首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been 55 years since Hugo Freudenthal described Symbiodinium microadriaticum (Dinophyceae), the type species of this large and important dinoflagellate genus found commonly in mutualistic symbiosis with cnidarians, other invertebrates, and certain protists. However, no type specimen was designated by Freudenthal, thus S. microadriaticum was invalid, as was Symbiodinium and every species subsequently assigned to the genus. The original culture was lost, but since 1979, a different culture, CCMP2464/rt‐061, had been considered to represent S. microadriaticum. From this culture, a preserved specimen is herein designated the holotype of S. microadriaticum, validating the binomial and Symbiodinium. All binary designations previously considered to belong in Symbiodinium also are validated herein.  相似文献   

2.
Tunicates, the sister clade of vertebrates, have miniature genomes and numerous intronless genes compared to other animals. It is still unclear how the tunicates acquired such a large number of intronless genes. Here, we analyzed sequences and intron–exon organizations of homologous genes from two closely related tunicates, Ciona intestinalis and Ciona savignyi. We found seven cases in which ancestral introns of a gene were completely lost in a species after their divergence. In four cases, both the intronless copy and the intron-containing copy were present in the genome, indicating that the intronless copy was generated by retroduplication. In the other three cases, the intron-containing copy was absent, implying it was lost after retroduplication. This result suggests that retroduplication and loss of parental genes is a major mechanism for the accumulation of intronless genes in tunicates.  相似文献   

3.
While the two amylase genes of Drosophila melanogaster are intronless, the three genes of D. pseudoobscura harbor a short intron. This raises the question of the common structure of the Amy gene in Drosophila species. We have investigated the presence or absence of an intron in the amylase genes of 150 species of Drosophilids. Using polymerase chain reaction (PCR), we have amplified a region that surrounds the intron site reported in D. pseudoobscura and a few other species. The results revealed that most species contain an intron, with a variable size ranging from 50 to 750 bp, although the very majoritary size was around 60–80 bp. Several species belonging to different lineages were found to lack an intron. This loss of intervening sequence was likely due to evolutionarily independent and rather frequent events. Some other species had both types of genes: In the obscura group, and to a lesser extent in the ananassae subgroup, intronless copies had much diverged from intron-containing genes. Base composition of short introns was found to be variable and correlated with that of the surrounding exons, whereas long introns were all A-T rich. We have extended our study to non-Drosophilid insects. In species from other orders of Holometaboles, Lepidoptera and Hymenoptera, an intron was found at an identical position in the Amy gene, suggesting that the intron was ancestral. Received: 23 October 1995 / Accepted: 5 March 1996  相似文献   

4.
5.
Symbiotic dinoflagellates belonging to the genus Symbiodinium (Freudenthal) are found worldwide in association with shallow‐water tropical and subtropical marine invertebrates. Most phylogenetic studies of Symbiodinium have used nuclear rRNA (nrDNA) genes to infer relationships among members of the genus. In this report, we present the first phylogeny of Symbiodinium based on DNA sequences from a mitochondrial protein‐coding gene (cytochrome oxidase subunit I [cox1]). Two principal groups, one comprised of Symbiodinium clade A and the second encompassing Symbiodinium clades B/C/D/E/F, are strongly supported in the cox1 phylogeny. Relationships within Symbiodinium clades B/C/D/E/F, however, are less well resolved compared with phylogenies inferred from nrDNA and chloroplast large subunit (cp23S)‐rDNA genes. Statistical tests between alternative tree topologies verified, with an exception being the position of one controversial member of Symbiodinium clade D, that relationships inferred from cox1 are congruent with those inferred from nrDNA and cp23S‐rDNA. Taken together, the relationships between the major Symbiodinium clades are robust, and there appears to be no evidence of hybridization or differential introgression of nuclear and plastid genomes between clades.  相似文献   

6.
Coral–algal symbioses are essential for the survival of corals. Algal endosymbionts, specifically the dinoflagellate genus Symbiodinium, are divided into several genetic clades. The composition of Symbiodinium within corals plays an important role in the tolerance and/or sensitivity of host corals to local environments, due to individual Symbiodinium-specific physiological characteristics. While the majority of gamete-spawning corals acquire Symbiodinium from the surrounding environment, little is known about whether corals specifically select or randomly acquire Symbiodinium from the environmental population. In the present study, we compared the Symbiodinium clade composition of newly recruited Acropora corals with that of the environmental pool (water column, sediments, and adult colonies). More than 90 % of recruits harbored clades A and/or D until 6 months after settlement, despite the Symbiodinium environmental pool being mainly composed of clade C (mainly ITS1 type C2), and to a lesser extent clades A and D. In addition, the environmentally dominant type C2 Symbiodinium was not detected in Acropora recruits, while a few recruits harbored ITS1 types C1 or C15. Therefore, the clade composition of recruits may not reflect the abundance/density of Symbiodinium populations in the environment. Some members of clades A and D are known to exhibit tolerance to a wide range of environments. ITS1 type C1 also exhibits greater tolerance to thermal stress compared to ITS1 type C2. These tolerance characteristics of certain Symbiodinium may be vital for the initial survival of Acropora recruits, even if these Symbiodinium are rare in the environment.  相似文献   

