首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Face recognition is challenging especially when the images from different persons are similar to each other due to variations in illumination, expression, and occlusion. If we have sufficient training images of each person which can span the facial variations of that person under testing conditions, sparse representation based classification (SRC) achieves very promising results. However, in many applications, face recognition often encounters the small sample size problem arising from the small number of available training images for each person. In this paper, we present a novel face recognition framework by utilizing low-rank and sparse error matrix decomposition, and sparse coding techniques (LRSE+SC). Firstly, the low-rank matrix recovery technique is applied to decompose the face images per class into a low-rank matrix and a sparse error matrix. The low-rank matrix of each individual is a class-specific dictionary and it captures the discriminative feature of this individual. The sparse error matrix represents the intra-class variations, such as illumination, expression changes. Secondly, we combine the low-rank part (representative basis) of each person into a supervised dictionary and integrate all the sparse error matrix of each individual into a within-individual variant dictionary which can be applied to represent the possible variations between the testing and training images. Then these two dictionaries are used to code the query image. The within-individual variant dictionary can be shared by all the subjects and only contribute to explain the lighting conditions, expressions, and occlusions of the query image rather than discrimination. At last, a reconstruction-based scheme is adopted for face recognition. Since the within-individual dictionary is introduced, LRSE+SC can handle the problem of the corrupted training data and the situation that not all subjects have enough samples for training. Experimental results show that our method achieves the state-of-the-art results on AR, FERET, FRGC and LFW databases.  相似文献   

2.
Identifying subspace gene clusters from the gene expression data is useful for discovering novel functional gene interactions. In this paper, we propose to use low-rank representation (LRR) to identify the subspace gene clusters from microarray data. LRR seeks the lowest-rank representation among all the candidates that can represent the genes as linear combinations of the bases in the dataset. The clusters can be extracted based on the block diagonal representation matrix obtained using LRR, and they can well capture the intrinsic patterns of genes with similar functions. Meanwhile, the parameter of LRR can balance the effect of noise so that the method is capable of extracting useful information from the data with high level of background noise. Compared with traditional methods, our approach can identify genes with similar functions yet without similar expression profiles. Also, it could assign one gene into different clusters. Moreover, our method is robust to the noise and can identify more biologically relevant gene clusters. When applied to three public datasets, the results show that the LRR based method is superior to existing methods for identifying subspace gene clusters.  相似文献   

3.
This paper studies the problem of the restoration of images corrupted by mixed Gaussian-impulse noise. In recent years, low-rank matrix reconstruction has become a research hotspot in many scientific and engineering domains such as machine learning, image processing, computer vision and bioinformatics, which mainly involves the problem of matrix completion and robust principal component analysis, namely recovering a low-rank matrix from an incomplete but accurate sampling subset of its entries and from an observed data matrix with an unknown fraction of its entries being arbitrarily corrupted, respectively. Inspired by these ideas, we consider the problem of recovering a low-rank matrix from an incomplete sampling subset of its entries with an unknown fraction of the samplings contaminated by arbitrary errors, which is defined as the problem of matrix completion from corrupted samplings and modeled as a convex optimization problem that minimizes a combination of the nuclear norm and the -norm in this paper. Meanwhile, we put forward a novel and effective algorithm called augmented Lagrange multipliers to exactly solve the problem. For mixed Gaussian-impulse noise removal, we regard it as the problem of matrix completion from corrupted samplings, and restore the noisy image following an impulse-detecting procedure. Compared with some existing methods for mixed noise removal, the recovery quality performance of our method is dominant if images possess low-rank features such as geometrically regular textures and similar structured contents; especially when the density of impulse noise is relatively high and the variance of Gaussian noise is small, our method can outperform the traditional methods significantly not only in the simultaneous removal of Gaussian noise and impulse noise, and the restoration ability for a low-rank image matrix, but also in the preservation of textures and details in the image.  相似文献   

