首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rapid changes in mtDNA variants between generations have led to the bottleneck theory, which proposes a dramatic reduction in mtDNA numbers during early oogenesis. We studied oocytes from a woman with heteroplasmic expression of the mtDNA nt 8993 (T-->G) mutation. Of seven oocytes analyzed, one showed no evidence of the mutation, and the remaining six had a mutant load > 95%. This skewed expression of the mutation in oocytes is not compatible with the conventional bottleneck theory. A possible explanation is that, during amplification of mtDNA in the developing oocyte, mtDNA from one mitochondrion is preferentially amplified. Thus, subsequent mature oocytes may contain predominantly wild-type or mutant mitochondrial genomes.  相似文献   

2.
The unorthodox genetics of the mtDNA is providing new perspectives on the etiology of the common “complex” diseases. The maternally inherited mtDNA codes for essential energy genes, is present in thousands of copies per cell, and has a very high mutation rate. New mtDNA mutations arise among thousands of other mtDNAs. The mechanisms by which these “heteroplasmic” mtDNA mutations come to predominate in the female germline and somatic tissues is poorly understood, but essential for understanding the clinical variability of a range of diseases. Maternal inheritance and heteroplasmy also pose major challengers for the diagnosis and prevention of mtDNA disease.  相似文献   

3.
Mutations in mitochondrial DNA (mtDNA) may cause maternally-inherited cardiomyopathy and heart failure. In homoplasmy all mtDNA copies contain the mutation. In heteroplasmy there is a mixture of normal and mutant copies of mtDNA. The clinical phenotype of an affected individual depends on the type of genetic defect and the ratios of mutant and normal mtDNA in affected tissues. We aimed at determining the sensitivity of next-generation sequencing compared to Sanger sequencing for mutation detection in patients with mitochondrial cardiomyopathy. We studied 18 patients with mitochondrial cardiomyopathy and two with suspected mitochondrial disease. We “shotgun” sequenced PCR-amplified mtDNA and multiplexed using a single run on Roche''s 454 Genome Sequencer. By mapping to the reference sequence, we obtained 1,300× average coverage per case and identified high-confidence variants. By comparing these to >400 mtDNA substitution variants detected by Sanger, we found 98% concordance in variant detection. Simulation studies showed that >95% of the homoplasmic variants were detected at a minimum sequence coverage of 20× while heteroplasmic variants required >200× coverage. Several Sanger “misses” were detected by 454 sequencing. These included the novel heteroplasmic 7501T>C in tRNA serine 1 in a patient with sudden cardiac death. These results support a potential role of next-generation sequencing in the discovery of novel mtDNA variants with heteroplasmy below the level reliably detected with Sanger sequencing. We hope that this will assist in the identification of mtDNA mutations and key genetic determinants for cardiomyopathy and mitochondrial disease.  相似文献   

4.
Mammalian development involves significant interactions between offspring and mother. But is this interaction a carefully coordinated effort by two individuals with a common goal—offspring survival? Or is it an evolutionary battleground (a central idea in our understanding of reproduction). The conflict between parents and offspring extends to an offspring''s genes, where paternally inherited genes favor demanding more from the mother, while maternally inherited genes favor restraint. This “intragenomic conflict” (among genes within a genome) is the dominant evolutionary explanation for “genomic imprinting.” But a new study in PLOS Biology provides support for a different perspective: that imprinting might facilitate coordination between mother and offspring. According to this “coadaptation theory,” paternally inherited genes might be inactivated because maternally inherited genes are adapted to function harmoniously with the mother. As discussed in this article, the growth effects associated with the imprinted gene Grb10 are consistent with this idea, but it remains to be seen just how general the pattern is.  相似文献   

5.

Background

Diabetes induces many complications including reduced fertility and low oocyte quality, but whether it causes increased mtDNA mutations is unknown.

Methods

We generated a T2D mouse model by using high-fat-diet (HFD) and Streptozotocin (STZ) injection. We examined mtDNA mutations in oocytes of diabetic mice by high-throughput sequencing techniques.

Results

T2D mice showed glucose intolerance, insulin resistance, low fecundity compared to the control group. T2D oocytes showed increased mtDNA mutation sites and mutation numbers compared to the control counterparts. mtDNA mutation examination in F1 mice showed that the mitochondrial bottleneck could eliminate mtDNA mutations.

