首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Epigenetics》2013,8(2):173-182
The first cell differentiation in the mammalian development separates the trophoblast and embryonic cell lineages, resulting in the formation of the trophectoderm (TE) and inner cell mass (ICM) in blastocysts. Although a lower level of global DNA methylation in the genome of the TE compared with ICM has been suggested, the dynamics of the DNA methylation profile during TE/ICM differentiation has not been elucidated. To address this issue, first we identified tissue-dependent and differentially methylated regions (T-DMRs) between trophoblast stem (TS) and embryonic stem (ES) cells. Most of these TS–ES T-DMRs were also methylated differentially between trophoblast and embryonic tissues of embryonic day (E) 6.5 mouse embryos. Furthermore, we found that the human genomic regions homologous to mouse TS–ES T-DMRs were methylated differentially between human placental tissues and ES cells. Collectively, we defined them as cell-lineage-based T-DMRs between trophoblast and embryonic cell lineages (T–E T-DMRs). Then, we examined TE and ICM cells isolated from mouse E3.5 blastocysts. Interestingly, all T-DMRs examined, including the Elf5, Pou5f1 and Nanog loci, were in the nearly unmethylated status in both TE and ICM and exhibited no differences. The present results suggest that the establishment of DNA methylation profiles specific to each cell lineage follows the first morphological specification. Together with previous reports on asymmetry of histone modifications between TE and ICM, the results of the current study imply that histone modifications function as landmarks for setting up cell-lineage-specific differential DNA methylation profiles.  相似文献   

2.
Previous studies have suggested that fibroblast growth factor-4 (FGF-4) may be a paracrine signal used by inner cell mass (ICM) cells to maintain adjacent trophectoderm (TE) cells in an undifferentiated state. In the present work, immunocytochemical analysis of mouse blastocysts confirmed that FGF-4 was predominantly detected in the ICM before and after spreading over a fibronectin-coated culture substrate. Addition of human recombinant FGF-4 did not influence morphological progression, cell allocation and proliferation in ICM and TE lineages or mitosis and karyorhexis frequencies during blastocyst expansion. Addition of FGF-4 to outgrowing blastocysts, in contrast, induced a significant decrease in the surface of the trophoblast outgrowths formed by the TE cells and in the proportion of giant trophoblasts per outgrowth. The fact that blastocysts display excessive trophoblast expansion and spreading over their culture substrate upon pre-exposure to high concentrations of glucose in vitro was used to further assess the regulatory effect of FGF-4. Addition of FGF-4 was indeed found to fully neutralize the disruptive impact of high glucose on trophoblast outgrowths. Altogether, our data indicate that ICM-derived FGF-4 participates actively in the regulation of trophoblast development.  相似文献   

3.
4.
5.
6.
7.
8.

Background  

Three types of cell lines have been established from mouse blastocysts: embryonic stem (ES) cells, trophoblast stem (TS) cells, and extra-embryonic endoderm (XEN) cells, which have the potential to differentiate into their respective cognate lineages. ES cells can differentiate in vitro not only into somatic cell lineages but into extra-embryonic lineages, including trophectoderm and extra-embryonic endoderm (ExEn) as well. TS cells can be established from ES cells by the artificial repression of Oct3/4 or the upregulation of Cdx2 in the presence of FGF4 on feeder cells. The relationship between these embryo-derived XEN cells and ES cell-derived ExEn cell lines remains unclear, although we have previously reported that overexpression of Gata4 or Gata6 induces differentiation of mouse ES cells into extra-embryonic endoderm in vitro.  相似文献   

