首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations of parkin, a protein-ubiquitin E3 ligase, are linked to Parkinson's disease (PD). Although a variety of parkin substrates have been identified, none of these is selectively expressed in dopaminergic neurons, whose degeneration plays a critical role in PD. Here we show that parkin significantly increased dopamine uptake in the human dopaminergic neuroblastoma cell line SH-SY5Y. This effect was accompanied by increased V(max) of dopamine uptake and unchanged K(m). Consistent with this, increased binding sites for dopamine transporter (DAT) ligand were observed in SH-SY5Y cells overexpressing parkin. The results were confirmed when parkin was transfected in HEK293 cells stably expressing DAT. In these cells, parkin enhanced the ubiquitination and degradation of DAT, increased its cell surface expression, and augmented dopamine uptake. The effects of parkin were significantly abrogated by its PD-causing mutations. Because the cell surface expression of functional DAT requires its oligomerization, misfolded DAT, induced either by the protein glycosylation inhibitor tunicamycin or by its C-terminal truncation, significantly attenuated cell surface expression of native DAT and reduced dopamine uptake. Expression of parkin, but not its T240R mutant, significantly alleviated these detrimental effects of misfolded DAT. Thus, our studies suggest that parkin increases dopamine uptake by enhancing the ubiquitination and degradation of misfolded DAT, so as to prevent it from interfering with the oligomerization and cell surface expression of native DAT. This function of parkin would enhance the precision of dopaminergic transmission, increase the efficiency of dopamine utilization, and reduce dopamine toxicity on neighboring cells.  相似文献   

2.
Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by tremor, rigidity and akinesia/bradykinesia resulting from the progressive loss of nigrostriatal dopaminergic neurons. To date, only symptomatic treatment is available for PD patients, with no effective means of slowing or stopping the progression of the disease. Progranulin (PGRN) is a 593 amino acid multifunction protein that is widely distributed throughout the CNS, localized primarily in neurons and microglia. PGRN has been demonstrated to be a potent regulator of neuroinflammation and also acts as an autocrine neurotrophic factor, important for long-term neuronal survival. Thus, enhancing PGRN expression may strengthen the cells resistance to disease. In the present study, we have used the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD to investigate the possible use of PGRN gene delivery as a therapy for the prevention or treatment of PD. Viral vector delivery of the PGRN gene was an effective means of elevating PGRN expression in nigrostriatal neurons. When PGRN expression was elevated in the SNC, nigrostriatal neurons were protected from MPTP toxicity in mice, along with a preservation of striatal dopamine content and turnover. Further, protection of nigrostriatal neurons by PGRN gene therapy was accompanied by reductions in markers of MPTP-induced inflammation and apoptosis as well as a complete preservation of locomotor function. We conclude that PGRN gene therapy may have beneficial effects in the treatment of PD.  相似文献   

3.
Recessively inherited loss-of-function mutations in the parkin , DJ-1 , or PINK1 gene are linked to familial cases of early-onset Parkinson's diseases (PD), and heterozygous mutations are associated with increased incidence of late-onset PD. We previously reported that single knockout mice lacking Parkin, DJ-1, or PINK1 exhibited no nigral degeneration, even though evoked dopamine release from nigrostriatal terminals was reduced and striatal synaptic plasticity was impaired. In this study, we tested whether inactivation of all three recessive PD genes, each of which was required for nigral neuron survival in the aging human brain, resulted in nigral degeneration during the lifespan of mice. Surprisingly, we found that triple knockout mice lacking Parkin, DJ-1, and PINK1 have normal morphology and numbers of dopaminergic and noradrenergic neurons in the substantia nigra and locus coeruleus, respectively, at the ages of 3, 16, and 24 months. Interestingly, levels of striatal dopamine in triple knockout mice were normal at 16 months of age but increased at 24 months. These results demonstrate that inactivation of all three recessive PD genes is insufficient to cause significant nigral degeneration within the lifespan of mice, suggesting that these genes may be protective rather than essential for the survival of dopaminergic neurons during the aging process. These findings also support the notion that mammalian Parkin and PINK1 may function in the same genetic pathway as in Drosophila .  相似文献   

