首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Most extant species are in clades with poor fossil records, and recent studies of comparative methods show they have low power to infer even highly simplified models of trait evolution without fossil data. Birds are a well‐studied radiation, yet their early evolutionary patterns are still contentious. The fossil record suggests that birds underwent a rapid ecological radiation after the end‐Cretaceous mass extinction, and several smaller, subsequent radiations. This hypothesized series of repeated radiations from fossil data is difficult to test using extant data alone. By uniting morphological and phylogenetic data on 604 extant genera of birds with morphological data on 58 species of extinct birds from 50 million years ago, the “halfway point” of avian evolution, I have been able to test how well extant‐only methods predict the diversity of fossil forms. All extant‐only methods underestimate the disparity, although the ratio of within‐ to between‐clade disparity does suggest high early rates. The failure of standard models to predict high early disparity suggests that recent radiations are obscuring deep time patterns in the evolution of birds. Metrics from different models can be used in conjunction to provide more valuable insights than simply finding the model with the highest relative fit.  相似文献   

2.
Modern whales are frequently described as an adaptive radiation spurred by either the evolution of various key innovations (such as baleen or echolocation) or ecological opportunity following the demise of archaic whales. Recent analyses of diversification rate shifts on molecular phylogenies raise doubts about this interpretation since they find no evidence of increased speciation rates during the early evolution of modern taxa. However, one of the central predictions of ecological adaptive radiation is rapid phenotypic diversification, and the tempo of phenotypic evolution has yet to be quantified in cetaceans. Using a time-calibrated molecular phylogeny of extant cetaceans and a morphological dataset on size, we find evidence that cetacean lineages partitioned size niches early in the evolutionary history of neocetes and that changes in cetacean size are consistent with shifts in dietary strategy. We conclude that the signature of adaptive radiations may be retained within morphological traits even after equilibrium diversity has been reached and high extinction or fluctuations in net diversification have erased any signature of an early burst of diversification in the structure of the phylogeny.  相似文献   

3.
African cichlid fish: a model system in adaptive radiation research   总被引:9,自引:0,他引:9  
The African cichlid fish radiations are the most diverse extant animal radiations and provide a unique system to test predictions of speciation and adaptive radiation theory. The past few years have seen major advances in the phylogenetics, evolutionary biogeography and ecology of cichlid fish. Most of this work has concentrated on the most diverse radiations. Unfortunately, a large number of small radiations and 'non-radiations' have been overlooked, potentially limiting the contribution of the cichlid system to our understanding of speciation and adaptive radiation. I have reviewed the literature to identify 33 intralacustrine radiations and 76 failed radiations. For as many as possible I collected information on lake size, age and phylogenetic relationships. I use these data to address two questions: (i) whether the rate of speciation and the resulting species richness are related to temporal and spatial variation in ecological opportunity and (ii) whether the likelihood of undergoing adaptive radiation is similar for different African cichlid lineages. The former is a key prediction of the ecological theory of adaptive radiation that has been presumed true but remains untested for cichlid radiations. The second is based on the hypothesis that the propensity of cichlids to radiate is due to a key evolutionary innovation shared by all African cichlids. The evidence suggests that speciation rate declines through time as niches get filled up during adaptive radiation: young radiations and early stages of old radiations are characterized by high rates of speciation, whereas at least 0.5 Myr into a radiation speciation becomes a lot less frequent. The number of species in cichlid radiations increases with lake size, supporting the prediction that species diversity increases with habitat heterogeneity, but also with opportunity for isolation by distance. Finally, the data suggest that the propensity to radiate within lakes is a derived property that evolved during the evolutionary history of some African cichlids, and the appearance of which does not coincide with the appearance of proposed key innovations in morphology and life history.  相似文献   

4.
Adaptive radiations are known for rapid morphological and species diversification in response to ecological opportunity, but it remains unclear if distinct mechanisms drive this pattern. Here, we show that rapid rates of morphological diversification are linked to the evolution of novel ecological niches in two independent Cyprinodon radiations nested within a wide-ranging group repeatedly isolated in extreme environments. We constructed a molecular phylogeny for the Cyprinodontidae, measured 16 functional traits across this group, and compared the likelihoods of single or multiple rates of morphological diversification. We found that rates of morphological diversification within two sympatric Cyprinodon clades containing unique trophic specialists are not part of an adaptive continuum with other clades, but are instead extreme outliers with rates up to 131 times faster than other Cyprinodontidae. High rates were not explained by clade age, but were instead linked to unique trophic niches within Cyprinodon, including scale-eating, zooplanktivory, and piscivory. Furthermore, although both radiations occur in similar environments and have similar sister species, they each evolved unique trophic specialists and high rates of morphological diversification in different sets of traits. We propose that the invasion of novel ecological niches may be a key mechanism driving many classic examples of adaptive radiation.  相似文献   