9.
Differentiated trophoblast cell lineages arise from trophoblast stem (TS) cells. To date such a stem cell population has only been established in the mouse. The objective of this investigation was to establish TS cell populations from rat blastocysts. Blastocysts were cultured individually on a feeder layer of rat embryonic fibroblasts (REFs) in fibroblast growth factor-4 (FGF4) and heparin supplemented culture medium. Once cell colonies were established REF feeder layers could be replaced with REF conditioned medium. The blastocyst-derived cell lines, in either proliferative or differentiated states, did not express genes indicative of ICM-derived tissues. In the proliferative state the cells expressed established stem cell-associated markers of TS cells. Cells ceased proliferation and differentiated when FGF4, heparin, and REF conditioned medium were removed. Differentiation was characterized by a decline of stem cell-associated marker gene expression, the appearance of large polyploid cells (trophoblast giant cells), and the expression of trophoblast differentiation-associated genes. Collectively, the data indicate that the rat blastocyst-derived cell lines not only possess many features characteristic of mouse TS cells but also possess some distinct properties. These rat TS cell lines represent valuable new in vitro models for analyses of mechanisms controlling TS cell renewal and differentiation.  相似文献   

10.
Despite recent advances in the derivation of rat embryonic stem cells, clear comprehension of the timing and mechanisms underlying rat early embryo lineage selection is lacking. We have previously shown the in vivo contribution of rat embryonic stem-like cells exclusively to developing extraembryonic tissues. To elucidate possible mechanisms governing the in vitro and in vivo behaviors of these rat blastocyst-derived stem cells, we evaluated their developmental capacity by using several approaches. Molecular marker analysis demonstrated the expression profile of genes characterizing not only pluripotency but also extraembryonic endoderm and trophoblast. In vitro differentiation through embryoid body formation showed in vitro pluripotent capacity through differentiation into derivatives of all three embryonic germ layers. Following either blastocyst injection, diploid or tetraploid aggregation, and embryo transfer, these rat blastocyst-derived stem cells also demonstrated in vivo multipotency through contribution to multiple developmentally distinct extraembryonic lineages. Features of phenotypic heterogeneity were revealed following examination of cell line morphology and culture behavior, as well as quantitative analysis of marker expression in discrete undifferentiated and differentiated populations of cells by flow cytometry. We demonstrate for the first time that stem cells derived from the rat blastocyst have the ability to contribute to the embryonic and extraembryonic lineages. Together, these results provide a valuable new model for rat stem cell biology and for the elucidation of early lineage selection in the embryo.  相似文献   

11.
12.
13.
14.

Background

Abnormal trophoblast differentiation and function is the basis of many placenta-based pregnancy disorders, including pre-eclampsia and fetal growth restriction. PPARγ, a ligand-activated nuclear receptor, plays essential roles in placental development; null murine embryos die at midgestation due to abnormalities in all placental layers, in particular, small labyrinth and expanded giant cell layer. Previous studies have focused mostly on the role of PPARγ in trophoblast invasion. Based on the previously reported role of PPARγ in preadipocyte differentiation, we hypothesized that PPARγ also plays a pivotal role in trophoblast differentiation. To test this hypothesis, we report derivation of wild-type and PPARγ-null trophoblast stem (TS) cells.

Methodology/Principal Findings

PPARγ-null TS cells showed defects in both proliferation and differentiation, specifically into labyrinthine trophoblast. Detailed marker analysis and functional studies revealed reduced differentiation of all three labyrinthine lineages, and enhanced giant cell differentiation, particularly the invasive subtypes. In addition, rosiglitazone, a specific PPARγ agonist, reduced giant cell differentiation, while inducing Gcm1, a key regulator in labyrinth. Finally, reintroducing PPARγ into null TS cells, using an adenovirus, normalized invasion and partially reversed defective labyrinthine differentiation, as assessed both by morphology and marker analysis.