Conclusions

T2D mice have increased mtDNA mutation sites and mtDNA mutation numbers in oocytes compared to the counterparts, while these adverse effects can be eliminated by the bottleneck effect in their offspring. This is the first study using a small number of oocytes to examine mtDNA mutations in diabetic mothers and offspring.
  相似文献   

6.
Heteroplasmic point mutations in the human mtDNA control region.   总被引:24,自引:6,他引:18       下载免费PDF全文
As part of an investigation of the fixation mechanisms of mtDNA mutations in humans, we sequenced the first hypervariable segment of the control region in 180 twin pairs and found evidence of site heteroplasmy in 4 pairs. Significant levels of two mitochondrial haplotypes differing by a single point mutation were found in two MZ pairs, and within each pair, both members had similar levels of heteroplasmy. Two DZ pairs were found in which the predominant mitochondrial haplotype differed within the pair. We measured proportions of mitochondrial haplotypes within two twin pairs and their maternal relatives, using primer extension. In both maternal lineages, most family members were heteroplasmic, and the proportions of each genotype varied widely in different individuals. We used the changes in haplotype proportions within mother-offspring pairs to calculate the size range of potential bottlenecks in mitochondrial numbers occurring during development of the offspring. In most individuals, the most likely effective bottleneck sizes ranged from 3 to 20 segregating units, though in two individuals a small bottleneck was very unlikely and there was no upper limit on its possible size. We also used the data from this study, together with unpublished data from other populations, to estimate the frequency of site heteroplasmy in normal human populations. From this, we calculated that the rate of mutation and fixation in the first hypervariable segment of the human mtDNA control region is between 1.2 x 10(-6) and 2.7 x 10(-5) per site per generation. This range is in good agreement with published estimates calculated by other methods.  相似文献   

7.
Mitochondria are essential organelles in eukaryotic cells that provide critical support for energetic and metabolic homeostasis. Although the elimination of pathogenic mitochondrial DNA (mtDNA) mutations in somatic cells has been observed, the mechanisms to maintain proper functions despite their mtDNA mutation load are poorly understood. In this study, we analyzed somatic mtDNA mutations in more than 30,000 single human peripheral and bone marrow mononuclear cells. We observed a significant overrepresentation of homoplasmic mtDNA mutations in B, T, and natural killer (NK) lymphocytes. Intriguingly, their overall mutational burden was lower than that in hematopoietic progenitors and myeloid cells. This characteristic mtDNA mutational landscape indicates a genetic bottleneck during lymphoid development, as confirmed with single-cell datasets from multiple platforms and individuals. We further demonstrated that mtDNA replication lags behind cell proliferation in both pro-B and pre-B progenitor cells, thus likely causing the genetic bottleneck by diluting mtDNA copies per cell. Through computational simulations and approximate Bayesian computation (ABC), we recapitulated this lymphocyte-specific mutational landscape and estimated the minimal mtDNA copies as <30 in T, B, and NK lineages. Our integrative analysis revealed a novel process of a lymphoid-specific mtDNA genetic bottleneck, thus illuminating a potential mechanism used by highly metabolically active immune cells to limit their mtDNA mutation load.  相似文献   

8.
Weigand MR  Sundin GW 《Genetics》2009,181(1):199-208
Mutagenic DNA repair (MDR) employs low-fidelity DNA polymerases capable of replicating past DNA lesions resulting from exposure to high-energy ultraviolet radiation (UVR). MDR confers UVR tolerance and activation initiates a transient mutator phenotype that may provide opportunities for adaptation. To investigate the potential role of MDR in adaptation, we have propagated parallel lineages of the highly mutable epiphytic plant pathogen Pseudomonas cichorii 302959 with daily UVR activation (UVR lineages) for ~500 generations. Here we examine those lineages through the measurement of relative fitness and observation of distinct colony morphotypes that emerged. Isolates and population samples from UVR lineages displayed gains in fitness relative to the ancestor despite increased rates of inducible mutation to rifampicin resistance. Regular activation of MDR resulted in the maintenance of genetic diversity within UVR lineages, including the reproducible diversification and coexistence of “round” and “fuzzy” colony morphotypes. These results suggest that inducible mutability may present a reasonable strategy for adaptive evolution in stressful environments by contributing to gains in relative fitness and diversification.  相似文献   