5.
Ectothermy is a primitive state; therefore, a shared common ancestor of crocodiles, dinosaurs, and birds was at some point ectothermic. Birds, the extant descendants of the dinosaurs, are endothermic. Neither the metabolic transition within this lineage nor the place the dinosaurs held along the ectothermic-endothermic continuum is defined. This paper presents a conceptual model for the evolution of endothermy in the theropod-bird lineage. It is recognized that other animals (some fish, insects, etc.) are functionally endothermic. However, endothermy in other clades is beyond the scope of this paper, and we address the onset of endothermy in only the theropod/bird clade. The model begins with simple changes in a single gene of a common ancestor, and it includes a series of concomitant physiological and morphological changes, beginning perhaps as early as the first archosaurian common ancestor of dinosaurs and crocodiles. These changes continued to accumulate within the theropod-avian lineage, were maintained and refined through selective forces, and culminated in extant birds. Metabolic convergence or homoplasy is evident in the inherent differences between the endothermy of mammals and the endothermy of extant birds. The strength and usefulness of this model lie in the phylogenetic, genetic, evolutionary, and adaptive plausibility of each of the suggested developmental steps toward endothermy. The model, although conceptual in nature, relies on an extensive knowledge base developed by numerous workers in each of these areas. In addition, the model integrates known genetic, metabolic, and developmental aspects of extant taxa that phylogenetically bracket theropod dinosaurs for comparison with information derived from the fossil record of related extinct taxa.  相似文献   

6.
An important dimension of adaptive radiation is the degree to which diversification rates fluctuate or remain constant through time. Focusing on plethodontid salamanders of the genus Desmognathus, we present a novel synthetic analysis of phylogeographic history, rates of ecomorphological evolution and species accumulation, and community assembly in an adaptive radiation. Dusky salamanders are highly variable in life history, body size, and ecology, with many endemic lineages in the southern Appalachian Highlands of eastern North America. Our results show that life-history evolution had important consequences for the buildup of plethodontid-salamander species richness and phenotypic disparity in eastern North America, a global hot spot of salamander biodiversity. The origin of Desmognathus species with aquatic larvae was followed by a high rate of lineage accumulation, which then gradually decreased toward the present time. The peak period of lineage accumulation in the group coincides with evolutionary partitioning of lineages with aquatic larvae into seepage, stream-edge, and stream microhabitats. Phylogenetic simulations demonstrate a strong correlation between morphology and microhabitat ecology independent of phylogenetic effects and suggest that ecomorphological changes are concentrated early in the radiation of Desmognathus. Deep phylogeographic fragmentation within many codistributed ecomorph clades suggests long-term persistence of ecomorphological features and stability of endemic lineages and communities through multiple climatic cycles. Phylogenetic analyses of community structure show that ecomorphological divergence promotes the coexistence of lineages and that repeated, independent evolution of microhabitat-associated ecomorphs has a limited role in the evolutionary assembly of Desmognathus communities. Comparing and contrasting our results to other adaptive radiations having different biogeographic histories, our results suggest that rates of diversification during adaptive radiation are intimately linked to the degree to which community structure persists over evolutionary time.  相似文献   

7.
Dinosaurs had functionally digitigrade or sub-unguligrade foot postures. With their immediate ancestors, dinosaurs were the only terrestrial nonplantigrades during the Mesozoic. Extant terrestrial mammals have different optimal body sizes according to their foot posture (plantigrade, digitigrade, and unguligrade), yet the relationship of nonplantigrade foot posture with dinosaur body size has never been investigated, even though the body size of dinosaurs has been studied intensively. According to a large dataset presented in this study, the body sizes of all nonplantigrades (including nonvolant dinosaurs, nonvolant terrestrial birds, extant mammals, and extinct Nearctic mammals) are above 500 g, except for macroscelid mammals (i.e., elephant shrew), a few alvarezsauroid dinosaurs, and nondinosaur ornithodirans (i.e., the immediate ancestors of dinosaurs). When nonplantigrade tetrapods evolved from plantigrade ancestors, lineages with nonplantigrade foot posture exhibited a steady increase in body size following Cope’s rule. In contrast, contemporaneous plantigrade lineages exhibited no trend in body size evolution and were largely constrained to small body sizes. This evolutionary pattern of body size specific to foot posture occurred repeatedly during both the Mesozoic and the Cenozoic eras. Although disturbed by the end-Cretaceous extinction, species of mid to large body size have predominantly been nonplantigrade animals from the Jurassic until the present; conversely, species with small body size have been exclusively composed of plantigrades in the nonvolant terrestrial tetrapod fauna.  相似文献   

