首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemoresistance is a challenge for clinician in management of tongue cancer. Therefore, it is necessary to explore alternative therapeutic methods to overcome drug resistance. miRNAs are endogenous ?22nt RNAs that play important regulatory roles by targeting mRNAs. miR-21, an essential oncogenic molecule, is associated with chemosensitivity of several human cancer cells to anticancer agents. In this study, we investigated the effects and molecular mechanisms of miR-21 in chemosensitivity of tongue squamous cell carcinoma cells (TSCC) to cisplatin. miR-21 expression was detected in tongue cancer tissue using RT-PCR and PDCD4 protein expression was measured using immunohistochemistry. miR-21 and(or) PDCD4 depleted cell lines were generated using miR-21 inhibitor and(or) siRNA. The viabilities of treated cells were analyzed using MTT assay. RT-PCR was used to detect miR-21 expression and immunoblotting was used to detect protein levels. Cell cycle and apoptosis were analyzed using propidium iodide (PI) staining and Annexin V/PI staining, respectively. The expression of miR-21 in tumorous tissue was significantly higher compared with adjacent normal tissue and loss of PDCD4 expression was observed in TSCCs. Transfection of miR-21 inhibitor induced sensitivity of TSCC cells (Tca8113 and CAL-27) to cisplatin. TSCC cells transfected with PDCD4 siRNA became more resistant to cisplatin therapy. We found an increase PDCD4 protein level following the transfection of miR-21 inhibitor using Western blot analysis. In addition, the enhanced growth-inhibitory effect by miR-21 inhibitor was weakened after the addition of PDCD4 siRNA. Suppression of miR-21 or PDCD4 could significantly promote or reduce cisplatin-induced apoptosis, respectively. Our data suggest that miR-21 could modulate chemosensitivity of TSCC cells to cisplatin by targeting PDCD4, and miR-21 may serve as a potential target for TSCC therapy.  相似文献   

2.
Fu X  Tian J  Zhang L  Chen Y  Hao Q 《FEBS letters》2012,586(9):1279-1286
The mechanisms underlying ovarian cancer cell resistance to cisplatin (CDDP) are not fully understood. MicroRNAs (miRNAs) play important roles in tumorigenesis and drug resistance. In this paper, we utilized microRNA array and real-time PCR to show that miR-93 is significantly up-regulated in cisplatin-resistant ovarian cancer cells. In vitro assays show that over-expression and knock-down of miR-93 regulate apoptotic activity, and thereby cisplatin chemosensitivity, in ovarian cells. Furthermore, we found that miR-93 can directly target PTEN, and participates in the regulation of the AKT signaling pathway. MiR-93 inversely correlates with PTEN expression in CDDP-resistant and sensitive human ovarian cancer tissues. These results may have implications for therapeutic strategies aiming to overcome ovarian cancer cell resistance to cisplatin.  相似文献   

3.
Approximately 30% of patients with Epstein-Barr virus (EBV)-positive advanced nasopharyngeal carcinoma (NPC) display chemoresistance to cisplatin-based regimens, but the underlying mechanisms are unclear. The Epstein-Barr virus (EBV)-encoded latent membrane protein 1 (LMP1), a functional homologue of the tumor necrosis factor receptor family, contributes substantially to the oncogenic potential of EBV through the activation of multiple signaling pathways, and it is closely associated with a poorer prognosis for NPC. Recent studies show that EBV infection can induce the expression of many cellular miRNAs, including microRNA-21, a biomarker for chemoresistance. However, neither a link between LMP1 expression and miR-21 upregulation nor their cross talk in affecting chemoresistance to cisplatin have been reported. Here, we observed that stable LMP1-transformed NPC cells were less sensitive to cisplatin treatment based on their proliferation, colony formation, the IC50 value of cisplatin and the apoptosis index. Higher levels of miR-21 were found in EBV-carrying and LMP1-positive cell lines, suggesting that LMP1 may be linked to miR-21 upregulation. These data were confirmed by our results that exogenous LMP1 increased miR-21 in both transiently and stably LMP1-transfected cells, and the knock down of miR-21 substantially reversed the resistance of the NPC cells to cisplatin treatment. Moreover, the proapoptotic factors programmed cell death 4 (PDCD4) and Fas ligand (Fas-L), which were negatively regulated by miR-21, were found to play an important role in the program of LMP1-dependent cisplatin resistance. Finally, we demonstrated that LMP1 induced miR-21 expression primarily by modulating the PI3K/AKT/FOXO3a signaling pathway. Taken together, we revealed for the first time that viral LMP1 triggers the PI3K/Akt/FOXO3a pathway to induce human miR-21 expression, which subsequently decreases the expression of PDCD4 and Fas-L, and results in chemoresistance in NPC cells.  相似文献   