Conclusions/Significance

In addition to regulating trophoblast invasion, PPARγ plays a predominant role in differentiation of labyrinthine trophoblast lineages, which, along with fetal endothelium, form the vascular exchange interface with maternal blood. Elucidating cellular and molecular mechanisms mediating PPARγ action will help determine if modulating PPARγ activity, for which clinical pharmacologic agonists already exist, might modify the course of pregnancy disorders associated with placental dysfunction.  相似文献   

15.
The origin of the extraembryonic ectoderm of the chorion in the mouse embryo has long been the source of some controversy. Various manipulative studies suggested that it arose from the trophectoderm and not the inner cell mass (ICM) of the blastocyst. However, recent studies on the development of isolated ICMs in vitro have reported the formation of tissues morphologically resembling extraembryonic ectoderm. One explanation not excluded by previous studies is that the chorionic ectoderm is of dual origin, from both ICM and trophectoderm. The present study provides a more detailed analysis than previously possible of the in vivo fate of ICMs in chimeras, using a sensitive assay for glucose phosphate isomerase (GPI) isozymes which permits study of the chorionic ectoderm alone. In a large series of blastocyst injection chimeras, no donor ICM contribution to the mature chorionic ectoderm could be detected, donor activity appearing only in the embryonic fraction. Thus, the in vitro results cannot be readily explained by dual origin of the chorionic ectoderm and remain in conflict with existing in vivo data. Analysis of most ICM/morula chimeras revealed the same pattern, but a few showed ICM contributions to the trophoblast fractions, suggesting that some ICM cells retain the potential to form trophectoderm derivatives in vivo.  相似文献   

16.
Recent in vitro experiments on immunosurgically isolated mouse inner cell masses (ICMs) have suggested that some ICM cells may retain the potential to form trophectoderm after initial blastocyst formation. These experiments relied almost solely on in vitro morphology for identification of trophectoderm derivatives and provided no proof that the putative trophectoderm cells were capable of functioning in utero. We present clear in vivo evidence that at least some cells in ICMs isolated from early blastocysts do retain the potential to form postimplantation trophectoderm derivatives. Early ICMs occasionally contributed to trophoblast fractions in ICM/morula aggregation chimeras. More strikingly, when aggregated with each other, these ICMs were capable of implanting in the uterus, a property of trophectoderm cells alone. Indeed, some aggregates reconstituted complete egg cylinders. However, ICMs isolated from later blastocysts rarely produced in vivo trophoblast, and it appears that the ability to form trophectoderm is lost around the 16–19 cell ICM stage. These results are discussed in relation to changing patterns of gene activity in early development.  相似文献   

17.
During mouse preimplantation development, the generation of the inner cell mass (ICM) and trophoblast lineages comprises upregulation of Nanog expression in the ICM and its silencing in the trophoblast. However, the underlying epigenetic mechanisms that differentially regulate Nanog in the first cell lineages are poorly understood. Here, we report that BRG1 (Brahma-related gene 1) cooperates with histone deacetylase 1 (HDAC1) to regulate Nanog expression. BRG1 depletion in preimplantation embryos and Cdx2-inducible embryonic stem cells (ESCs) revealed that BRG1 is necessary for Nanog silencing in the trophoblast lineage. Conversely, in undifferentiated ESCs, loss of BRG1 augmented Nanog expression. Analysis of histone H3 within the Nanog proximal enhancer revealed that H3 lysine 9/14 (H3K9/14) acetylation increased in BRG1-depleted embryos and ESCs. Biochemical studies demonstrated that HDAC1 was present in BRG1-BAF155 complexes and BRG1-HDAC1 interactions were enriched in the trophoblast lineage. HDAC1 inhibition triggered an increase in H3K9/14 acetylation and a corresponding rise in Nanog mRNA and protein, phenocopying BRG1 knockdown embryos and ESCs. Lastly, nucleosome-mapping experiments revealed that BRG1 is indispensable for nucleosome remodeling at the Nanog enhancer during trophoblast development. In summary, our data suggest that BRG1 governs Nanog expression via a dual mechanism involving histone deacetylation and nucleosome remodeling.  相似文献   