8.
Existing radiations in a spatially limited system such as an oceanic island may limit the ecological opportunity experienced by later colonists, resulting in lower macroevolutionary rates for secondary radiations. Additionally, potential colonists may be competitively excluded by these incumbent (resident) species, unless they are biologically distinct (biotic filtering). The extant phenotypic diversity of secondary colonists may thus be impacted by lower rates of phenotypic evolution, exclusion from certain phenotypes, and transitions to new morphotypes to escape competition from incumbent lineages. We used geometric morphometric methods to test whether the rates and patterns of mandibular evolution of the Luzon “old endemic” rodent clades, Phloeomyini and Chrotomyini, are consistent with these predictions. Each clade occupied nearly completely separate shape space and partially separate size space. We detected limited support for decelerating and clade‐specific evolutionary rates for both shape and size, with strong evidence for a shift in evolutionary mode within Chrotomyini. Our results suggest that decelerating phenotypic evolutionary rates are not a necessary result of incumbency interactions; rather, incumbency effects may be more likely to determine which clades can become established in the system. Nonincumbent clades that pass a biotic filter can potentially exhibit relatively unfettered evolution.  相似文献   

9.
The origin and early evolution of birds has been a major topic in evolutionary biology. In the 20th century, evolutionary scenarios posited either ground-based bird ancestors or tree-dwelling ancestors. This has since been recognised as a false dichotomy [1]. We suggest that part of the problem is the loose categorisation of many extant bird species as either ground or tree locomotors when considering hind-limb function [2-7]. In reality these are not mutually exclusive alternatives. Many extant birds exhibit different degrees of ground- and tree-based behaviours. We thus propose they can be better placed on a spectrum - rather than a dichotomy - according to the extent of ground and/or tree foraging they exhibit. To test this system we analysed the toe claws of 249 species of Holocene birds, revealing that claw curvature increases as tree foraging becomes more predominant. Improved claw morphometrics allow more direct comparisons between extant and extinct birds in order to infer the behaviours of the latter. In contrast to previous studies [2-6], we find that claw curvatures of Mesozoic birds and closely related non-avian theropod dinosaurs, differ significantly from Holocene arboreal birds and more closely resemble those of Holocene 'ground-foraging' birds.  相似文献   

10.
Marine tetrapod clades (e.g. seals, whales) independently adapted to marine life through the Mesozoic and Caenozoic, and provide iconic examples of convergent evolution. Apparent morphological convergence is often explained as the result of adaptation to similar ecological niches. However, quantitative tests of this hypothesis are uncommon. We use dietary data to classify the feeding ecology of extant marine tetrapods and identify patterns in skull and tooth morphology that discriminate trophic groups across clades. Mapping these patterns onto phylogeny reveals coordinated evolutionary shifts in diet and morphology in different marine tetrapod lineages. Similarities in morphology between species with similar diets—even across large phylogenetic distances—are consistent with previous hypotheses that shared functional constraints drive convergent evolution in marine tetrapods.  相似文献   

11.
Adaptive radiations have served as model systems for quantifying the build-up of species richness. Few studies have quantified the tempo of diversification in species-rich clades that contain negligible adaptive disparity, making the macroevolutionary consequences of different modes of evolutionary radiation difficult to assess. We use mitochondrial-DNA sequence data and recently developed phylogenetic methodologies to explore the tempo of diversification of eastern North American Plethodon, a species-rich clade of woodland salamanders exhibiting only limited phenotypic disparity. Lineage-through-time analysis reveals a high rate of lineage accumulation, 0.8 species per million years, occurring 11-8 million years ago in the P. glutinosus species group, followed by decreasing rates. This high rate of lineage accumulation is exceptional, comparable to the most rapid of adaptive radiations. In contrast to classic models of adaptive radiation where ecological niche divergence is linked to the origin of species, we propose that phylogenetic niche conservatism contributes to the rapid accumulation of P. glutinosus-group lineages by promoting vicariant isolation and multiplication of species across a spatially and temporally fluctuating environment. These closely related and ecologically similar lineages persist through long-periods of evolutionary time and form strong barriers to the geographic spread of their neighbours, producing a subsequent decline in lineage accumulation. Rapid diversification among lineages exhibiting long-term maintenance of their bioclimatic niche requirements is an under-appreciated phenomenon driving the build-up of species richness.  相似文献   