7.
The cnidarian‐dinoflagellate mutualism is integral to the survival of the coral‐reef ecosystem. Despite the enormous ecological and economic importance of corals, their cellular and molecular biology and the ways in which they respond to environmental change are still poorly understood. We have been developing a proxy system for examining the coral mutualism in which the dinoflagellate symbiont Symbiodinium is introduced into a clonal population of the host Aiptasia, a small sea anemone closely related to corals. To further develop the tools for this system, we generated five clonal, axenic strains of Symbiodinium and verified the lack of contaminants by growth on rich medium, microscopic examination, and PCR analysis. These strains were assigned to clades A (two strains), B, E, and F based on their chloroplast 23S rDNA sequences. Growth studies in liquid cultures showed that the clade B strain and one of the clade A strains were able to grow photoautotrophically (in light with no fixed carbon), mixotrophically (in light with fixed carbon), or heterotrophically (in dark with fixed carbon). The clade E strain, thought to be free‐living, was able to grow photoautotrophically but not heterotrophically. Infection of an aposymbiotic Aiptasia host with the axenic strains showed consistent patterns of specificity, with only the clade B and one of the clade A strains able to successfully establish symbiosis. Overall, the Aiptasia‐Symbiodinium association represents an important model system for dissecting aspects of the physiology and cellular and molecular biology of cnidarian‐dinoflagellate mutualism and exploring issues that bear directly on coral bleaching.  相似文献   

8.
9.
Although reef corals are dependent of the dinoflagellate Symbiodinium, the large majority of corals spawn gametes that do not contain their vital symbiont. This suggests the existence of a pool of Symbiodinium in the environment, of which surprisingly little is known. Reefs around Curaçao (Caribbean) were sampled for free-living Symbiodinium at three time periods (summer 2009, summer 2010, and winter 2010) to characterize different habitats (water column, coral rubble, sediment, the macroalgae Halimeda spp., Dictyota spp., and Lobophora variegata, and the seagrass Thalassia testudinum) that could serve as environmental sources of symbionts for corals. We detected the common clades of Symbiodinium that engage in symbiosis with Caribbean coral hosts A, B, and C using Symbiodinium-specific primers of the hypervariable region of the chloroplast 23S ribosomal DNA gene. We also discovered clade G and, for the first time in the Caribbean, the presence of free-living Symbiodinium clades F and H. Additionally, this study expands the habitat range of free-living Symbiodinium as environmental Symbiodinium was detected in T. testudinum seagrass beds. The patterns of association between free-living Symbiodinium types and habitats were shown to be complex. An interesting, strong association was seen between some clade A sequence types and sediment, suggesting that sediment could be a niche where clade A radiated from a free-living ancestor. Other interesting relationships were seen between sequence types of Symbiodinium clade C with Halimeda spp. and clades B and F with T. testudinium. These relationships highlight the importance of some macroalgae and seagrasses in hosting free-living Symbiodinium. Finally, studies spanning beyond a 1-yr cycle are needed to further expand on our results in order to better understand the variation of Symbiodinium in the environment through time. All together, results presented here showed that the great diversity of free-living Symbiodinium has a dynamic distribution across habitats and time.  相似文献   

10.
11.
Many spliceosomal introns exist in the eukaryotic nuclear genome. Despite much research, the evolution of spliceosomal introns remains poorly understood. In this paper, we tried to gain insights into intron evolution from a novel perspective by comparing the gene structures of cytoplasmic ribosomal proteins (CRPs) and mitochondrial ribosomal proteins (MRPs), which are held to be of archaeal and bacterial origin, respectively. We analyzed 25 homologous pairs of CRP and MRP genes that together had a total of 527 intron positions. We found that all 12 of the intron positions shared by CRP and MRP genes resulted from parallel intron gains and none could be considered to be “conserved,” i.e., descendants of the same ancestor. This was supported further by the high frequency of proto-splice sites at these shared positions; proto-splice sites are proposed to be sites for intron insertion. Although we could not definitively disprove that spliceosomal introns were already present in the last universal common ancestor, our results lend more support to the idea that introns were gained late. At least, our results show that MRP genes were intronless at the time of endosymbiosis. The parallel intron gains between CRP and MRP genes accounted for 2.3% of total intron positions, which should provide a reliable estimate for future inferences of intron evolution.  相似文献   