4.
BAG5 inhibits parkin and enhances dopaminergic neuron degeneration   总被引:9,自引:0,他引:9  
Loss-of-function mutations in the parkin gene, which encodes an E3 ubiquitin ligase, are the major cause of early-onset Parkinson's disease (PD). Decreases in parkin activity may also contribute to neurodegeneration in sporadic forms of PD. Here, we show that bcl-2-associated athanogene 5 (BAG5), a BAG family member, directly interacts with parkin and the chaperone Hsp70. Within this complex, BAG5 inhibits both parkin E3 ubiquitin ligase activity and Hsp70-mediated refolding of misfolded proteins. BAG5 enhances parkin sequestration within protein aggregates and mitigates parkin-dependent preservation of proteasome function. Finally, BAG5 enhances dopamine neuron death in an in vivo model of PD, whereas a mutant that inhibits BAG5 activity attenuates dopaminergic neurodegeneration. This contrasts with the antideath functions ascribed to BAG family members and suggests a potential role for BAG5 in promoting neurodegeneration in sporadic PD through its functional interactions with parkin and Hsp70.  相似文献   

5.
Parkinson’s disease (PD) is a movement disorder associated with genetic and age related causes. Although autosomal recessive early onset PD linked to parkin mutations does not exhibit α-Synuclein accumulation, while autosomal dominant and sporadic PD manifest with α-Synuclein inclusions, loss of dopaminergic substantia nigra neurons is a common denominator in PD. Here we show that decreased parkin ubiquitination and loss of parkin stability impair interaction with Beclin-1 and alter α-Synuclein degradation, leading to death of dopaminergic neurons. Tyrosine kinase inhibition increases parkin ubiquitination and interaction with Beclin-1, promoting autophagic α-Synuclein clearance and nigral neuron survival. However, loss of parkin via deletion increases α-Synuclein in the blood compared to the brain, suggesting that functional parkin prevents α-Synuclein release into the blood. These studies demonstrate that parkin ubiquitination affects its protein stability and E3 ligase activity, possibly leading to α-Synuclein sequestration and subsequent clearance.  相似文献   

6.
Mutations or inactivation of parkin, an E3 ubiquitin ligase, are associated with familial form or sporadic Parkinson’s disease (PD), respectively, which manifested with the selective vulnerability of neuronal cells in substantia nigra (SN) and striatum (STR) regions. However, the underlying molecular mechanism linking parkin with the etiology of PD remains elusive. Here we report that p62, a critical regulator for protein quality control, inclusion body formation, selective autophagy and diverse signaling pathways, is a new substrate of parkin. P62 levels were increased in the SN and STR regions, but not in other brain regions in parkin knockout mice. Parkin directly interacts with and ubiquitinates p62 at the K13 to promote proteasomal degradation of p62 even in the absence of ATG5. Pathogenic mutations, knockdown of parkin or mutation of p62 at K13 prevented the degradation of p62. We further showed that parkin deficiency mice have pronounced loss of tyrosine hydroxylase positive neurons and have worse performance in motor test when treated with 6-hydroxydopamine hydrochloride in aged mice. These results suggest that, in addition to their critical role in regulating autophagy, p62 are subjected to parkin mediated proteasomal degradation and implicate that the dysregulation of parkin/p62 axis may involve in the selective vulnerability of neuronal cells during the onset of PD pathogenesis.  相似文献   

7.
Parkinson’s disease (PD) is a chronic, progressive neurodegenerative disease, where dopaminergic cells die most prominently in the area of substantia nigra. Neurotrophic factors (NTFs) are secreted proteins, which upon binding to their target receptors trigger survival pathways to prevent neuronal loss. Recently discovered NTFs mesencephalic astrocyte-derived neurotrophic factor (MANF) and conserved dopamine neurotrophic factor (CDNF) most efficiently protect and repair the dopaminergic neurons in the animal 6-OHDA models of PD. However, the neuroprotective mechanism of MANF/CDNF is currently elusive. To this end, we have employed high-resolution NMR spectroscopy to determine three-dimensional structure of full-length human MANF in solution and characterized C-terminal domain as structural unit of MANF protein.  相似文献   