12.
What explains why some groups of organisms, like birds, are so species rich? And what explains their extraordinary ecological diversity, ranging from large, flightless birds to small migratory species that fly thousand of kilometers every year? These and similar questions have spurred great interest in adaptive radiation, the diversification of ecological traits in a rapidly speciating group of organisms. Although the initial formulation of modern concepts of adaptive radiation arose from consideration of the fossil record, rigorous attempts to identify adaptive radiation in the fossil record are still uncommon. Moreover, most studies of adaptive radiation concern groups that are less than 50 million years old. Thus, it is unclear how important adaptive radiation is over temporal scales that span much larger portions of the history of life. In this issue, Benson et al. test the idea of a “deep-time” adaptive radiation in dinosaurs, compiling and using one of the most comprehensive phylogenetic and body-size datasets for fossils. Using recent phylogenetic statistical methods, they find that in most clades of dinosaurs there is a strong signal of an “early burst” in body-size evolution, a predicted pattern of adaptive radiation in which rapid trait evolution happens early in a group''s history and then slows down. They also find that body-size evolution did not slow down in the lineage leading to birds, hinting at why birds survived to the present day and diversified. This paper represents one of the most convincing attempts at understanding deep-time adaptive radiations.
“It is strikingly noticeable from the fossil record and from its results in the world around us that some time after a rather distinctive new adaptive type has developed it often becomes highly diversified.” – G. G. Simpson ([1], pp. 222–223)
George Gaylord Simpson was the father of modern concepts of adaptive radiation—the diversification of ecological traits in a rapidly speciating group of organisms (Figure 1; [2]). He considered adaptive radiation to be the source of much of the diversity of living organisms on planet earth, in terms of species number, ecology, and body form [1][3]. Yet more than 60 years after Simpson''s seminal work, the exact role of adaptive radiation in generating life''s extraordinary diversity is still an open and fundamental question in evolutionary biology [3],[4].Open in a separate windowFigure 1An example of adaptive radiation and early bursts in rates of speciation and phenotypic evolution.(a) The adaptive radiation of the modern bird clade Vanginae, which shows early rapid speciation, morphological diversity, and diversity in foraging behavior and diet [15],[32]. (b) Hypothetical curve of speciation rates through time that would be expected in adaptive radiation. The exponential decline in speciation rates shows that there was an “early burst” of speciation at the beginning of the clade''s history. (c) Hypothetical curve of rates of phenotypic evolution through time that would be expected in adaptive radiation, also showing an early burst of evolution with high initial rates. Part (a) is reproduced from [32] with permission (under CC-BY) from the Royal Society and the original authors.To address this question, researchers have looked for signatures of past adaptive radiation in the patterns of diversity in nature. In particular, it has been suggested that groups that have undergone adaptive radiation should show an “early-burst” signal in both rates of lineage diversification and phenotypic evolution through time—a pattern in which rates of speciation and phenotypic evolution are fast early in the history of groups and then decelerate over time (Figure 1; [3][5]). These predictions arise from the idea that clades should multiply and diversify rapidly in species number, ecology, and phenotype in an adaptive radiation and that rates of this diversification should decrease later as niches are successively occupied [2].Early bursts have been sought in both fossils and phylogenies. Few fossil studies have discussed their results in the context of adaptive radiation (but see [6]), but they often have found rapid rises in both taxonomic and morphological diversity early in the history of various groups [7], ranging from marine invertebrates [8] to terrestrial mammals [9]. However, fossils often lack the phylogeny needed to model how evolution has proceeded [7]. On the other hand, studies that test for early bursts in currently existing (extant) species typically use phylogenies, which allow us to model past evolution in groups with few or no fossils [5]. Phylogenies have most often been used to test early bursts in speciation (see, e.g., [10]). However, such tests may be misled by past extinction, which will decay the statistical signal of rapid, early diversification [11]. Furthermore, diverse evolutionary scenarios beyond adaptive radiation can give rise to early bursts in speciation [12]. By contrast, studies of phenotypic diversification may be more robust to extinction [13] and they test the distinguishing feature that separates adaptive from nonadaptive radiation [2],[12].Thus, studies of adaptive radiation in extant organisms increasingly have focused on phylogenetic tests of the early-burst model of phenotypic evolution. Some studies show strong support for this prediction in both birds [14],[15] and lizards [5],[16]. However, the most extensive study to date showed almost no support for the early-burst model. In this study, Harmon et al. [17] examined body size in 49 (and shape in 39) diverse groups of animals, including invertebrates, fishes, amphibians, reptiles, birds, and mammals. They found strong support for the early-burst model in only two of these 88 total datasets.This result raises an important question: if adaptive radiation explains most of life''s diversity [1], how is it possible that there is so little phylogenetic evidence for early bursts of phenotypic evolution? One possibility is that early bursts are hard to detect. This can be due to low statistical power in the most commonly employed tests [18]. It may also be due to a lack of precision in the way “early burst” is defined (and thus tested), as the ecological theory of adaptive radiation suggests that the rate of phenotypic evolution will decrease as species diversity increases in a group, not just over time [14],[16]. Indeed, recent studies [14],[16] detected a decline in rates with species diversity in clades that were also in the Harmon et al. [17] study, yet for which no decline over time was detected.A second possible reason for why early-burst patterns are uncommon is more fundamental: the patterns of phenotypic diversity that result from adaptive radiation may be different at large time scales. Many of the best examples of adaptive radiation are in groups that are relatively young, including Darwin''s finches (2.3 million years old [myr]; [19]) and Lake Malawi and Victoria cichlids (2.3 myr; [20]), whereas most groups that are examined for early bursts in phenotypic evolution are much older (e.g., 47 of 49 in Harmon et al. [17]; mean ± sd = 23.8±29.2 myr). So there may be an inherent difference between what unfolds over the relatively short