首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Qiu  Yanying  Yin  Qiyang  Fei  Yuxiang  Li  Yize  Huang  Hongfei  Fang  Weirong  Shen  Weiyang  Liang  Bingwen  Zhu  Xiong  Li  Yunman 《Neurochemical research》2019,44(8):1924-1938
Neurochemical Research - Inflammatory reactions and oxidative stress play critical roles in cerebral ischemic injuries. Microglia are activated after ischemic injury. Activated microglia produce...  相似文献   

3.
4.
5.
Geng  Chizi  Wei  Jianchao  Wu  Chengsi 《Neurochemical research》2019,44(7):1653-1664

Neuroinflammation has been acknowledged as a primary factor contributing to the pathogenesis of neurodegenerative disease. However, the molecular mechanism underlying inflammation stress-mediated neuronal dysfunction is not fully understood. The aim of our study was to explore the influence of mammalian STE20-like kinase 1 (Mst1) in neuroinflammation using TNFα and CATH.a cells in vitro. The results of our study demonstrated that the expression of Mst1 was dose-dependently increased after TNFα treatment. Interestingly, knockdown of Mst1 using siRNA transfection significantly repressed TNFα-induced neuronal death. We also found that TNFα treatment was associated with mitochondrial stress, including mitochondrial ROS overloading, mitochondrial permeability transition pore (mPTP) opening, mitochondrial membrane potential reduction, and mitochondrial pro-apoptotic factor release. Interestingly, loss of Mst1 attenuated TNFα-triggered mitochondrial stress and sustained mitochondrial function in CATH.a cells. We found that Mst1 modulated mitochondrial homeostasis and cell viability via the JNK pathway in a TNFα-induced inflammatory environment. Inhibition of the JNK pathway abolished TNFα-mediated CATH.a cell death and mitochondrial malfunction, similar to the results obtained via silencing of Mst1. Taken together, our results indicate that inflammation-mediated neuronal dysfunction is implicated in Mst1 upregulation, which promotes mitochondrial stress and neuronal death by activating the JNK pathway. Accordingly, our study identifies the Mst1–JNK-mitochondria axis as a novel signaling pathway involved in neuroinflammation.

  相似文献   

6.
3-Deoxyglucosone (3DG) is a highly reactive dicarbonyl species, and its accumulation evokes carbonyl and oxidative stress. Our recent data reveal the role of 3DG as an independent factor for the development of prediabetes and suggest that intestine could be its novel target tissue. The present study investigated whether exogenous 3DG increases intestinal permeability by triggering carbonyl and oxidative stress, thus contributing to β-cell dysfunction. Rats were administered 3DG for two weeks by gastric gavage. Then levels of insulin, ROS, MDA, SOD, NLRP3, TNF-α and IL-1β in blood plasma as well as the ROS level and content of TNF-α and IL-1β in pancreas were assessed. Also, the expression of E-cadherin and ZO-1 as well as levels of 3DG, protein carbonylation, ROS, TNF-α and IL-1β in colon were determined. The 3DG-treated rats showed an elevation in systemic oxidative stress (ROS, MDA and SOD) and in inflammation (TNF-α and IL-1β), decreased plasma insulin level 15 min after the glucose load, and increased levels of TNF-α, IL-1β and ROS in pancreatic tissue. In colon tissues of the 3DG-treated rats, decreased E-cadherin expression and increased ROS production as well as an elevation of TNF-α and IL-1β levels were observed. Interestingly, elevation of colon protein carbonylation was observed in the 3DG-treated rats that displayed 3DG deposition in colon tissues. We revealed for the first time that 3DG deposition in colon triggers carbonyl and oxidative stress and, as a consequence, impairs gut permeability. The enhanced intestinal permeability caused by 3DG deposition in colon results in systemic and pancreatic oxidative stress and inflammatory process, contributing to the development of β-cell dysfunction.  相似文献   

7.
Probiotics and Antimicrobial Proteins - Studies have shown that the intracellular content of probiotic (postbiotics) has antioxidant properties, which can improve the antioxidant status in vivo....  相似文献   

8.
9.
Vinpocetine is a safe nootropic agent used for neurological and cerebrovascular diseases. The anti-inflammatory activity of vinpocetine has been shown in cell based assays and animal models, leading to suggestions as to its utility in analgesia. However, the mechanisms regarding its efficacy in inflammatory pain treatment are still not completely understood. Herein, the analgesic effect of vinpocetine and its anti-inflammatory and antioxidant mechanisms were addressed in murine inflammatory pain models. Firstly, we investigated the protective effects of vinpocetine in overt pain-like behavior induced by acetic acid, phenyl-p-benzoquinone (PBQ) and formalin. The intraplantar injection of carrageenan was then used to induce inflammatory hyperalgesia. Mechanical and thermal hyperalgesia were evaluated using the electronic von Frey and the hot plate tests, respectively, with neutrophil recruitment to the paw assessed by a myeloperoxidase activity assay. A number of factors were assessed, both peripherally and in the spinal cord, including: antioxidant capacity, reduced glutathione (GSH) levels, superoxide anion, tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β) levels, as well as nuclear factor kappa B (NF-κB) activation. Vinpocetine inhibited the overt pain-like behavior induced by acetic acid, PBQ and formalin (at both phases), as well as the carrageenan-induced mechanical and thermal hyperalgesia and associated neutrophil recruitment. Both peripherally and in the spinal cord, vinpocetine also inhibited: antioxidant capacity and GSH depletion; increased superoxide anion; IL-1β and TNF-α levels; and NF-κB activation. As such, vinpocetine significantly reduces inflammatory pain by targeting oxidative stress, cytokine production and NF-κB activation at both peripheral and spinal cord levels.  相似文献   