9.
The accumulation of heteroplasmic mitochondrial DNA (mtDNA) deletions and single nucleotide variants (SNVs) is a well-accepted facet of the biology of aging, yet comprehensive mutation spectra have not been described. To address this, we have used next generation sequencing of mtDNA-enriched libraries (Mito-Seq) to investigate mtDNA mutation spectra of putamen from young and aged donors. Frequencies of the “common” deletion and other “major arc” deletions were significantly increased in the aged cohort with the fold increase in the frequency of the common deletion exceeding that of major arc deletions. SNVs also increased with age with the highest rate of accumulation in the non-coding control region which contains elements necessary for translation and replication. Examination of predicted amino acid changes revealed a skew towards pathogenic SNVs in the coding region driven by mutation bias. Levels of the pathogenic m.3243A>G tRNA mutation were also found to increase with age. Novel multimeric tandem duplications that resemble murine control region multimers and yeast ρ mtDNAs, were identified in both young and aged specimens. Clonal ∼50 bp deletions in the control region were found at high frequencies in aged specimens. Our results reveal the complex manner in which the mitochondrial genome alters with age and provides a foundation for studies of other tissues and disease states.  相似文献   

10.
Cabbage belonging to Brassicaceae family is one of the most important vegetables cultivated worldwide. The economically important part of cabbage crop is head, formed by leaves which may be of splitting and non-splitting types. Cabbage varieties showing head splitting causes huge loss to the farmers and therefore finding the molecular and structural basis of splitting types would be helpful to breeders. To determine which anatomical characteristics were related to head-splitting in cabbage, we analyzed two contrasting cabbage lines and their offspring using a field emission scanning electron microscope. The inbred line “747” is an early head-splitting type, while the inbred line “748” is a head-splitting-resistant type. The petiole cells of “747” seems to be larger than those of “748” at maturity; however, there was no significant difference in petiole cell size at both pre-heading and maturity stages. The lower epidermis cells of “747” were larger than those of “748” at the pre-heading and maturity stages. “747” had thinner epidermis cell wall than “748” at maturity stage, however, there was no difference of the epidermis cell wall thickness in the two lines at the pre-heading stage. The head-splitting plants in the F1 and F2 population inherited the larger cell size and thinner cell walls of epidermis cells in the petiole. In the petiole cell walls of “747” and the F1 and F2 plants that formed splitting heads, the cellulose microfibrils were loose and had separated from each other. These findings verified that anomalous cellulose microfibrils, larger cell size and thinner-walled epidermis cells are important genetic factors that make cabbage heads prone to splitting.  相似文献   

11.
We analyze patterns of genetic variability of populations in the presence of a large seedbank with the help of a new coalescent structure called the seedbank coalescent. This ancestral process appears naturally as a scaling limit of the genealogy of large populations that sustain seedbanks, if the seedbank size and individual dormancy times are of the same order as those of the active population. Mutations appear as Poisson processes on the active lineages and potentially at reduced rate also on the dormant lineages. The presence of “dormant” lineages leads to qualitatively altered times to the most recent common ancestor and nonclassical patterns of genetic diversity. To illustrate this we provide a Wright–Fisher model with a seedbank component and mutation, motivated from recent models of microbial dormancy, whose genealogy can be described by the seedbank coalescent. Based on our coalescent model, we derive recursions for the expectation and variance of the time to most recent common ancestor, number of segregating sites, pairwise differences, and singletons. Estimates (obtained by simulations) of the distributions of commonly employed distance statistics, in the presence and absence of a seedbank, are compared. The effect of a seedbank on the expected site-frequency spectrum is also investigated using simulations. Our results indicate that the presence of a large seedbank considerably alters the distribution of some distance statistics, as well as the site-frequency spectrum. Thus, one should be able to detect from genetic data the presence of a large seedbank in natural populations.  相似文献   

12.
Long-lived plants face the challenge of ever-increasing mutational burden across their long lifespan. Early sequestration of meristematic stem cells is supposed to efficiently slow down this process, but direct measurement of somatic mutations that accompanies segregated cell lineages in plants is still rare. Here, we tracked somatic mutations in 33 leaves and 22 adventitious roots from 22 stem-cuttings across eight major branches of a shrub willow (Salix suchowensis). We found that most mutations propagated separately in leaves and roots, providing clear evidence for early segregation of underlying cell lineages. By combining lineage tracking with allele frequency analysis, our results revealed a set of mutations shared by distinct branches, but were exclusively present in leaves and not in roots. These mutations were likely propagated by rapidly dividing somatic cell lineages which survive several iterations of branching, distinct from the slowly dividing axillary stem cell lineages. Leaf is thus contributed by both slowly and rapidly dividing cell lineages, leading to varied fixation chances of propagated mutations. By contrast, each root likely arises from a single founder cell within the adventitious stem cell lineages. Our findings give straightforward evidence that early segregation of meristems slows down mutation accumulation in axillary meristems, implying a plant “germline” paralog to the germline of animals through convergent evolution.  相似文献   