time scales emphasized by Schluter [2] and what one sees at macroevolutionary time scales (see [21] for an in-depth discussion of this idea as it relates to speciation).The time scale over which adaptive radiations unfold has been little explored. As a result, the link between extant diversity and major extinct radiations remains unclear. Simpson [1] believed that adaptive radiation played out at the population level, but that it should manifest itself at larger scales as well—up to phyla (e.g., chordates, arthropods). He suggested that we should see signals of adaptive radiations in large, old clades because they are effectively small-scale adaptive radiation writ large [1]. Under this view, we should see the signal of adaptive radiation even in groups that diversified over vast time scales, particularly if adaptive radiation is as important for explaining life''s diversity as Simpson [1] thought it was.Part of the reason why potential adaptive radiations at deep time scales remain poorly understood is that studies either focus on fossils or phylogenies, but rarely both. In this issue, Benson et al. [22] combine these two types of data to address whether dinosaurs show signs that they adaptively radiated. Unlike most other studies, the temporal scale of the current study is very large—in this case, over 170 million years throughout the Mesozoic era, starting at 240 million years ago in the Triassic period. This characteristic allowed Benson et al. to shed light on deep-time adaptive radiation.The authors estimated body mass from fossils by using measurements of the circumference of the stylopodium shaft (the largest bone of the arm or leg, such as the femur), which shows a consistent scaling relationship with body mass in extant reptiles and mammals [23]. They then combined published phylogenies to obtain a composite phylogeny for the species in their body-size dataset. The authors finally conducted two types of tests of the rate of body-size evolution—tests of early bursts in phenotypic evolution that are the same as those of Harmon et al. [17], as well as an additional less commonly used test that estimates whether differences between estimated body size at adjacent phylogenetic nodes decreases over time.Benson et al. [22] found two striking results. First, in both of their analyses, the early-burst model was strongly supported for most clades of dinosaurs. This early burst began in the Triassic period, indicating that diversification in body size in dinosaurs began before the Triassic-Jurassic mass extinction event would have opened competition-free ecological space (as commonly hypothesized; [24],[25]). Rather, the authors [22] suggest that a key innovation led to this rise in dinosaurs, though it is not clear what this innovation was [26]. In general, though, the finding of an early burst in body-size evolution in most dinosaurs—if a consequence of adaptive evolution—suggests that adaptive radiation may play out over large evolutionary time scales, not just on the short time scales typical of the most well-studied cases of extant groups.Second, one clade—Maniraptora, which is the clade in which modern-day birds are nested—was the only part of the dinosaur phylogeny that did not show such a strong early burst in body-size evolution. Instead, this clade fit a model to a single adaptive peak—an optimum body size, if you will—but also maintained high rates of undirected body-size evolution throughout their history. Benson et al. [22] suggest that this last result connects deep-time adaptive radiation in the dinosaurs, which quickly exhausted the possibility of phenotypic space, with the current radiation in extant birds, which survived to the present day because their constant, high rate of evolution meant that they were constantly undergoing ecological innovation. This gives a glimpse into why modern birds have so many species (an order of magnitude higher than the nonavian dinosaurs) and so much ecological diversity.The use of fossils allowed Benson et al. [22] to address deep-time radiation in dinosaurs and its consequence on present-day bird diversity. Nevertheless, the promise of using fossils to understand adaptive radiation has its limits. The paleontological dataset presented here is exceptional, yet still insufficient to explore major components of adaptive radiations like actual ecological diversification. As in many paleontological studies, Benson et al. used body-size data to represent ecology because body size is one of the few variables that is available for most species. But it is unclear how important body size really is for ecological diversification and niche filling, because body size is important for nearly every aspect of organismal function. Consequently, evolutionary change in body size can result not only from the competition that drives adaptive radiation, but also from predation pressure, reproductive character displacement, and physiological advantages of particular body sizes in a given environment, among other reasons [27].Despite the broad coverage of extinct species presented in Benson et al. [22], the data were insufficient to study another major part of adaptive radiation: early bursts of lineage diversification. While new approaches are becoming available to study diversification with phylogenies containing extinct species [28],[29] or with incomplete fossil data [30], these approaches are limited when many taxa are known from only single occurrences. This is the case in the Benson et al. dataset, and more generally in most fossil datasets.Given that few fossils exist for many extant groups, a major goal for future studies will be the incorporation of incomplete fossil information into analyses primarily focused on traits and clades for which mostly neontological data are available. For example, Slater et al. [31] developed an approach to include fossil information in analyses of phenotypic evolution. They showed that adding just a few fossils (12 fossils in a study of a 135-species clade) drastically increased the power and accuracy of their analyses of extant taxa. Thus, the combination of fossil data and those based on currently living species is important for future studies, as are new approaches that allow analyzing early bursts of lineage diversification along with phenotypic evolution in fossils.So what answers do Benson et al. [22] bring to Simpson''s original question of the importance of adaptive radiation for explaining diversity on earth? The authors present an intriguing and unconventional link between adaptive radiation and the diversity of modern-day birds. They argue that bird diversification was possible because the dinosaur lineage leading to birds did not exhaust niche space, potentially thanks to small body sizes; in contrast, other dinosaur groups adaptively radiated, filled niche space, and thus could not produce the ecological innovation that may have been necessary to survive the Cretaceous-Paleogene mass extinction. This intriguing hypothesis suggests an important role for the relative starting points of successive adaptive radiations in explaining current diversity, giving a new spin to the pivotal question raised by Simpson more than 60 years ago.  相似文献   

