首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Plasmids pPBP and pRS-XP containing the cloned genes for the Pseudomonas aeruginosa phosphate-starvation-inducible periplasmic phosphate-binding protein and outer membrane porin P (oprP), respectively, were introduced into various Escherichia coli Pho-regulon regulatory mutants. Using Western immunoblots and specific antisera, the production of both gene products was observed to be under the control of regulatory elements of the E. coli Pho regulon. Sequencing of the region upstream of the translational start site of the oprP gene revealed a 'Pho box' with strong homology to the E. coli consensus 'Pho box', the putative binding site of the PhoB activator. Since P. aeruginosa and E. coli belong to different families and have quite different GC contents, these data suggest strong evolutionary conservation of regulatory elements of the Pho regulon.  相似文献   

4.
5.
Pseudomonas aeruginosa and Burkholderia cepacia are the major pathogens that colonize the airway surface and cause progressive respiratory failure and high mortality, especially in cystic fibrosis (CF) patients. Tobramycin is the treatment of choice, but persistent usage enables the infectious organisms to activate defence mechanisms, making eradication rarely successful. Combinations of antibiotic and nonantibiotic compounds have been tested in vitro against P. aeruginosa and B. cepacia , but with mixed results. Sodium ions interfere with the bacterial tobramycin uptake system, but amiloride partially reverses this antagonism. In this pilot study, we extend previous findings of the effectiveness of tobramycin in combination with amiloride and other nonantibiotics against a P. aeruginosa type strain, and against four P. aeruginosa strains and one Burkholderia cenocepacia strain isolated from CF patients. Significantly, the four clinical P. aeruginosa strains were tobramycin resistant. We also find that Na+ and K+, but not Cl, are the chief antagonists of tobramycin efficacy. These results suggest that chemotherapy for CF patients might not only be compromised by antibiotic-resistant pathogens alone, but by a lack of penetration of antibiotics caused either by bacterial biofilms or the high sodium flux in the CF lung, or by antagonistic effects of some drug combinations, any of which could allow the persistence of drug-susceptible bacteria.  相似文献   

6.
Bacterial small RNAs (sRNAs) modulate gene expression by base-pairing with target mRNAs. Many sRNAs require the Sm-like RNA binding protein Hfq as a cofactor. Well-characterized interactions between DsrA sRNA and the rpoS mRNA leader were used to understand how Hfq stimulates sRNA pairing with target mRNAs. DsrA annealing stimulates expression of rpoS by disrupting a secondary structure in the rpoS leader, which otherwise prevents translation. Both RNAs bind Hfq with similar affinity but interact with opposite faces of the Hfq hexamer. Using mutations that block interactions between two of the three components, we demonstrate that Hfq binding to a functionally critical (AAN)(4) motif in rpoS mRNA rescues DsrA binding to a hyperstable rpoS mutant. We also show that Hfq cannot stably bridge the RNAs. Persistent ternary complexes only form when the two RNAs are complementary. Thus, Hfq mainly acts by binding and restructuring the rpoS mRNA. However, Hfq binding to DsrA is needed for maximum annealing in vitro, indicating that transient interactions with both RNAs contribute to the regulatory mechanism.  相似文献   

7.
Two bacterial perhydrolase genes, perPA and perBC, were cloned from Pseudomonas aeruginosa and Burkholderia cepacia, respectively, using PCR amplification with primers designed to be specific for conserved amino acid sequences of the already-known perhydrolases. The amino acid sequence of PerPA was identical to a putative perhydrolase of P. aeruginosa PAO1 genome sequences, whereas PerBC of B. cepacia was a novel bacterial perhydrolase showing similarity of less than 80% with all other existing perhydrolases. Most importantly, the perPA gene was expressed as a soluble intracellular form to an extent of more than 50% of the total protein content in Escherichia coli. Two perhydrolase enzymes were confirmed to exhibit the halogenation activity towards Phenol Red and monochlorodimedone. These results suggested that we successfully obtained the newly identified members of the bacterial perhydrolase family, expanding the pool of available perhydrolases.  相似文献   