13.
The paternally inherited Y chromosome displays the population genetic history of males. While modern domestic horses (Equus caballus) exhibit abundant diversity within maternally inherited mitochondrial DNA, no significant Y-chromosomal sequence diversity has been detected. We used high throughput sequencing technology to identify the first polymorphic Y-chromosomal markers useful for tracing paternal lines. The nucleotide variability of the modern horse Y chromosome is extremely low, resulting in six haplotypes (HT), all clearly distinct from the Przewalski horse (E. przewalskii). The most widespread HT1 is ancestral and the other five haplotypes apparently arose on the background of HT1 by mutation or gene conversion after domestication. Two haplotypes (HT2 and HT3) are widely distributed at high frequencies among modern European horse breeds. Using pedigree information, we trace the distribution of Y-haplotype diversity to particular founders. The mutation leading to HT3 occurred in the germline of the famous English Thoroughbred stallion “Eclipse” or his son or grandson and its prevalence demonstrates the influence of this popular paternal line on modern sport horse breeds. The pervasive introgression of Thoroughbred stallions during the last 200 years to refine autochthonous breeds has strongly affected the distribution of Y-chromosomal variation in modern horse breeds and has led to the replacement of autochthonous Y chromosomes. Only a few northern European breeds bear unique variants at high frequencies or fixed within but not shared among breeds. Our Y-chromosomal data complement the well established mtDNA lineages and document the male side of the genetic history of modern horse breeds and breeding practices.  相似文献   

14.
Sex allocation theory assumes that offspring sex (son vs. daughter) has consequences for maternal fitness. The most compelling experiment to test this theory would involve manipulating offspring sex and measuring the fitness consequences of having the “wrong” sex. Unfortunately, the logistical challenges of such an experiment limit its application. In tammar wallabies (Macropus eugenii), previous evidence suggests that mothers in good body condition are more likely to produce sons compared to mothers in poor condition, in support of the Trivers-Willard Hypothesis (TW) of condition-dependent sex allocation. More recently, we have found in our population of tammar wallabies that females with seemingly poor access to resources (based on condition loss over the dry summer) are more likely to produce sons, consistent with predictions from the Local Resource Competition (LRC) hypothesis, which proposes that production of sons or daughters is driven by the level of potential competition between mothers and philopatric daughters. We conducted a cross-fostering experiment in free-ranging tammar wallabies to disassociate the effects of rearing and birthing offspring of each sex. This allowed us to test the prediction of the LRC hypothesis that rearing daughters reduces the future direct fitness of mothers post-weaning and the prediction of the TW hypothesis that rearing sons requires more energy during lactation. Overall, we found limited costs to the mother of rearing the “wrong” sex, with switching of offspring sex only reducing the likelihood of a mother having a pouch young the following year. Thus, we found some support for both hypotheses in that rearing an unexpected son or an unexpected daughter both lead to reduced future maternal fitness. The study suggests that there may be context-specific costs associated with rearing the “wrong” sex.  相似文献   

15.
Many pathogenic mitochondrial DNA mutations are heteroplasmic, with a mixture of mutated and wild-type mtDNA present within individual cells. The severity and extent of the clinical phenotype is largely due to the distribution of mutated molecules between cells in different tissues, but mechanisms underpinning segregation are not fully understood. To facilitate mtDNA segregation studies we developed assays that measure m.3243A>G point mutation loads directly in hundreds of individual cells to determine the mechanisms of segregation over time. In the first study of this size, we observed a number of discrete shifts in cellular heteroplasmy between periods of stable heteroplasmy. The observed patterns could not be parsimoniously explained by random mitotic drift of individual mtDNAs. Instead, a genetically metastable, heteroplasmic mtDNA segregation unit provides the likely explanation, where stable heteroplasmy is maintained through the faithful replication of segregating units with a fixed wild-type/m.3243A>G mutant ratio, and shifts occur through the temporary disruption and re-organization of the segregation units. While the nature of the physical equivalent of the segregation unit remains uncertain, the factors regulating its organization are of major importance for the pathogenesis of mtDNA diseases.  相似文献   