13.
Between the late Oligocene and the early Miocene, climatic changes have shattered the faunal and floral communities and drove the apparition of new ecological niches. Grassland biomes began to supplant forestlands, thus favouring a large-scale ecosystem turnover. The independent adaptive radiations of several mammal lineages through the evolution of key innovations are classic examples of these changes. However, little is known concerning the evolutionary history of other herbivorous groups in relation with this modified environment. It is especially the case in phytophagous insect communities, which have been rarely studied in this context despite their ecological importance. Here, we investigate the phylogenetic and evolutionary patterns of grass-specialist moths from the species-rich tribe Apameini (Lepidoptera, Noctuidae). The molecular dating analyses carried out over the corresponding phylogenetic framework reveal an origin around 29 million years ago for the Apameini. Ancestral state reconstructions indicate (i) a potential Palaearctic origin of the tribe Apameini associated with a major dispersal event in Afrotropics for the subtribe Sesamiina; (ii) a recent colonization from Palaearctic of the New World and Oriental regions by several independent lineages; and (iii) an ancestral association of the tribe Apameini over grasses (Poaceae). Diversification analyses indicate that diversification rates have not remained constant during the evolution of the group, as underlined by a significant shift in diversification rates during the early Miocene. Interestingly, this age estimate is congruent with the development of grasslands at this time. Rather than clade ages, variations in diversification rates among genera better explain the current differences in species diversity. Our results underpin a potential adaptive radiation of these phytophagous moths with the family Poaceae in relation with the major environmental shifts that have occurred in the Miocene.  相似文献   