8.
The Hfq polypeptide of Escherichia coli is a nucleic acid-binding protein involved in the expression of many proteins. Derivation of its three-dimensional structure is important for our understanding of its role in gene regulation at the molecular level. In this study, we combined computational and biophysical analysis to derive a possible structure for Hfq. As a first step towards determining the structure, we searched for possible sequence-structure compatibility, using secondary structure prediction and protein domain and fold-recognition methods available on the WEB. One fold, essentially beta sheet in character, the Sm motif of small nuclear ribonucleoproteins, even though it initially fell well below the confidence thresholds, was proposed and further validated by a series of biophysical and biochemical studies. The Hfq hexamer structure was modelled on the human Sm D3B structure using optimised sequence alignments and molecular mechanics methods. This structure accounts for the physico-chemical properties of Hfq and highlights amino acid residues that could interact with RNA.  相似文献   

9.
目的为了探讨抗生素对中心碳代谢的影响,我们研究了大肠埃希菌和铜绿假单胞菌在11种不同抗生素的刺激下,三羧酸循环相关有机酸的代谢变化。方法利用毛细管电泳技术对2种菌在不同抗生素作用下细胞内的主要有机酸进行检测,然后通过多变量统计分析对数据进行处理。结果通过多变量统计分析发现,2种细菌可以通过抗生素对其胞内有机酸的影响不同而得到区分。结论胞内有机酸的变化具有菌株特异性,可以用于细菌的区分。  相似文献   

10.
Expression of heterologous protein in Escherichia coli usually based on the IPTG-inducible expression systems. The use of these systems for membrane protein production, however, usually caused cytotoxic problem that affected the yield and functional characterization of the protein. Optimization of these systems for transporter protein production is time-consuming and is usually ineffective. Here, we described the use of the ribosomal promoters P(s12) from Burkholderia cenocepacia LMG16656 and from Burkholderia cepacia MBA4 for efficient expression of functional transporter protein in E. coli. These promoters were used to drive the expression of a transmembrane protein, Deh4p, which help transport monohaloacetates into B. cepacia MBA4 for metabolism. Production of Deh4p in E. coli using an IPTG-inducible promoter resulted in no expression in uninduced condition and cell lysis in the presence of IPTG. Moreover, it has been reported that IPTG increased the endogenous production of other permeases such as LacZ and MelB. Cells expressing Deh4p from a P(s12) promoter grew normally in rich medium and which did not increase the expression of other permease. Uptake of (14)C-monochloroacetic acid has confirmed the production of the transporter protein in these cells. The results showed that the constitutive ribosomal protein promoters from the Burkholderia sp. could be used for effective expression of transporter protein in E. coli without causing any detrimental and unnecessary effect.  相似文献   

11.
12.
R' plasmids carrying argF genes from Pseudomonas aeruginosa strains PAO and PAC were transferred to Pseudomonas putida argF and Escherichia coli argF strains. Expression in P. putida was similar to that in P. aeruginosa and was repressed by exogenous arginine. Expression in E. coli was 2 to 4% of that in P. aeruginosa. Exogenous arginine had no effect, and there were no significant differences between argR' and argR strains of E. coli in this respect.  相似文献   

13.
14.
Abstract Pseudomonas aeruginosa and Escherichia coli were exposed to nocardicin A, and were subsequently observed with transmission and scanning electron microscopes. Although the nocardicin A-induced morphological alterations such as bulges and spheroplast formations were observed both in P. aeruginosa and E. coli , their positions on the cell surface were different in the two species.  相似文献   

15.
The Gram-negative bacteria Pseudomonas aeruginosa and Burkholderia cenocepacia are opportunistic human pathogens that are responsible for severe nosocomial infections in immunocompromised patients and those suffering from cystic fibrosis (CF). These two bacteria have been shown to form biofilms in the airways of CF patients that make such infections more difficult to treat. Only recently have scientists begun to appreciate the complicated interplay between microorganisms during polymicrobial infection of the CF airway and the implications they may have for disease prognosis and response to therapy.To gain insight into the possible role that interaction between strains of P. aeruginosa and B. cenocepacia may play during infection, we characterised co-inoculations of in vivo and in vitro infection models. Co-inoculations were examined in an in vitro biofilm model and in a murine model of chronic infection. Assessment of biofilm formation showed that B. cenocepacia positively influenced P. aeruginosa biofilm development by increasing biomass. Interestingly, co-infection experiments in the mouse model revealed that P. aeruginosa did not change its ability to establish chronic infection in the presence of B. cenocepacia but co-infection did appear to increase host inflammatory response.Taken together, these results indicate that the co-infection of P. aeruginosa and B. cenocepacia leads to increased biofilm formation and increased host inflammatory response in the mouse model of chronic infection. These observations suggest that alteration of bacterial behavior due to interspecies interactions may be important for disease progression and persistent infection.  相似文献   