12.
The genus Symbiodinium is the commonly observed symbiotic dinoflagellate (zooxanthellae) that forms mutual associations with various marine invertebrates. Numerous studies have revealed that the genus is comprised of a group of diverse taxa, and information on the phylogenetic relationships among the genus’ members is increasing. In this study, small subunit (SSU) ribosomal RNA (ssrRNA) gene sequences were determined for 15 more Symbiodinium strains from 12 relatively unstudied host taxa (Indo-Pacific tridacnids, cardiids, sponge, and soft coral), 1 hitherto unreported free-living Symbiodinium strain, and 4 other Symbiodinium strains from four other host taxa (Indo-Pacific zoanthid, foraminifer, jellyfish, and mid-Pacific hard coral). Their respective phylogenetic positions were inferred, and strains that are either closely related to or distinct from previously reported Symbiodinium taxa were revealed. The cultured Symbiodinium strains isolated from individuals of six species of tridacnids and three species of cardiids all had identical ssrRNA gene sequences, are closely related to S. microadriaticum Freudenthal, and are indistinguishable from the RFLP Type A strain previously reported. However, the ssrRNA gene sequences of clam symbionts that were obtained via gene cloning were different from those of the cultured isolates and represent strains that are close to the RFLP Type C strains. The Symbiodinium-like dinoflagellate from the Indo-Pacific sponge Haliclona koremella De Laubenfels is distinct from any of the Symbiodinium taxa studied and may be similar to the symbiont previously isolated from the stony coral Montipora patula Quelch. The isolates from the soft coral Sarcophyton glaucum Quoy et Gaimard and from the zoanthid Zoanthus sp. are both very closely related to S. pilosum Trench et Blank. The free-living Symbiodinium isolate is very closely related to the symbiont isolated from the Indo-Pacific foraminifer Amphisorus hemprichii Ehrenberg, which in turn is distinct from the Red Sea strain isolated from a similar host. Theisolate from Cassiopeia sp. is different from S. microadriaticum F., the type species harbored by Cassiopeia xamachana Bigelow, and is instead very closely related to S. pulchrorum Trench isolated from a sea anemone. The symbiont from the stony coral M. verrucosa Lamarck is a sister taxon to the symbionts isolated from the foraminifera Marginopora kudakajimensis Gudmundsson and Sorites orbiculus Forskål. These data suggest that polymorphic symbioses extend from cnidarians to some bivalve, foraminifer, and jellyfish host species.  相似文献   

13.
Symbiodinium reside intracellularly in a complex symbiosome (host and symbiont‐derived) within cnidarian hosts in a specific host‐symbiont association. Symbiodinium is a diverse genus with variation greater than other dinoflagellate orders. In this paper, our investigation into specificity examines antigenic variation in the algal mucilage secretions at the host‐symbiont interface. Cultured Symbiodinium from a variety of clades were labeled with one of two antibodies to symbiont mucilage (PC3, developed using a clade B alga cultured from Aiptasia pallida; BF10, developed using a clade F alga cultured from Briareum sp.). The labeling was visualized with a fluorescent marker and examined with epifluorescence and confocal microscopy. PC3 antigen was found in cultured Symbiodinium from clades A and B, but not clades C, D, E and F. The correlation between labeling and clade may account for some of the specificity between host and symbiont in the field. Within clades A and B there was variation in the amount of label present. BF10 antigen was more specific and only found in cultures of the same cp23S‐rDNA strain the antibody was created against. These results indicate that the mucilage secretions do vary both qualitatively and quantitatively amongst Symbiodinium strains. Since the mucilage forms the host‐symbiont interface, variation in its molecular composition is likely to be the source of any signals involved in recognition and specificity.  相似文献   