4.
Molecular pathways involved in adventitial fibroblasts (AFs) and myofibroblasts (MFs) proliferation and apoptosis contribute to vascular remodeling. MicroRNA-21 (miR-21) plays an important role in regulating cellular proliferation and apoptosis of many cell types; however, the effect of miR-21 on AFs and MFs is still unknown. In this study, we found that miR-21 was expressed in AFs and overexpressed in MFs. Inhibition of miR-21 decreased proliferation and increased apoptosis of AFs and MFs, and overexpression of miR-21 with pre-miR-21 had the reverse effect. Programmed cell death 4 (PDCD4), related to cell proliferation and apoptosis, was validated as a direct target of miR-21 by dual-luciferase reporter assay and gain and loss of function of miR-21 in AFs and MFs. PDCD4 knockdown with siRNA partly rescued the reduced proliferation with miR-21 inhibition and alleviated the increased apoptosis induced by miR-21 inhibition in AFs and MFs. Moreover, increasing PDCD4 expression by miR-21 inhibition significantly decreased JNK/c-Jun activity. In contrast, decreasing PDCD4 expression by pre-miR-21 treatment increased JNK/c-Jun activity, while the effect of miR-21 inhibition on JNK/c-Jun activity could be rescued by PDCD4 siRNA. Moreover, miR-21 inhibition could regulate proliferation and apoptosis of vascular AFs and MFs in vivo. Furthermore, miR-21 inhibition reversed vascular remodeling induced by balloon injury. In summary, our findings demonstrate that miR-21 may have a critical role in regulating proliferation and apoptosis of AFs and MFs, and PDCD4 is a functional target gene involved in the miR-21-mediated cellular effects in vascular remodeling by a miR-21/PDCD4/JNK/c-Jun pathway.  相似文献   

5.
Cisplatin is the most potent and widespread used chemotherapy drug for lung cancer treatment. However, the development of resistance to cisplatin is a major obstacle in clinical therapy. The principal mechanism of cisplatin is the induction of DNA damage, thus the capability of DNA damage response (DDR) is a key factor that influences the cisplatin sensitivity of cancer cells. Recent advances have demonstrated that miRNAs (microRNAs) exerted critical roles in DNA damage response; nonetheless, the association between DNA damage responsive miRNAs and cisplatin resistance and its underlying molecular mechanism still require further investigation. The present study has attempted to identify differentially expressed miRNAs in cisplatin induced DNA damage response in lung cancer cells, and probe into the effects of the misexpressed miRNAs on cisplatin sensitivity. Deep sequencing showed that miR-33b-3p was dramatically down-regulated in cisplatin-induced DNA damage response in A549 cells; and ectopic expression of miR-33b-3p endowed the lung cancer cells with enhanced survival and decreased γH2A.X expression level under cisplatin treatment. Consistently, silencing of miR-33b-3p in the cisplatin-resistant A549/DDP cells evidently sensitized the cells to cisplatin. Furthermore, we identified CDKN1A (p21) as a functional target of miR-33b-3p, a critical regulator of G1/S checkpoint, which potentially mediated the protection effects of miR-33b-3p against cisplatin. In aggregate, our results suggested that miR-33b-3p modulated the cisplatin sensitivity of cancer cells might probably through impairing the DNA damage response. And the knowledge of the drug resistance conferred by miR-33b-3p has great clinical implications for improving the efficacy of chemotherapies for treating lung cancers.  相似文献   