4.
Recently, Sparse Representation-based Classification (SRC) has attracted a lot of attention for its applications to various tasks, especially in biometric techniques such as face recognition. However, factors such as lighting, expression, pose and disguise variations in face images will decrease the performances of SRC and most other face recognition techniques. In order to overcome these limitations, we propose a robust face recognition method named Locality Constrained Joint Dynamic Sparse Representation-based Classification (LCJDSRC) in this paper. In our method, a face image is first partitioned into several smaller sub-images. Then, these sub-images are sparsely represented using the proposed locality constrained joint dynamic sparse representation algorithm. Finally, the representation results for all sub-images are aggregated to obtain the final recognition result. Compared with other algorithms which process each sub-image of a face image independently, the proposed algorithm regards the local matching-based face recognition as a multi-task learning problem. Thus, the latent relationships among the sub-images from the same face image are taken into account. Meanwhile, the locality information of the data is also considered in our algorithm. We evaluate our algorithm by comparing it with other state-of-the-art approaches. Extensive experiments on four benchmark face databases (ORL, Extended YaleB, AR and LFW) demonstrate the effectiveness of LCJDSRC.  相似文献   

5.
L Theis  R Hosseini  M Bethge 《PloS one》2012,7(7):e39857
We present a probabilistic model for natural images that is based on mixtures of Gaussian scale mixtures and a simple multiscale representation. We show that it is able to generate images with interesting higher-order correlations when trained on natural images or samples from an occlusion-based model. More importantly, our multiscale model allows for a principled evaluation. While it is easy to generate visually appealing images, we demonstrate that our model also yields the best performance reported to date when evaluated with respect to the cross-entropy rate, a measure tightly linked to the average log-likelihood. The ability to quantitatively evaluate our model differentiates it from other multiscale models, for which evaluation of these kinds of measures is usually intractable.  相似文献   

6.

Background

Images embedded in biomedical publications carry rich information that often concisely summarize key hypotheses adopted, methods employed, or results obtained in a published study. Therefore, they offer valuable clues for understanding main content in a biomedical publication. Prior studies have pointed out the potential of mining images embedded in biomedical publications for automatically understanding and retrieving such images' associated source documents. Within the broad area of biomedical image processing, categorizing biomedical images is a fundamental step for building many advanced image analysis, retrieval, and mining applications. Similar to any automatic categorization effort, discriminative image features can provide the most crucial aid in the process.

Method

We observe that many images embedded in biomedical publications carry versatile annotation text. Based on the locations of and the spatial relationships between these text elements in an image, we thus propose some novel image features for image categorization purpose, which quantitatively characterize the spatial positions and distributions of text elements inside a biomedical image. We further adopt a sparse coding representation (SCR) based technique to categorize images embedded in biomedical publications by leveraging our newly proposed image features.

Results

we randomly selected 990 images of the JPG format for use in our experiments where 310 images were used as training samples and the rest were used as the testing cases. We first segmented 310 sample images following the our proposed procedure. This step produced a total of 1035 sub-images. We then manually labeled all these sub-images according to the two-level hierarchical image taxonomy proposed by [1]. Among our annotation results, 316 are microscopy images, 126 are gel electrophoresis images, 135 are line charts, 156 are bar charts, 52 are spot charts, 25 are tables, 70 are flow charts, and the remaining 155 images are of the type "others". A serial of experimental results are obtained. Firstly, each image categorizing results is presented, and next image categorizing performance indexes such as precision, recall, F-score, are all listed. Different features which include conventional image features and our proposed novel features indicate different categorizing performance, and the results are demonstrated. Thirdly, we conduct an accuracy comparison between support vector machine classification method and our proposed sparse representation classification method. At last, our proposed approach is compared with three peer classification method and experimental results verify our impressively improved performance.