8.
Parkinson's disease (PD) is a chronic neurodegenerative disease characterized by selective loss of dopaminergic neurons in the pars compacta of the substantia nigra. Levodopa ( l -dopa) and dopamine agonists have been most commonly used for symptomatic treatment. However, there are discrepancies between clinical and experimental data with respect to the neuroprotective effects of these drugs on dopaminergic neurons. In this study, to determine whether l -dopa is toxic or dopamine agonist is neuroprotective to dopaminergic neurons, we evaluated the neuroprotective properties of l -dopa and the pramipexol (PPX), one of dopamine agonists, with a focus on the regulatory effects of the anti-oxidant properties and cell survival or apoptotic signal pathways in the same experimental design, using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated PD animals. The glutathione level in MPTP-treated mice was significantly increased by PPX administration but not by L-dopa treatment. The expression of phosphorylated extracellular signal regulated kinase in MPTP-treated mice was significantly increased only with l -dopa treatment. Treatment with either l -dopa or PPX in MPTP-treated mice led to significantly decreased expressions of JNK phosphorylation, Bax, and cytochrome c and to an increased level of Bcl-2 expression with a similar degree, compared with the levels in MPTP-only treated mice. Immunohistochemical analysis showed that both l -dopa and PPX increased significantly survival of dopaminergic neurons in MPTP-treated mice. Our study demonstrated that both l -dopa and PPX had comparable neuroprotective properties for dopaminergic neurons in MPTP-treated PD animal models, through modulation of cell survival and apoptotic pathways.  相似文献   

9.
Parkin, a product of the gene responsible for autosomal recessive juvenile parkinsonism (AR-JP), is an important player in the pathogenic process of Parkinson's disease (PD). Despite numerous studies including search for the substrate of parkin as an E3 ubiquitin-protein ligase, the mechanism by which loss-of-function of parkin induces selective dopaminergic neuronal death remains unclear. Related to this issue, here we show that antisense knockdown of parkin causes apoptotic cell death of human dopaminergic SH-SY5Y cells associated with caspase activation and accompanied by accumulation of oxidative dopamine (DA) metabolites due to auto-oxidation of DOPA and DA. Forced expression of alpha-synuclein (alpha-SN), another familial PD gene product, prevented accumulation of oxidative DOPA/DA metabolites and cell death caused by parkin loss. Our findings indicate that both parkin and alpha-SN share a common pathway in DA metabolism whose abnormality leads to accumulation of oxidative DA metabolites and subsequent cell death.  相似文献   

10.
Parkinson's disease (PD) patients show a characteristic loss of motor control caused by the degeneration of dopaminergic neurons. Mutations in the genes that encode alpha-synuclein and parkin have been linked to inherited forms of this disease. The parkin protein functions as a ubiquitin ligase that targets proteins for degradation. Expression of isoforms of human alpha-synuclein in the Drosophila melanogaster nervous system forms the basis of an excellent genetic model that recapitulates phenotypic and behavioural features of PD. Using this model, we analysed the effect of parkin co-expression on the climbing ability of aging flies, their life span, and their retinal degeneration. We have determined that co-expression of parkin can suppress phenotypes caused by expression of mutant alpha-synuclein. In the developing eye, parkin reduces retinal degeneration. When co-expressed in the dopaminergic neurons, the ability to climb is extended over time. If conserved in humans, we suggest that upregulation of parkin may prove a method of suppression for PD induced by mutant forms of alpha-synuclein.  相似文献   

11.
Parkin, a ubiquitin ligase, is responsible for autosomal recessive juvenile parkinsonism (AR-JP). We identified parkin-associated endothelin receptor-like receptor (Pael-R) as a substrate of parkin, whose accumulation is thought to induce unfolded protein response (UPR) -mediated cell death, leading to dopaminergic neurodegeneration. To create an animal model of AR-JP, we generated parkin knockout/Pael-R transgenic (parkin-ko/Pael-R-tg) mice. parkin-ko/Pael-R-tg mice exhibited early and progressive loss of dopaminergic as well as noradrenergic neurons without formation of inclusion bodies, recapitulating the pathological features of AR-JP. Evidence of activation of UPR and up-regulation of dopamine and its metabolites were observed throughout the lifetime. Moreover, complex I activity of mitochondria isolated from parkin-ko/Pael-R-tg mice was significantly reduced later in life. These findings suggest that persistent induction of unfolded protein stress underlies chronic progressive catecholaminergic neuronal death, and that dysfunction of mitochondrial complex I and oxidative stress might be involved in the progression of Parkinson's disease. parkin-ko/Pael-R-tg mice represents an AR-JP mouse model displaying chronic and selective loss of catecholaminergic neurons.  相似文献   