18.
Gap junctional communication in the post-implantation mouse embryo.   总被引:18,自引:0,他引:18  
C W Lo  N B Gilula 《Cell》1979,18(2):411-422
We studied the extent of cell-to-cell communication via junctional channels in in vitro-implanted mouse blastocysts by monitoring ionic coupling and the spread of two injected low molecular weight dyes, fluorescein and Lucifer yellow. In the early attached embryos, both trophoblasts and cells of the inner cell mass (ICM) were ionically coupled to one another. Dye injections in either trophoblasts or ICM cells resulted in spread to the entire embryo. As older and more developed embryos were examined, the spread of injected dye was progressively more limited. In the most developed embryos examined, dye injected into a cell in the ICM region resulted in spread throughout the ICM but not into the surrounding trophoblast cells, while dye injected into a trophoblast cell did not spread to any other cell in the embryo. Simultaneous monitoring of ionic coupling and dye injections in embryos of intermediate stages in this transition revealed that the trophoblast and ICM cells were ionically coupled, even across the apparent boundary where no dye was observed to pass. In the latest stage embryos examined in which no injected dye was observed to move out of the ICM, ionic coupling was still observed between the cells of the ICM and the trophoblasts. Furthermore, in the more developed embryos, dye injected into the ICM region frequently was not transferred to all the cells of the ICM, thus suggesting a further compartmentalization of due spread within the ICM. Our observations that ionic coupling is more extensive than the detectable spread of injected dyes may perhaps reflect a reduced number of junctional channels. With fewer channels less dye would pass between cells, so that, together with continuous quenching, the transfer of injected dye would not be detectable. This partial segregation of cell-to-cell communication as indicated by the limited dye spread may parallel specific differentiation processes, in particular that of giant trophoblast, embryonic ectoderm and extraembryonic endoderm differentiation.  相似文献   

19.
Tan T  Tang X  Zhang J  Niu Y  Chen H  Li B  Wei Q  Ji W 《PloS one》2011,6(2):e17124
Trophoblast stem (TS) cells are ideal models to investigate trophectoderm differentiation and placental development. Herein, we describe the derivation of rabbit trophoblast stem cells from embryonic stem (ES) cells. Rabbit ES cells generated in our laboratory were induced to differentiate in the presence of BMP4 and TS-like cell colonies were isolated and expanded. These cells expressed the molecular markers of mouse TS cells, were able to invade, give rise to derivatives of TS cells, and chimerize placental tissues when injected into blastocysts. The rabbit TS-like cells maintained self-renewal in culture medium with serum but without growth factors or feeder cells, whilst their proliferation and identity were compromised by inhibitors of FGFs and TGF-β receptors. Taken together, our study demonstrated the derivation of rabbit TS cells and suggested the essential roles of FGF and TGF-β signalings in maintenance of rabbit TS cell self-renewal.  相似文献   

20.
FGF receptor (FGFR) function is essential during peri-implantation mouse development. To understand which receptors are functioning, we tested for the expression of all four FGF receptors in peri-implantation blastocysts. By RT-PCR, FGFR-3 and FGFR-4 were detected at high levels, FGFR-2 at lower levels, and FGFR-1 was detected at background levels compared to control tissues. Because FGFR-3 and FGFR-4 were detected at the highest levels, we studied these in detail. Between 3.5 days after fertilization (E3.5) and E6.0, FGFR-4 mRNA was detected ubiquitously in the peri-implantation embryo, restricted to the inner cell mass (ICM) and its derivatives and primitive endoderm by E6.0, and was not detected at E6.5. FGFR-3 mRNA was detected ubiquitously in the peri-implantation embryo with a tendency towards extraembryonic cells. We tested blastocyst outgrowths, a model for implantation, for FGFR-3 and FGFR-4 protein. FGFR-3 protein was detected in all cells early during the outgrowth. Later, FGFR-3 was detected in the extraembryonic endoderm and trophoblast giant cells (TGC), but not in the ICM. FGFR-4 protein was detected in all cells of the implanting embryo, but was restricted to the ICM/primitive endoderm in later stage outgrowths. The distribution of the receptor proteins in the blastocyst outgrowths is similar to the distribution of the mRNA detected by in situ hybridization of sections of embryos. The data suggest roles for FGFR-3 and FGFR-4 in peri-implantation development. Mol. Reprod. Dev. 51:254–264, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号