10.
The present study was carried to evaluate the protective effects of melatonin alone and vitamin E with selenium combination against high dose cadmium-induced oxidative stress in rats. The control group received subcutanous physiological saline. The first study group administered cadmium chloride (CdCl2) by subcutaneous injection of dose of 1 mg/kg. The second study group administered cadmium plus vitamin E with selenium (1 mg/kg sodium selenite with 60 mg/kg vitamin E); the third study group administered cadmium plus 10 mg/kg melatonin (MLT); the fourth study group administered CdCl2 plus a combination of melatonin in addition to vitamin E and selenium for a month. Determination levels of plasma malondialdehyde (MDA), glutathione peroxidase (GSH-Px), blood superoxide dismutase (SOD), creatinine alanine transaminase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), blood urea nitrogen (BUN), and urea were measured in serum. In only CdCl2 administered group, the MDA, creatinine, ALT, AST, ALP, and urea levels in the serum were significantly higher than the control group (p < 0.05). Whereas in all other groups, this values were significantly lower than the only CdCl2 administered group (p < 0.05). Erythrocytes GSH-Px, serum SOD activities of only CdCl2 received group were significantly lower than the control group (p < 0.05). In conclusion, vitamin E + Se, melatonin and vitamin E, and Se, in addition to MLT combinations, had protective effects against high dose cadmium-induced oxidative damage.  相似文献   

11.
Simvastatin (SIM) is anti-inflammatory. We used low density lipoprotein receptor knockout (LDLR-/-) mice and human aortic smooth muscle cells (HASMCs) as model systems to study the effect of SIM on arterial calcification and to explore the potential mechanisms contributing to this protective effect. High-fat diet (HFD) caused the LRLR -/- to develop dyslipidemia, diabetics, atherosclerosis and aortic smooth muscle calcification. SIM, N-acetyl cysteine (NAC, a ROS scavenger) and apocynin (APO, a NADPH oxidase inhibitor) did not significantly retard the development of dyslipidemia or diabetic. However, those treatments were still effective in attenuating the HFD-induced atherosclerosis and aortic smooth muscle calcification. These findings suggest that the protective effect of SIM against aortic calcification is not contributed by the cholesterol lowering effect. SIM, NAC and APO were found to attenuate the HFD induced elevation of serum TNF-α, soluble TNFR1 (sTNFR1), 3-nitro-tyrosine. We hypothesized that the pro-inflammatory cytokine, oxidative stress and TNFR1 played a role in inducing aortic calcification. We used HASMC to investigate the role of TNF-α, oxidative stress and TNFR1 in inducing aortic calcification and to elucidate the mechanism contributes the protective effect of SIM against aortic calcification. We demonstrated that treating HASMC with TNF-α induced cell Ca deposit and result in an increase in ALP, NADPH oxidase activity, NF-kB subunit p65, BMP2, MSX2, and RUNX2 expression. SIM suppressed the TNF-α induced activation of NADPH oxidase subunit p47, the above-mentioned bone markers and TNFR1 expression. Furthermore, p65, p47 and TNFR1 siRNAs inhibited the TNF-α-mediated stimulation of BMP-2, MSX2, RUNX2 expression. SIM, APO, and NAC either partially inhibit or completely block the TNF-α induced H2O2 or superoxide production. These results suggest that SIM may, independent of its cholesterol-lowering effect, suppresses the progression of vascular diseases through the inhibition of the inflammation mediators TNF-α and TNFR1.  相似文献   

12.
Ginsenoside Re, one of the main constituents of Panax ginseng, possesses novel antioxidant and anti-inflammatory properties. However, the pharmacological mechanism of ginsenoside Re in dopaminergic degeneration remains elusive. We suggested that protein kinase C (PKC) δ mediates methamphetamine (MA)-induced dopaminergic toxicity. Treatment with ginsenoside Re significantly attenuated methamphetamine-induced dopaminergic degeneration in vivo by inhibiting impaired enzymatic antioxidant systems, mitochondrial oxidative stress, mitochondrial translocation of protein kinase Cδ, mitochondrial dysfunction, pro-inflammatory microglial activation, and apoptosis. These protective effects were comparable to those observed with genetic inhibition of PKCδ in PKCδ knockout (?/?) mice and with PKCδ antisense oligonucleotides, and ginsenoside Re did not provide any additional protective effects in the presence of PKCδ inhibition. Our results suggest that PKCδ is a critical target for ginsenoside Re-mediated protective activity in response to dopaminergic degeneration induced by MA.  相似文献   