12.
Accumulating evidence suggests a crucial role for the unfolded protein response (UPR) in Parkinson’s disease (PD). In this study, we investigated the relevance of the UPR in a mouse model of chronic MPTP/probenecid (MPTP/P) injection, which causes severe and persistent degeneration of dopaminergic neurons. Enhanced activation of the UPR branches, including ATF6α and PERK/eIF2α/ATF4, was observed after MPTP/P injections into mice. Deletion of the ATF6α gene accelerated neuronal degeneration and ubiquitin accumulation relatively early in the MPTP/P injection course. Surprisingly, astroglial activation was strongly suppressed, and production of the brain-derived neurotrophic factor (BDNF) and anti-oxidative genes, such as heme oxygenase-1 (HO-1) and xCT, in astrocytes were reduced in ATF6α −/− mice after MPTP/P injections. Decreased BDNF expression in ATF6α −/− mice was associated with decreased expression of GRP78, an ATF6α-dependent molecular chaperone in the ER. Decreased HO-1 and xCT levels were associated with decreased expression of the ATF4-dependent pro-apoptotic gene CHOP. Consistent with these results, administration of the UPR-activating reagent tangeretin (5,6,7,8,4′-pentamethoxyflavone; IN19) into mice enhanced the expression of UPR-target genes in both dopaminergic neurons and astrocytes, and promoted neuronal survival after MPTP/P injections. These results suggest that the UPR is activated in a mouse model of chronic MPTP/P injection, and contributes to the survival of nigrostriatal dopaminergic neurons, in part, through activated astrocytes.  相似文献   

13.
Parkinson’s disease (PD) is well known as a neurodegenerative disorder with progressive loss of dopaminergic (DA) neurons. Nei-like 1 (NEIL1) is one of four mammalian DNA glycosylases involved in the progression of various diseases, including neuroinflammation. However, it is still unknown if the expression changes of NEIL1 could contribute to PD progression. In the present study, we established mouse model with PD using 6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to explore the effects of NEIL1 on PD development. Here, we found that NEIL1 deletion significantly promoted the motor dysfunction in the wild type mice treated with 6-OHDA. Furthermore, DA neuronal loss was further accelerated by NEIL1 deletion in 6-OHDA-injected mice, as evidenced by the significantly reduced expression of tyrosine hydroxylase (TH) and dopamine transporter (DAT). Furthermore, in PD mice induced by MPTP, remarkably reduced expression of NEIL1 was observed in nigra and striatum of mice. A strong positive correlation was detected in the expression of NEIL1 and the survival rate of DA neurons. Also, NEIL1 ablation further elevated the DA neuronal loss in MPTP-treated mice, accompanied with higher glial activation, as evidenced by the obvious up-regulation of glial fibrillary acidic protein (GFAP) and Ionized calcium-Binding Adapter molecule 1 (Iba1). Moreover, MPTP-triggered inflammation was highly aggravated by the loss of NEIL1 through inducing the expression of pro-inflammatory cytokines and chemokines. In contrast, promoting NEIL1 expression effectively reversedPD progression induced by MPTP in mice. Together, these results demonstrated that NEIL1 insufficiency might be a contributing factor for the progression of PD, which therefore could be considered as a novel candidate to develop effective treatments against PD progression.  相似文献   

14.
Dysfunction of dopaminergic neurons may contribute to motor impairment in Huntington's disease. Here, we study the role of brain-derived neurotrophic factor (BDNF) in alterations of the nigrostriatal system associated with transgenics carrying mutant huntingtin. Using huntingtin-BDNF+/- double-mutant mice, we analyzed the effects of reducing the levels of BDNF expression in a model of Huntington's disease (R6/1). When compared with R6/1 mice, these mice exhibit an increased number of aggregates in the substantia nigra pars compacta. In addition, reduction of BDNF expression exacerbates the dopaminergic neuronal dysfunction seen in mutant huntingtin mice, such as the decrease in retrograde labelling of dopaminergic neurons and striatal dopamine content. However, mutant huntingtin mice with normal or lowered BDNF expression show the same decrease in the anterograde transport, number of dopaminergic neurons and nigral volume. In addition, reduced BDNF expression causes decreased dopamine receptor expression in mutant huntingtin mice. Examination of changes in locomotor activity induced by dopamine receptor agonists revealed that, in comparison with R6/1 mice, the double mutant mice exhibit lower activity in response to amphetamine, but not to apomorphine. In conclusion, these findings demonstrate that the decreased BDNF expression observed in Huntington's disease exacerbates dopaminergic neuronal dysfunction, which may participate in the motor disturbances associated with this neurodegenerative disorder.  相似文献   