14.
Our understanding of reef corals and their fate in a changing climate is limited by our ability to monitor the diversity and abundance of the dinoflagellate endosymbionts that sustain them. This study combined two well-known methods in tandem: fluorescent in situ hybridization (FISH) for genotype-specific labeling of Symbiodinium and flow cytometry to quantify the abundance of each symbiont clade in a sample. This technique (FISH-Flow) was developed with cultured Symbiodinium representing four distinct clades (based on large subunit rDNA) and was used to distinguish and quantify these types with high efficiency and few false positives. This technique was also applied to freshly isolated symbionts of Orbicella faveolata and Orbicella annularis. Isolates from acutely bleached coral tissues had significantly lower labeling efficiency; however, isolates from healthy tissue had efficiencies comparable to cultured Symbiodinium trials. RNA degradation in bleaching samples may have interfered with labeling of cells. Nevertheless, we were able to determine that, with and without thermal stress, experimental columns of the coral O. annularis hosted a majority of clade B and B/C symbionts on the top and side of the coral column, respectively. We demonstrated that, for cultured Symbiodinium and Symbiodinium freshly isolated from healthy host tissues, the relative ratio of clades could be accurately determined for clades present at as low as 7 % relative abundance. While this method does not improve upon PCR-based techniques in identifying clades at background levels, FISH-Flow provides a high precision, flexible system for targeting, quantifying and isolating Symbiodinium genotypes of interest.  相似文献   

15.
The capacity of reef-building corals to associate with environmentally-appropriate types of endosymbionts from the dinoflagellate genus Symbiodinium contributes significantly to their success at local scales. Additionally, some corals are able to acclimatize to environmental perturbations by shuffling the relative proportions of different Symbiodinium types hosted. Understanding the dynamics of these symbioses requires a sensitive and quantitative method of Symbiodinium genotyping. Electrophoresis methods, still widely utilized for this purpose, are predominantly qualitative and cannot guarantee detection of a background type below 10% of the total Symbiodinium population. Here, the relative abundances of four Symbiodinium types (A13, C1, C3, and D1) in mixed samples of known composition were quantified using deep sequencing of the internal transcribed spacer of the ribosomal RNA gene (ITS-2) by means of Next Generation Sequencing (NGS) using Roche 454. In samples dominated by each of the four Symbiodinium types tested, background levels of the other three types were detected when present at 5%, 1%, and 0.1% levels, and their relative abundances were quantified with high (A13, C1, D1) to variable (C3) accuracy. The potential of this deep sequencing method for resolving fine-scale genetic diversity within a symbiont type was further demonstrated in a natural symbiosis using ITS-1, and uncovered reef-specific differences in the composition of Symbiodinium microadriaticum in two species of acroporid corals (Acropora digitifera and A. hyacinthus) from Palau. The ability of deep sequencing of the ITS locus (1 and 2) to detect and quantify low-abundant Symbiodinium types, as well as finer-scale diversity below the type level, will enable more robust quantification of local genetic diversity in Symbiodinium populations. This method will help to elucidate the role that background types have in maximizing coral fitness across diverse environments and in response to environmental change.  相似文献   

16.
Several group I introns have been previously found in strains of the Bacillus cereus group at three different insertion sites in the nrdE gene of the essential nrdIEF operon coding for ribonucleotide reductase. Here, we identify an uncharacterized group IA intron in the nrdF gene in 12 strains of the B. cereus group and show that the pre-mRNA is efficiently spliced. The Bacillus thuringiensis ssp. pakistani nrdF intron encodes a homing endonuclease, denoted I-BthII, with an unconventional GIY-(X)8-YIG motif that cleaves an intronless nrdF gene 7 nt upstream of the intron insertion site, producing 2-nt 3′ extensions. We also found four additional occurrences of two of the previously reported group I introns in the nrdE gene of 25 sequenced B. thuringiensis and one B. cereus strains, and one non-annotated group I intron at a fourth nrdE insertion site in the B. thuringiensis ssp. Al Hakam sequenced genome. Two strains contain introns in both the nrdE and the nrdF genes. Phylogenetic studies of the nrdIEF operon from 39 strains of the B. cereus group suggest several events of horizontal gene transfer for two of the introns found in this operon.  相似文献   

17.
A protocol that takes advantage of length heteroplasmy in domain V of chloroplast large subunit (cp23S)–ribosomal DNA to identify members of the symbiotic dinoflagellate genus Symbiodinium is presented. This protocol is highly specific for Symbiodinium, can provide intercladal and intracladal identification of a particular Symbiodinium isolate, and can detect multiple Symbiodinium chloroplast genotypes simultaneously in the same isolate, making his technique attractive for a variety of research questions. We used this technique to characterize variation among Symbiodinium populations associated with a range of phylogenetically diverse and geographically discrete hosts. We also examined symbiont variation within a single host, the Caribbean gorgonian Pseudopterogorgia elisabethae, from 9 sites in the Bahamas, and we report a previously undocumented level of symbiont specificity for particular members of Symbiodinium clade B in this gorgonian. Current address of Scott R. Santos: Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ, 85721, U.S.A.  相似文献   

