCER1 OF DA1 (EOD1)/BIG BROTHER to regulate the final size of seeds in Arabidopsis thaliana. Here, we describe another RING-type protein with E3 ubiquitin ligase activity, encoded by DA2, which regulates seed size by restricting cell proliferation in the maternal integuments of developing seeds. The da2-1 mutant forms large seeds, while overexpression of DA2 decreases seed size of wild-type plants. Overexpression of rice (Oryza sativa) GRAIN WIDTH AND WEIGHT2, a homolog of DA2, restricts seed growth in Arabidopsis. Genetic analyses show that DA2 functions synergistically with DA1 to regulate seed size, but does so independently of EOD1. Further results reveal that DA2 interacts physically with DA1 in vitro and in vivo. Therefore, our findings define the genetic and molecular mechanisms of three ubiquitin-related proteins DA1, DA2, and EOD1 in seed size control and indicate that they are promising targets for crop improvement.  相似文献   

14.
15.
16.
Quercetin is a potent antioxidant and has been extensively used as a therapy intervention to prevent age-associated diseases. However, emerging studies showed it can also act as a prooxidant and induce H2O2 under certain conditions. In the current study, our results showed that quercetin contributed to the pathogen resistance in Arabidopsis thaliana (Arabidopsis) in response to the infection of virulent strain Pseudomonas syringae pv. Tomato DC3000 (Pst). Various defense responses, such as H2O2 burst, callose deposition, cell death, PR1 (pathogenesis-related 1) and PAL1 (Phe ammonia-lyase 1) gene expression, have been investigated in quercetin-pretreated Pst-inoculated Arabidopsis Col-0 and there was a strong defensive response in quercetin-pretreated Arabidopsis against virulent Pst. However, with the presence of catalase, the protective effects of quercetin on pathogen resistance to virulent Pst disappeared in Arabidopsis, suggesting that H2O2 may play a key role in plant defense responses. In addition, we confirmed that quercetin did not show any beneficial effect on pathogen-free leaves in Arabidopsis, indicating that pathogen challenge is also required to induce the defense responses in quercetin-pretreated Arabidopsis. Furthermore, strong defense responses have been observed in quercetin-pretreated Arabidopsis mutant jar1, ein2, and abi1-2 under Pst challenge, whereas no protective effect has been observed in quercetin-pretreated Arabidopsis mutant NahG and npr1. These findings indicate that quercetin induces the resistance to Pst in Arabidopsis via H2O2 burst and involvement of SA and NPR1.  相似文献   

17.
《Gene》1998,206(1):137-143
The GTPase cycle of Rab/Ypt proteins is strictly controlled by several classes of regulators to ensure their proper roles in membrane traffic. GDP dissociation inhibitor (GDI) is known to play essential roles in regulating nucleotide states and subcellular localizations of Rab/Ypt proteins. To obtain further knowledge on this regulator molecule in plants, we isolated and characterized two genes of Arabidopsis thaliana that encode different GDIs. AtGDI1 has been identified by a novel functional cloning in yeast [Ueda et al. (1996) Plant Cell, 8, 2079–2091] and AtGDI2 was isolated by cross-hybridization in this study. AtGDI2, as well as AtGDI1, complements the yeast sec19/gdi1 mutant, indicating that they can replace the function of yeast GDI. Evidence is shown that both AtGDI1 and AtGDI2 can interact with Ara4, an Arabidopsis Rab protein, in the yeast ypt1 mutant cells. AtGDI2 is ubiquitously expressed in Arabidopsis tissues with some difference from AtGDI1 in expression level. Genomic DNA hybridization using specific probes reveals the presence of one more GDI gene in Arabidopsis. This may imply differentiated roles of GDI in higher plants.  相似文献   

18.
The Arabidopsis thaliana histone H2A-1 is important for Agrobacterium tumefaciens–mediated plant transformation. Mutation of HTA1, the gene encoding histone H2A-1, results in decreased T-DNA integration into the genome of Arabidopsis roots, whereas overexpression of HTA1 increases transformation frequency. To understand the mechanism by which HTA1 enhances transformation, we investigated the effects of overexpression of numerous Arabidopsis histones on transformation and transgene expression. Transgenic Arabidopsis containing cDNAs encoding histone H2A (HTA), histone H4 (HFO), and histone H3-11 (HTR11) displayed increased transformation susceptibility, whereas histone H2B (HTB) and most histone H3 (HTR) cDNAs did not increase transformation. A parallel increase in transient gene expression was observed when histone HTA, HFO, or HTR11 overexpression constructs were cotransfected with double- or single-stranded forms of a gusA gene into tobacco (Nicotiana tabacum) protoplasts. However, these cDNAs did not increase expression of a previously integrated transgene. We identified the N-terminal 39 amino acids of H2A-1 as sufficient to increase transient transgene expression in plants. After transfection, transgene DNA accumulates more rapidly in the presence of HTA1 than with a control construction. Our results suggest that certain histones enhance transgene expression, protect incoming transgene DNA during the initial stages of transformation, and subsequently increase the efficiency of Agrobacterium-mediated transformation.  相似文献   

19.
《FEBS letters》2014,588(9):1680-1685
Phosphatidylglycerophosphate (PGP) synthase, encoded by PGP1 and PGP2 in Arabidopsis, catalyzes a committed step in the biosynthesis of phosphatidylglycerol (PG). In this study, we isolated a pgp1pgp2 double mutant of Arabidopsis to study the function of PG. In this mutant, embryo development was delayed and the majority of seeds did not germinate. Thylakoid membranes did not develop in plastids, mitochondrial membrane structures were abnormal in the mutant embryos, and radiolabeling of phospholipids showed that radioactivity was not significantly incorporated into PG. These results demonstrated that PG biosynthesis is essential for the development of embryos and normal membrane structures of chloroplasts and mitochondria.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号