Conclusions

Compared with conventional image features that do not exploit characteristics regarding text positions and distributions inside images embedded in biomedical publications, our proposed image features coupled with the SR based representation model exhibit superior performance for classifying biomedical images as demonstrated in our comparative benchmark study.
  相似文献   

7.
8.
In this paper, we focus on animal object detection and species classification in camera-trap images collected in highly cluttered natural scenes. Using a deep neural network (DNN) model training for animal- background image classification, we analyze the input camera-trap images to generate a multi-level visual representation of the input image. We detect semantic regions of interest for animals from this representation using k-mean clustering and graph cut in the DNN feature domain. These animal regions are then classified into animal species using multi-class deep neural network model. According the experimental results, our method achieves 99.75% accuracy for classifying animals and background and 90.89% accuracy for classifying 26 animal species on the Snapshot Serengeti dataset, outperforming existing image classification methods.  相似文献   

9.
Novel mathematical method called spectral measure method (SMM) is developed for characterization of bone structure and indirect estimation of bone properties. The spectral measure method is based on an inverse homogenization technique which allows to derive information about the structure of composite material from measured effective electric or viscoelastic properties. The mechanical properties and ability to withstand fracture depend on the structural organization of bone as a hierarchical composite. Information about the bone structural parameters is contained in the spectral measure in the Stieltjes integral representation of the effective properties. The method is based on constructing the spectral measure either by calculating it directly from micro-CT images or using measurements of electric or viscoelastic properties over a frequency range. In the present paper, we generalize the Stieltjes representation to the viscoelastic case and show how bone microstructure, in particular, bone volume or porosity, can be characterized by the spectral function calculated using measurements of complex permittivity or viscoelastic modulus. For validation purposes, we numerically simulated measured data using micro-CT images of cancellous bone. Recovered values of bone porosity are in excellent agreement with true porosity estimated from the micro-CT images. We also discuss another application of this method, which allows to estimate properties difficult to measure directly. The spectral measure method based on the derived Stieltjes representation for viscoelastic composites, has a potential for non-invasive characterization of bone structure using electric or mechanical measurements. The method is applicable to sea ice, porous rock, and other composite materials.  相似文献   

10.
Mueller matrix microscopy is an advanced imaging technique providing a full characterization of the optical polarization fingerprint of a sample. The Lu-Chipman (LC) decomposition, a method based on the modeling of elementary polarimetric arrangements and matrix inversions, is the gold standard to extract each polarimetric component separately. However, this models the optical system as a small number of discrete optical elements and requires a priori knowledge of the order in which these elements occur. In stratified media or when the ordering is not known, the interpretation of the LC decomposition becomes difficult. In this work, we propose a new, to our knowledge, representation dedicated to the study of biological tissues that combines Mueller matrix microscopy with a phasor approach. We demonstrate that this method provides an easier and direct interpretation of the retardance images in any birefringent material without the use of mathematical assumptions regarding the structure of the sample and yields comparable contrast to the LC decomposition. By validating this approach through numerical simulations, we demonstrate that it is able to give access to localized structural information, resulting in a simple determination of the birefringent parameters at the microscopic level. We apply our novel, to our knowledge, method to typical biological tissues that are of interest in the field of biomedical diagnosis.  相似文献   

11.
Influenza viruses have been responsible for large losses of lives around the world and continue to present a great public health challenge. Antigenic characterization based on hemagglutination inhibition (HI) assay is one of the routine procedures for influenza vaccine strain selection. However, HI assay is only a crude experiment reflecting the antigenic correlations among testing antigens (viruses) and reference antisera (antibodies). Moreover, antigenic characterization is usually based on more than one HI dataset. The combination of multiple datasets results in an incomplete HI matrix with many unobserved entries. This paper proposes a new computational framework for constructing an influenza antigenic cartography from this incomplete matrix, which we refer to as Matrix Completion-Multidimensional Scaling (MC-MDS). In this approach, we first reconstruct the HI matrices with viruses and antibodies using low-rank matrix completion, and then generate the two-dimensional antigenic cartography using multidimensional scaling. Moreover, for influenza HI tables with herd immunity effect (such as those from Human influenza viruses), we propose a temporal model to reduce the inherent temporal bias of HI tables caused by herd immunity. By applying our method in HI datasets containing H3N2 influenza A viruses isolated from 1968 to 2003, we identified eleven clusters of antigenic variants, representing all major antigenic drift events in these 36 years. Our results showed that both the completed HI matrix and the antigenic cartography obtained via MC-MDS are useful in identifying influenza antigenic variants and thus can be used to facilitate influenza vaccine strain selection. The webserver is available at http://sysbio.cvm.msstate.edu/AntigenMap.  相似文献   