15.
Dopamine covalently modifies and functionally inactivates parkin   总被引:12,自引:0,他引:12  
Inherited mutations in PARK2, the gene encoding parkin, cause selective degeneration of catecholaminergic neurons in the substantia nigra and locus coeruleus of the brainstem, resulting in early-onset parkinsonism. But the role of parkin in common, sporadic forms of Parkinson disease remains unclear. Here we report that the neurotransmitter dopamine covalently modifies parkin in living dopaminergic cells, a process that increases parkin insolubility and inactivates its E3 ubiquitin ligase function. In the brains of individuals with sporadic Parkinson disease, we observed decreases in parkin solubility consistent with its functional inactivation. Using a new biochemical method, we detected catechol-modified parkin in the substantia nigra but not other regions of normal human brain. These findings show a vulnerability of parkin to modification by dopamine, the principal transmitter lost in Parkinson disease, suggesting a mechanism for the progressive loss of parkin function in dopaminergic neurons during aging and sporadic Parkinson disease.  相似文献   

16.
Parkinson’s disease (PD) is a devastating neurodegenerative disease characterized by a distinct set of motor symptoms. Loss-of-function mutations in PTEN-induced kinase 1 (PINK1) or parkin have been linked to early-onset autosomal recessive forms of familial PD. We have recently shown that parkin (an E3 ubiquitin ligase) and PINK1 (a serine/threonine kinase) affect one other’s stability, solubility, and tendency to form cytoprotective aggresomes (Um et al., 2009, [16]). Here we validated the functional relevance of this mutual interaction under pathologic PD conditions, by investigating the changes of expression and solubility of these factors in response to PD-linked toxins. Consistent with our previous cell culture data, exposure of human dopaminergic neuroblastoma SH-SY5Y cells to PD-linked toxins (1-methyl-4-phenylpyridinium ion, 6-hydroxydopamine, or MG132) reduced Nonidet P-40-soluble parkin levels and induced PINK1 accumulation. Consistent with our previous findings from parkin knockout mice, rat models of PD (6-hydroxydopamine-, rotenone-, or MG132-induced PD) were also associated with an increase in soluble and insoluble PINK1 levels as well as enhanced formation of parkin aggregates. These findings suggest that both PINK1 and parkin play important roles in regulating the formation of Lewy bodies during the pathogenesis of sporadic and familial PD.  相似文献   

17.
Loss-of-function mutations in parkin are the major cause of early-onset familial Parkinson's disease. To investigate the pathogenic mechanism by which loss of parkin function causes Parkinson's disease, we generated a mouse model bearing a germline disruption in parkin. Parkin-/- mice are viable and exhibit grossly normal brain morphology. Quantitative in vivo microdialysis revealed an increase in extracellular dopamine concentration in the striatum of parkin-/- mice. Intracellular recordings of medium-sized striatal spiny neurons showed that greater currents are required to induce synaptic responses, suggesting a reduction in synaptic excitability in the absence of parkin. Furthermore, parkin-/- mice exhibit deficits in behavioral paradigms sensitive to dysfunction of the nigrostriatal pathway. The number of dopaminergic neurons in the substantia nigra of parkin-/- mice, however, is normal up to the age of 24 months, in contrast to the substantial loss of nigral neurons characteristic of Parkinson's disease. Steady-state levels of CDCrel-1, synphilin-1, and alpha-synuclein, which were identified previously as substrates of the E3 ubiquitin ligase activity of parkin, are unaltered in parkin-/- brains. Together these findings provide the first evidence for a novel role of parkin in dopamine regulation and nigrostriatal function, and a non-essential role of parkin in the survival of nigral neurons in mice.  相似文献   