16.
17.
The plc gene for phospholipase of Pseudomonas aeruginosa, able to be transcribed only from its own promoter, has been introduced into Escherichia coli, Pseudomonas aeruginosa and Pseudomonas putida cells in the recombinant plasmid pPMS21 of a wide host range. The expression of plc gene in all recipient cells has been shown to be phosphate regulated. The fact emphasizes the identity of pho-regulation systems in Escherichia coli and Pseudomonas cells. The level of phospholipase activity is similar in Pseudomonas putida and Pseudomonas aeruginosa under the conditions of the gene derepression, while in Escherichia coli cells the level does not exceed 10% of activity registered in Pseudomonas cells.  相似文献   

18.
Phage therapy is being reexamined as a strategy for bacterial control in medical and other environments. As microorganisms often live in mixed populations, we examined the effect of Escherichia coli bacteriophage λW60 and Pseudomonas aeruginosa bacteriophage PB-1 infection on the viability of monoculture and mixed-species biofilm and planktonic cultures. In mixed-species biofilm communities, E. coli and P. aeruginosa maintained stable cell populations in the presence of one or both phages. In contrast, E. coli planktonic populations were severely depleted in coculture in the presence of λW60. Both E. coli and P. aeruginosa developed phage resistance in planktonic culture; however, reduced resistance was observed in biofilm communities. Increased phage titers and reduced resistance in biofilms suggest that phage can replicate on susceptible cells in biofilms. Infectious phage could be released from mixed-culture biofilms upon treatment with Tween 20 but not upon treatment with chloroform. Tween 20 and chloroform treatments had no effect on phage associated with planktonic cells, suggesting that planktonic phage were not cell or matrix associated. Transmission electron microscopy showed bacteriophage particles to be enmeshed in the extracellular polymeric substance component of biofilms and that this substance could be removed by Tween 20 treatment. Overall, this study demonstrates how mixed-culture biofilms can maintain a reservoir of viable phage and bacterial populations in the environment.  相似文献   

19.
The effect of cultivation parameters such as temperature incubation, IPTG induction and ethanol shock on the production of Pseudomonas aeruginosa amidase (E.C.3.5.1.4) in a recombinant Escherichia coli strain in LB ampicillin culture medium was investigated. The highest yield of soluble amidase, relatively to other proteins, was obtained in the condition at 37°C using 0.40 mM IPTG to induce growth, with ethanol. Our results demonstrate the formation of insoluble aggregates containing amidase, which was biologically active, in all the tested growth conditions. Addition of ethanol at 25°C in the culture medium improved amidase yield, which quantitatively aggregated in a biological active form and exhibited in all conditions an increased specific activity relatively to the soluble form of the enzyme. Non-denaturing solubilization of the aggregated amidase was successfully achieved using L-arginine. The aggregates obtained from conditions at 37°C by FTIR analysis demonstrated a lower content of intermolecular interactions which facilitated the solubilization step applying non-denaturing conditions. The higher interactions exhibited in aggregates obtained at suboptimal conditions compromised the solubilization yield. This work provides an approach for the characterization and solubilization of novel reported biologically active aggregates of this amidase.  相似文献   

20.
The Sm protein Hfq chaperones small non-coding RNAs (sRNAs) in bacteria, facilitating sRNA regulation of target mRNAs. Hfq acts in part by remodeling the sRNA and mRNA structures, yet the basis for this remodeling activity is not understood. To understand how Hfq remodels RNA, we used single-molecule Förster resonance energy transfer (smFRET) to monitor conformational changes in OxyS sRNA upon Hfq binding. The results show that E. coli Hfq first compacts OxyS, bringing its 5′ and 3 ends together. Next, Hfq destabilizes an internal stem-loop in OxyS, allowing the RNA to adopt a more open conformation that is stabilized by a conserved arginine on the rim of Hfq. The frequency of transitions between compact and open conformations depend on interactions with Hfqs flexible C-terminal domain (CTD), being more rapid when the CTD is deleted, and slower when OxyS is bound to Caulobacter crescentus Hfq, which has a shorter and more stable CTD than E. coli Hfq. We propose that the CTDs gate transitions between OxyS conformations that are stabilized by interaction with one or more arginines. These results suggest a general model for how basic residues and intrinsically disordered regions of RNA chaperones act together to refold RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号