12.
A new summarization method for Affymetrix probe level data   总被引:3,自引:0,他引:3  
MOTIVATION: We propose a new model-based technique for summarizing high-density oligonucleotide array data at probe level for Affymetrix GeneChips. The new summarization method is based on a factor analysis model for which a Bayesian maximum a posteriori method optimizes the model parameters under the assumption of Gaussian measurement noise. Thereafter, the RNA concentration is estimated from the model. In contrast to previous methods our new method called 'Factor Analysis for Robust Microarray Summarization (FARMS)' supplies both P-values indicating interesting information and signal intensity values. RESULTS: We compare FARMS on Affymetrix's spike-in and Gene Logic's dilution data to established algorithms like Affymetrix Microarray Suite (MAS) 5.0, Model Based Expression Index (MBEI), Robust Multi-array Average (RMA). Further, we compared FARMS with 43 other methods via the 'Affycomp II' competition. The experimental results show that FARMS with default parameters outperforms previous methods if both sensitivity and specificity are simultaneously considered by the area under the receiver operating curve (AUC). We measured two quantities through the AUC: correctly detected expression changes versus wrongly detected (fold change) and correctly detected significantly different expressed genes in two sets of arrays versus wrongly detected (P-value). Furthermore FARMS is computationally less expensive then RMA, MAS and MBEI. AVAILABILITY: The FARMS R package is available from http://www.bioinf.jku.at/software/farms/farms.html. SUPPLEMENTARY INFORMATION: http://www.bioinf.jku.at/publications/papers/farms/supplementary.ps  相似文献   

13.
Robust and reliable covariance estimates play a decisive role in financial and many other applications. An important class of estimators is based on factor models. Here, we show by extensive Monte Carlo simulations that covariance matrices derived from the statistical Factor Analysis model exhibit a systematic error, which is similar to the well-known systematic error of the spectrum of the sample covariance matrix. Moreover, we introduce the Directional Variance Adjustment (DVA) algorithm, which diminishes the systematic error. In a thorough empirical study for the US, European, and Hong Kong stock market we show that our proposed method leads to improved portfolio allocation.  相似文献   

14.
Clustering high-dimensional data, such as images or biological measurements, is a long-standing problem and has been studied extensively. Recently, Deep Clustering has gained popularity due to its flexibility in fitting the specific peculiarities of complex data. Here we introduce the Mixture-of-Experts Similarity Variational Autoencoder (MoE-Sim-VAE), a novel generative clustering model. The model can learn multi-modal distributions of high-dimensional data and use these to generate realistic data with high efficacy and efficiency. MoE-Sim-VAE is based on a Variational Autoencoder (VAE), where the decoder consists of a Mixture-of-Experts (MoE) architecture. This specific architecture allows for various modes of the data to be automatically learned by means of the experts. Additionally, we encourage the lower dimensional latent representation of our model to follow a Gaussian mixture distribution and to accurately represent the similarities between the data points. We assess the performance of our model on the MNIST benchmark data set and challenging real-world tasks of clustering mouse organs from single-cell RNA-sequencing measurements and defining cell subpopulations from mass cytometry (CyTOF) measurements on hundreds of different datasets. MoE-Sim-VAE exhibits superior clustering performance on all these tasks in comparison to the baselines as well as competitor methods.  相似文献   