14.
Understanding the mechanisms of rapid adaptive radiation has been a central problem of evolutionary ecology. Recently, there is a growing recognition that hybridization between different evolutionary lineages can facilitate adaptive radiation by creating novel phenotypes. Yet, theoretical plausibility of this hypothesis remains unclear because, for example, hybridization can negate pre‐existing species richness. Here, we theoretically investigate whether and under what conditions hybridization promotes ecological speciation and adaptive radiation using an individual‐based model to simulate genome evolution following hybridization between two allopatrically evolved lineages. The model demonstrated that transgressive segregation through hybridization can facilitate adaptive radiation, most powerfully when novel vacant ecological niches are highly dissimilar, phenotypic effect size of mutations is small and there is moderate genetic differentiation between parental lineages. These results provide a theoretical basis for the effect of hybridization facilitating adaptive radiation.  相似文献   

15.
Rapid increases in taxonomic diversity are generally described as adaptive or evolutionary radiations. Such radiations differ widely in the rate and extent of morphologic innovation, taxonomic diversification and phylogenetic breadth, suggesting that several patterns, and likely processes, are involved. At least four distinct patterns of evolutionary radiation can be identified: novelty events, which generate new morphological complexity (altering the body plan of the group under consideration) but not necessarily with the associated production of many lower taxa; broad diversification events involving many independent lineages that undergo diversification, generate many new species and are driven by new ecological opportunities; economic radiations of a limited group of ecologically (but not necessarily phylogenetically) related clades exploiting a limited new ecologic opportunity; and adaptive radiations that may occur at any taxonomic level, but involve a rapid increase in diversity within a single clade, including “true”; adaptive radiations. Many events produce simple diversity increases with no corresponding increase in genetic/developmental/morphological/behavioral sophistication, but the most evolutionarily interesting events add new levels of complexity.  相似文献   

16.
The accumulation of exceptional ecological diversity within a lineage is a key feature of adaptive radiation resulting from diversification associated with the subdivision of previously underutilized resources. The invasion of unoccupied niche space is predicted to be a key determinant of adaptive diversification, and this process may be particularly important if the diversity of competing lineages within the area, in which the radiation unfolds, is already high. Here, we test whether the evolution of nectarivory resulted in significantly higher rates of morphological evolution, more extensive morphological disparity, and a heightened build‐up of sympatric species diversity in a large adaptive radiation of passerine birds (the honeyeaters, about 190 species) that have diversified extensively throughout continental and insular settings. We find that a large increase in rates of body size evolution and general expansion in morphological space followed an ancestral shift to nectarivory, enabling the build‐up of large numbers of co‐occurring species that vary greatly in size, compared to related and co‐distributed nonnectarivorous clades. These results strongly support the idea that evolutionary shifts into novel areas of niche space play a key role in promoting adaptive radiation in the presence of likely competing lineages.  相似文献   

17.
The significance of co‐evolution over ecological timescales is well established, yet it remains unclear to what extent co‐evolutionary processes contribute to driving large‐scale evolutionary and ecological changes over geological timescales. Some of the most intriguing and pervasive long‐term co‐evolutionary hypotheses relate to proposed interactions between herbivorous non‐avian dinosaurs and Mesozoic plants, including cycads. Dinosaurs have been proposed as key dispersers of cycad seeds during the Mesozoic, and temporal variation in cycad diversity and abundance has been linked to dinosaur faunal changes. Here we assess the evidence for proposed hypotheses of trophic and evolutionary interactions between these two groups using diversity analyses, a new database of Cretaceous dinosaur and plant co‐occurrence data, and a geographical information system (GIS) as a visualisation tool. Phylogenetic evidence suggests that the origins of several key biological properties of cycads (e.g. toxins, bright‐coloured seeds) likely predated the origin of dinosaurs. Direct evidence of dinosaur–cycad interactions is lacking, but evidence from extant ecosystems suggests that dinosaurs may plausibly have acted as seed dispersers for cycads, although it is likely that other vertebrate groups (e.g. birds, early mammals) also played a role. Although the Late Triassic radiations of dinosaurs and cycads appear to have been approximately contemporaneous, few significant changes in dinosaur faunas coincide with the late Early Cretaceous cycad decline. No significant spatiotemporal associations between particular dinosaur groups and cycads can be identified – GIS visualisation reveals disparities between the spatiotemporal distributions of some dinosaur groups (e.g. sauropodomorphs) and cycads that are inconsistent with co‐evolutionary hypotheses. The available data provide no unequivocal support for any of the proposed co‐evolutionary interactions between cycads and herbivorous dinosaurs – diffuse co‐evolutionary scenarios that are proposed to operate over geological timescales are plausible, but such hypotheses need to be firmly grounded on direct evidence of interaction and may be difficult to support given the patchiness of the fossil record.  相似文献   