13.
14.
Mice lacking Carboxypeptidase E (CPE) exhibit degeneration of hippocampal neurons caused by stress at weaning while over-expression of CPE in hippocampal neurons protect them against hydrogen peroxide-induced cell death. Here we demonstrate that CPE acts as an extracellular trophic factor to protect neurons. Rat hippocampal neurons pretreated with purified CPE protected the cells against hydrogen peroxide-, staurosporine- and glutamate-induced cell death. This protection was observed even when hippocampal neurons were treated with an enzymatically inactive mutant CPE or with CPE in the presence of its inhibitor, GEMSA. Purified CPE added to the culture medium rescued CPE knock-out hippocampal neurons from cell death. Both ERK and AKT were phosphorylated within 15 min after CPE treatment of hippocampal neurons and, using specific inhibitors, both signaling pathways were shown to be required for the neuroprotective effect. The expression of the anti-apoptotic protein, B-cell lymphoma 2 (BCL-2), was up-regulated after hippocampal neurons were treated with CPE. Furthermore, hydrogen peroxide induced down-regulation of BCL-2 protein and subsequent activation of caspase-3 were inhibited by CPE treatment. Thus, this study has identified CPE as a new neurotrophic factor that can protect neurons against degeneration through the activation of ERK and AKT signaling pathways to up-regulate expression of BCL-2.  相似文献   

15.
Zhi  Zhongwen  Tang  Xiaohong  Wang  Yuqian  Chen  Rui  Ji  Hu 《Neurochemical research》2021,46(11):3012-3024
Neurochemical Research - Sinensetin (SIN) is an important active compound that exists widely in citrus plants, and has been reported to exhibit various pharmacological properties, including...  相似文献   

16.
17.
Flurbiprofen acts as a nonselective inhibitor for cyclooxygenases (COX-1 and COX-2), but its impact on hepatic ischemia/reperfusion (I/R) injury remains unclear. Mice were randomized into sham, I/R and flurbiprofen (Flurb) groups. The hepatic artery and portal vein to the left and median liver lobes were occluded for 90 min and unclamped for reperfusion to establish a model of segmental (70%) warm hepatic ischemia. Pretreatment of animals with flurbiprofen prior to I/R insult significantly decreased serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH), and prevented hepatocytes from I/R-induced apoptosis/necrosis. Moreover, flurbiprofen dramatically inhibited mitochondrial permeability transition (MPT) pore opening, and thus prevented mitochondrial-related cell death and apoptosis. Mechanistic studies revealed that flurbiprofen markedly inhibited glycogen synthase kinase (GSK)-3β activity and increased phosphorylation of GSK-3β at Ser9, which, consequently, could modulate the adenine nucleotide translocase (ANT)–cyclophilin D (CyP-D) complex and the susceptibility to MPT induction. Therefore, administration of flurbiprofen prior to hepatic I/R ameliorates mitochondrial and hepatocellular damage through inhibition of MPT and inactivation of GSK-3β, and provides experimental evidence for clinical use of flurbiprofen to protect liver function in surgical settings in addition to its conventional use for pain relief.  相似文献   

18.
Exposure to mobile phone-induced electromagnetic radiation (EMR) may affect biological systems by increasing free oxygen radicals, apoptosis, and mitochondrial depolarization levels although selenium may modulate the values in cancer. The present study was designed to investigate the effects of 900 MHz radiation on the antioxidant redox system, apoptosis, and mitochondrial depolarization levels in MDA-MB-231 breast cancer cell line. Cultures of the cancer cells were divided into four main groups as controls, selenium, EMR, and EMR?+?selenium. In EMR groups, the cells were exposed to 900 MHz EMR for 1 h (SAR value of the EMR was 0.36?±?0.02 W/kg). In selenium groups, the cells were also incubated with sodium selenite for 1 h before EMR exposure. Then, the following values were analyzed: (a) cell viability, (b) intracellular ROS production, (c) mitochondrial membrane depolarization, (d) cell apoptosis, and (e) caspase-3 and caspase-9 values. Selenium suppressed EMR-induced oxidative cell damage and cell viability (MTT) through a reduction of oxidative stress and restoring mitochondrial membrane potential. Additionally, selenium indicated anti-apoptotic effects, as demonstrated by plate reader analyses of apoptosis levels and caspase-3 and caspase-9 values. In conclusion, 900 MHz EMR appears to induce apoptosis effects through oxidative stress and mitochondrial depolarization although incubation of selenium seems to counteract the effects on apoptosis and oxidative stress.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号