16.
17.
We have studied the segregation and manifestations of the tRNA(Lys) A-->G(8344) mutation of mtDNA. Three unrelated patients with myoclonus epilepsy and ragged-red fibers (MERRF) syndrome were investigated, along with 30 of their maternal relatives. Mutated mtDNA was not always found in the offspring of women carrying the tRNA(Lys) mutation. Four women had 10%-33% of mutated mtDNA in lymphocytes, and no mutated mtDNA was found in 7 of their 14 investigated children. The presence of mutated mtDNA was excluded at a level of 3:1,000. Five women had a proportion of 43%-73% mutated mtDNA in lymphocytes, and mutated mtDNA was found in all their 12 investigated children. This suggests that the risk for transmission of mutated mtDNA to the offspring increases if high levels are present in the mother and that, above a threshold level of 35%-40%, it is very likely that transmission will occur to all children. The three patients with MERRF syndrome had, in muscle, both 94%-96% mutated mtDNA and biochemical and histochemical evidence of a respiratory-chain dysfunction. Four relatives had a proportion of 61%-92% mutated mtDNA in muscle, and biochemical measurements showed a normal respiratory-chain function in muscle in all cases. These findings suggest that > 92% of mtDNA with the tRNA(Lys) mutation in muscle is required to cause a respiratory-chain dysfunction that can be detected by biochemical methods. There was a positive correlation between the levels of mtDNA with the tRNA(Lys) mutation in lymphocytes and the levels in muscle, in all nine investigated cases. The levels of mutated mtDNA were higher in muscle than in lymphocytes in all cases. In two of the patients with MERRF syndrome, muscle specimens were obtained at different times. In both cases, biochemical measurements revealed a deteriorating respiratory-chain function, and in one case a progressive increase in the amount of cytochrome c oxidase-deficient muscle fibers was found.  相似文献   

18.
Focal segmental glomerulosclerosis (FSGS) is a common pattern of renal injury, seen as both a primary disorder and as a consequence of underlying insults such as diabetes, HIV infection, and hypertension. Point mutations in theα-actinin-4 gene ACTN4 cause an autosomal dominant form of human FSGS. We characterized the biological effect of these mutations by biochemical assays, cell-based studies, and the development of a new mouse model. We found that a fraction of the mutant protein forms large aggregates with a high sedimentation coefficient. Localization of mutant α-actinin-4 in transfected and injected cells, as well as in situ glomeruli, showed aggregates of the mutant protein. Video microscopy showed the mutant α-actinin-4 to be markedly less dynamic than the wild-type protein. We developed a “knockin” mouse model by replacing Actn4 with a copy of the gene bearing an FSGS-associated point mutation. We used cells from these mice to show increased degradation of mutant α-actinin-4, mediated, at least in part, by the ubiquitin–proteasome pathway. We correlate these findings with studies of α-actinin-4 expression in human samples. “Knockin” mice with a disease-associated Actn4 mutation develop a phenotype similar to that observed in humans. Comparison of the phenotype in wild-type, heterozygous, and homozygous Actn4 “knockin” and “knockout” mice, together with our in vitro data, suggests that the phenotypes in mice and humans involve both gain-of-function and loss-of-function mechanisms.  相似文献   

19.
Animals and plants routinely produce more offspring than they can afford to rear. Mothers can favour certain young by conferring on them competitive advantages such as a leading position in the birth sequence, more resources or hormones. Avian mothers create hatching asynchrony within a clutch and at the same time bestow the eggs with different concentrations of androgens that may enhance or counteract the competitive advantage experienced by early-hatching “core” young. In siblicidal birds, core young assume a dominant social position in the nest due to their size advantage and when threatened with starvation fatally attack subdominant later-hatching “marginal” young. A role for maternal androgens in siblicidal aggression has frequently been suggested but never tested. We studied this in the facultatively siblicidal black-headed kittiwake. We found that marginal eggs contain higher instead of lower concentrations of androgens than core eggs. Surprisingly, exposure to experimentally elevated yolk androgens increased sibling aggression and dominance, even though in nature marginal eggs never produce dominant chicks. We propose the “adoption facilitation hypothesis” to explain this paradox. This cliff-nesting colonial species has a high adoption rate: ejected marginal kittiwake chicks frequently fall into other nests containing chicks of similar or smaller size and exposure to yolk androgens might help them integrate themselves into a foster nest.  相似文献   

20.
Mutations of mitochondrial DNA (mtDNA) cause a wide array of multisystem disorders, particularly affecting organs with high energy demands. Typically only a proportion of the total mtDNA content is mutated (heteroplasmy), and high percentage levels of mutant mtDNA are associated with a more severe clinical phenotype. MtDNA is inherited maternally and the heteroplasmy level in each one of the offspring is often very different to that found in the mother. The mitochondrial genetic bottleneck hypothesis was first proposed as the explanation for these observations over 20 years ago. Although the precise bottleneck mechanism is still hotly debated, the regulation of cellular mtDNA content is a key issue. Here we review current understanding of the factors regulating the amount of mtDNA within cells and discuss the relevance of these findings to our understanding of the inheritance of mtDNA heteroplasmy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号