18.
Dopaminergic neurons represent less than 1% of the total number of neurons in the brain. This low amount of neurons regulates important brain functions such as motor control, motivation, and working memory. Nigrostriatal dopaminergic neurons selectively degenerate in Parkinson''s disease (PD). This progressive neuronal loss is unequivocally associated with the motors symptoms of the pathology (bradykinesia, resting tremor, and muscular rigidity). The main agent responsible of dopaminergic neuron degeneration is still unknown. However, these neurons appear to be extremely vulnerable in diverse conditions. Primary cultures constitute one of the most relevant models to investigate properties and characteristics of dopaminergic neurons. These cultures can be submitted to various stress agents that mimic PD pathology and to neuroprotective compounds in order to stop or slow down neuronal degeneration. The numerous transgenic mouse models of PD that have been generated during the last decade further increased the interest of researchers for dopaminergic neuron cultures. Here, the video protocol focuses on the delicate dissection of embryonic mouse brains. Precise excision of ventral mesencephalon is crucial to obtain neuronal cultures sufficiently rich in dopaminergic cells to allow subsequent studies. This protocol can be realized with embryonic transgenic mice and is suitable for immunofluorescence staining, quantitative PCR, second messenger quantification, or neuronal death/survival assessment.  相似文献   

19.
Mutation of DJ-1 (PARK7) has been linked to the development of early-onset Parkinson’s disease (PD). However, the underlying molecular mechanism is still unclear. This study is aimed to compare the sensitivity of nigrostriatal dopaminergic neurons to lipopolysaccharide (LPS) challenge between DJ-1 knockout (KO) and wild-type (WT) mice, and explore the underlying cellular and molecular mechanisms. Our results found that the basal levels of interferon (IFN)-γ (the hub cytokine) and interferon-inducible T-cell alpha chemoattractant (I-TAC) (a downstream mediator) were elevated in the substantia nigra of DJ-1 KO mice and in microglia cells with DJ-1 deficiency, and the release of cytokine/chemokine was greatly enhanced following LPS administration in the DJ-1 deficient conditions. In addition, direct intranigral LPS challenge caused a greater loss of nigrostriatal dopaminergic neurons and striatal dopamine content in DJ-1 KO mice than in WT mice. Furthermore, the sensitization of microglia cells to LPS challenge to release IFN-γ and I-TAC was via the enhancement of NF-κB signaling, which was antagonized by NF-κB inhibitors. LPS-induced increase in neuronal death in the neuron-glia co-culture was enhanced by DJ-1 deficiency in microglia, which was antagonized by the neutralizing antibodies against IFN-γ or I-TAC. These results indicate that DJ-1 deficiency sensitizes microglia cells to release IFN-γ and I-TAC and causes inflammatory damage to dopaminergic neurons. The interaction between the genetic defect (i.e. DJ-1) and inflammatory factors (e.g. LPS) may contribute to the development of PD.  相似文献   

20.
Parkinson's disease (PD) is a neurodegenerative disorder characterised by the loss of substantia nigra dopaminergic neurons that leads to a reduction in striatal dopamine (DA) levels. Replacing lost cells by transplanting dopaminergic neurons has potential value to repair the damaged brain. Salidroside (SD), a phenylpropanoid glycoside isolated from plant Rhodiola rosea, is neuroprotective. We examined whether salidroside can induce mesenchymal stem cells (MSCs) to differentiate into neuron‐like cells, and convert MSCs into dopamine neurons that can be applied in clinical use. Salidroside induced rMSCs to adopt a neuronal morphology, upregulated the expression of neuronal marker molecules, such as gamma neuronal enolase 2 (Eno2/NSE), microtubule‐associated protein 2 (Map2), and beta 3 class III tubulin (Tubb3/β‐tubulin III). It also increased expression of brain‐derived neurotrophic factor (BDNF), neurotrophin‐3 (NT‐3) and nerve growth factor (NGF) mRNAs, and promoted the secretion of these growth factors. The expression of dopamine neurons markers, such as dopamine‐beta‐hydroxy (DBH), dopa decarboxylase (DDC) and tyrosine hydroxylase (TH), was significantly upregulated after treatment with salidroside for 1–12 days. DA steadily increased after treatment with salidroside for 1–6 days. Thus salidroside can induce rMSCs to differentiate into dopaminergic neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号