18.
Oviraptorosaurs are bird‐like theropod dinosaurs that thrived in the final pre‐extinction ecosystems during the latest Cretaceous, and the beaked, toothless skulls of derived species are regarded as some of the most peculiar among dinosaurs. Their aberrant morphologies are hypothesized to have been caused by rapid evolution triggered by an ecological/biological driver, but little is known about how their skull shapes and functional abilities diversified. Here, we use quantitative techniques to study oviraptorosaur skull form and mandibular function. We demonstrate that the snout is particularly variable, that mandibular form and upper/lower beak form are significantly correlated with phylogeny, and that there is a strong and significant correlation between mandibular function and mandible/lower beak shape, suggesting a form–function association. The form–function relationship and phylogenetic signals, along with a moderate allometric signal in lower beak form, indicate that similar mechanisms governed beak shape in oviraptorosaurs and extant birds. The two derived oviraptorosaur clades, oviraptorids and caenagnathids, are significantly separated in morphospace and functional space, indicating that they partitioned niches. Oviraptorids coexisting in the same ecosystem are also widely spread in morphological and functional space, suggesting that they finely partitioned feeding niches, whereas caenagnathids exhibit extreme disparity in beak size. The diversity of skull form and function was likely key to the diversification and evolutionary success of oviraptorosaurs in the latest Cretaceous.  相似文献   

19.
Habitat shifts are implicated as the cause of many vertebrate radiations, yet relatively few empirical studies quantify patterns of diversification following colonization of new habitats in fishes. The pufferfishes (family Tetraodon‐tidae) occur in several habitats, including coral reefs and freshwater, which are thought to provide ecological opportunity for adaptive radiation, and thus provide a unique system for testing the hypothesis that shifts to new habitats alter diversification rates. To test this hypothesis, we sequenced eight genes for 96 species of pufferfishes and closely related porcupine fishes, and added 19 species from sequences available in GenBank. We time‐calibrated the molecular phylogeny using three fossils, and performed several comparative analyses to test whether colonization of novel habitats led to shifts in the rate of speciation and body size evolution, central predictions of clades experiencing ecological adaptive radiation. Colonization of freshwater is associated with lower rates of cladogenesis in pufferfishes, although these lineages also exhibit accelerated rates of body size evolution. Increased rates of cladogenesis are associated with transitions to coral reefs, but reef lineages surprisingly exhibit significantly lower rates of body size evolution. These results suggest that ecological opportunity afforded by novel habitats may be limited for pufferfishes due to competition with other species, constraints relating to pufferfish life history and trophic ecology, and other factors.  相似文献   

20.
Analysis of ecological characters on phylogenetic frameworks has only recently appeared in the literature, with several studies addressing patterns of niche evolution, generally over relatively recent time frames. In the present study, we examined patterns of niche evolution for a broad radiation of American blackbird species (Family Icteridae), exploring more deeply into phylogenetic history. Within each of three major blackbird lineages, overlap of ecological niches in principal components analysis transformed environmental space varied from high to none. Comparative phylogenetic analyses of ecological niche characteristics showed a general pattern of niche conservatism over evolutionary time, with differing degrees of innovation among lineages. Although blackbird niches were evolutionarily plastic over differing periods of time, they diverged within a limited set of ecological possibilities, resulting in examples of niche convergence among extant blackbird species. Hence, an understanding of the patterns of ecological niche evolution on broad phylogenetic scales sets the stage for framing questions of evolutionary causation, historical biogeography, and ancestral ecological characteristics more appropriately.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 869–878.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号