15.
The sparse representation-based classification (SRC) has been proven to be a robust face recognition method. However, its computational complexity is very high due to solving a complex -minimization problem. To improve the calculation efficiency, we propose a novel face recognition method, called sparse representation-based classification on k-nearest subspace (SRC-KNS). Our method first exploits the distance between the test image and the subspace of each individual class to determine the nearest subspaces and then performs SRC on the selected classes. Actually, SRC-KNS is able to reduce the scale of the sparse representation problem greatly and the computation to determine the nearest subspaces is quite simple. Therefore, SRC-KNS has a much lower computational complexity than the original SRC. In order to well recognize the occluded face images, we propose the modular SRC-KNS. For this modular method, face images are partitioned into a number of blocks first and then we propose an indicator to remove the contaminated blocks and choose the nearest subspaces. Finally, SRC is used to classify the occluded test sample in the new feature space. Compared to the approach used in the original SRC work, our modular SRC-KNS can greatly reduce the computational load. A number of face recognition experiments show that our methods have five times speed-up at least compared to the original SRC, while achieving comparable or even better recognition rates.  相似文献   

16.
Most computational models for gender classification use global information (the full face image) giving equal weight to the whole face area irrespective of the importance of the internal features. Here, we use a global and feature based representation of face images that includes both global and featural information. We use dimensionality reduction techniques and a support vector machine classifier and show that this method performs better than either global or feature based representations alone. We also present results of human subjects performance on gender classification task and evaluate how the different dimensionality reduction techniques compare with human subjects performance. The results support the psychological plausibility of the global and feature based representation.  相似文献   

17.
Fourier‐transform infrared (FTIR) microspectroscopy is rounding the corner to become a label‐free routine method for cancer diagnosis. In order to build infrared‐spectral based classifiers, infrared images need to be registered with Hematoxylin and Eosin (H&E) stained histological images. While FTIR images have a deep spectral domain with thousands of channels carrying chemical and scatter information, the H&E images have only three color channels for each pixel and carry mainly morphological information. Therefore, image representations of infrared images are needed that match the morphological information in H&E images. In this paper, we propose a novel approach for representation of FTIR images based on extended multiplicative signal correction highlighting morphological features that showed to correlate well with morphological information in H&E images. Based on the obtained representations, we developed a strategy for global‐to‐local image registration for FTIR images and H&E stained histological images of parallel tissue sections.  相似文献   

18.
In order to improve the performance of voltage source converter-high voltage direct current (VSC-HVDC) system, we propose an improved auto-disturbance rejection control (ADRC) method based on least squares support vector machines (LSSVM) in the rectifier side. Firstly, we deduce the high frequency transient mathematical model of VSC-HVDC system. Then we investigate the ADRC and LSSVM principles. We ignore the tracking differentiator in the ADRC controller aiming to improve the system dynamic response speed. On this basis, we derive the mathematical model of ADRC controller optimized by LSSVM for direct current voltage loop. Finally we carry out simulations to verify the feasibility and effectiveness of our proposed control method. In addition, we employ the time-frequency representation methods, i.e., Wigner-Ville distribution (WVD) and adaptive optimal kernel (AOK) time-frequency representation, to demonstrate our proposed method performs better than the traditional method from the perspective of energy distribution in time and frequency plane.  相似文献   

19.
20.
Khrennikov A 《Bio Systems》2011,105(3):250-262
We propose a model of quantum-like (QL) processing of mental information. This model is based on quantum information theory. However, in contrast to models of "quantum physical brain" reducing mental activity (at least at the highest level) to quantum physical phenomena in the brain, our model matches well with the basic neuronal paradigm of the cognitive science. QL information processing is based (surprisingly) on classical electromagnetic signals induced by joint activity of neurons. This novel approach to quantum information is based on representation of quantum mechanics as a version of classical signal theory which was recently elaborated by the author. The brain uses the QL representation (QLR) for working with abstract concepts; concrete images are described by classical information theory. Two processes, classical and QL, are performed parallely. Moreover, information is actively transmitted from one representation to another. A QL concept given in our model by a density operator can generate a variety of concrete images given by temporal realizations of the corresponding (Gaussian) random signal. This signal has the covariance operator coinciding with the density operator encoding the abstract concept under consideration. The presence of various temporal scales in the brain plays the crucial role in creation of QLR in the brain. Moreover, in our model electromagnetic noise produced by neurons is a source of superstrong QL correlations between processes in different spatial domains in the brain; the binding problem is solved on the QL level, but with the aid of the classical background fluctuations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号