18.
Although the examination of large subunit ribosomal RNA genes (LSU rDNA) is advanced in phylogenetic studies, no corresponding sequence data from trebouxiophytes have been published, with the exception of ‘Chlorellaellipsoidea Gerneck. We determined the LSU rDNA sequence of Chlorella vulgaris Beijerinck and of the symbiotic alga of green paramecium, Chlorella sp. NC64A. A total of 59 nucleotide substitutions were found in the LSU rDNA of the two species, which are disproportionately distributed. Primarily, 65% of the substitutions were encountered in the first 800 bp of the alignment. This segment apparently has evolved eight times faster than the complete SSU rDNA sequence, making it a good candidate for a phylogenetic marker and giving a resolution level intermediate between small subunit (SSU) rDNA and internal transcribed spacers. Green algae are known as a group I intron‐rich group along with rhodophytes and fungi. NC64A is particularly rich in the introns; five introns were newly identified from the LSU rDNA sequence, which we named Cnc.L200, Cnc.L1688, Cnc.L1926, Cnc.L2184 and Cnc.L2437, following the insertion positions. In the present study we analyzed these introns with three others (Cnc.S943, Cnc.S1367 and Cnc.S1512) that had already been found in NC64A SSU rDNA. Secondary structure modeling placed these introns in the group I intron family, with four introns belonging to subgroup C1 and the other four introns belonging to subgroup E. Five of the intron insertion positions are unique to the paramecian symbiont, which may indicate relatively recent events of intron infections that includes transpositions. Intron phylogeny showed unprecedented relationships; four Cnc. IC1 introns made a clade with some green algal introns with insertions at nine different positions, whereas four Cnc. IE introns made a clade with the S651 intron (Chlorella sp. AN 1–3), which lay as a sister to the S516 insertion position subfamily.  相似文献   

19.
Most of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes characterized in plants and algae to date have one intron very close to the 5 end of the gene. To study the functional relevance of some of these introns for gene expression we have analysed the influence of three 5 introns on transient gene expression of the anaerobically inducible maizeGapC4 promoter in maize cells. Under aerobic conditions, reporter gene expression is increased in the presence of the first introns of theGapC4 andGapC1 genes, and the first intron of the nuclear encoded chloroplast-specificGapA1 gene. In contrast, theGapC4 intron increases anaerobic gene expression above the level obtained for the intronless construct, while anaerobic expression of constructs harboring theGapA1 andGapC1 introns was similar to the anaerobic expression level of the intronless construct. Splicing analysis revealed that theGapC4 intron is processed more efficiently under anaerobic conditions, while no change in splicing efficiency is observed for theGapC1 and theGapA1 introns when subjected to anaerobic conditions. These results suggest that an increase in splicing efficiency contributes to the anaerobic induction of the maizeGapC4 gene.  相似文献   

20.
We examined a free‐living Symbiodinium species by light and electron microscopy and nuclear‐encoded partial LSU rDNA sequence data. The strain was isolated from a net plankton sample collected in near‐shore waters at Tenerife, the Canary Islands. Comparing the thecal plate tabulation of the free‐living Symbiodinium to that of S. microadriaticum Freud., it became clear that a few but significant differences could be noted. The isolate possessed two rather than three antapical plates, six rather than seven to eight postcingular plates, and finally four rather than five apical plates. The electron microscopic study also revealed the presence of an eyespot with brick‐shaped contents in the sulcal region and a narrow anterior plate with small knob‐like structures. Bayesian analysis revealed the free‐living Symbiodinium to be a member of the earliest diverging clade A. However, it did not group within subclade AI (=temperate A) or any other subclades within clade A. Rather, it occupied an isolated position, and this was also supported by sequence divergence estimates. On the basis of comparative analysis of the thecal plate tabulation and the inferred phylogeny, we propose that the Symbiodinium isolate from Tenerife is a new species (viz. S. natans). To elucidate further the species diversity of Symbiodinium, particularly those inhabiting coral reefs, we suggest combining morphological features of the thecal plate pattern with gene sequence data. Indeed, future examination of motile stages originating from symbiont isolates will demonstrate if this proves a feasible way to identify and characterize additional species of Symbiodinium and thus match ribotypes or clusters of ribotypes to species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号