6.
Chemoresistance remains a major obstacle to effective treatment in patients with ovarian cancer, and recently increasing evidences suggest that miRNAs are involved in drug-resistance. In this study, we investigated the role of miRNAs in regulating cisplatin resistance in ovarian cancer cell line and analyzed their possible mechanisms. We profiled miRNAs differentially expressed in cisplatin-resistant human ovarian cancer cell line A2780/DDP compared with parental A2780 cells using microarray. Four abnormally expressed miRNAs were selected (miR-146a,-130a, -374a and miR-182) for further studies. Their expression were verified by qRT-PCR. MiRNA mimics or inhibitor were transfected into A2780 and A2780/DDP cells and then drug sensitivity was analyzed by MTS array. RT-PCR and Western blot were carried out to examine the alteration of MDR1, PTEN gene expression. A total of 32 miRNAs were found to be differentially expressed in A2780/DDP cells. Among them, miR-146a was down-regulated and miR-130a,-374a,-182 were upregulated in A2780/DDP cells, which was verified by RT-PCR. MiR-130a and miR-374a mimics decreased the sensitivity of A2780 cells to cisplatin, reversely, their inhibitors could resensitize A2780/DDP cells. Furthermore, overexpression of miR-130a could increase the MDR1 mRNA and P-gp levels in A2780 and A2780/DDP cells, whereas knockdown of miR-130a could inhibit MDR1 gene expression and upregulate the PTEN protein expression .In a conclusion, the deregulation of miR-374a and miR-130a may be involved in the development and regulation of cisplatin resistance in ovarian cancer cells. This role of miR-130a may be achieved by regulating the MDR1 and PTEN gene expression.  相似文献   

7.
Serous epithelial ovarian cancer (EOC) patients often succumb to aggressive metastatic disease, yet little is known about the behavior and genetics of ovarian cancer metastasis. Here, we aim to understand how omental metastases differ from primary tumors and how these differences may influence chemotherapy. We analyzed the miRNA expression profiles of primary EOC tumors and their respective omental metastases from 9 patients using miRNA Taqman qPCR arrays. We find 17 miRNAs with differential expression in omental lesions compared to primary tumors. miR-21, miR-150, and miR-146a have low expression in most primary tumors with significantly increased expression in omental lesions, with concomitant decreased expression of predicted mRNA targets based on mRNA expression. We find that miR-150 and miR-146a mediate spheroid size. Both miR-146a and miR-150 increase the number of residual surviving cells by 2–4 fold when challenged with lethal cisplatin concentrations. These observations suggest that at least two of the miRNAs, miR-146a and miR-150, up-regulated in omental lesions, stimulate survival and increase drug tolerance. Our observations suggest that cancer cells in omental tumors express key miRNAs differently than primary tumors, and that at least some of these microRNAs may be critical regulators of the emergence of drug resistant disease.  相似文献   

8.
MicroRNAs (miRNAs) have been implicated in the pathogenesis and progression of brain tumors. miR-21 is one of the most highly overexpressed miRNAs in glioblastoma multiforme (GBM), and its level of expression correlates with the tumor grade. Programmed cell death 4 (PDCD4) is a well-known miR-21 target and is frequently downregulated in glioblastomas in accordance with increased miR-21 expression. Downregulation of miR-21 or overexpression of PDCD4 can inhibit metastasis. Here, we investigate the role of heterogeneous nuclear ribonucleoprotein C1/C2 (hnRNPC) in the metastatic potential of the glioblastoma cell line T98G. hnRNPC bound directly to primary miR-21 (pri-miR-21) and promoted miR-21 expression in T98G cells. Silencing of hnRNPC lowered miR-21 levels, in turn increasing the expression of PDCD4, suppressing Akt and p70S6K activation, and inhibiting migratory and invasive activities. Silencing of hnRNPC reduced cell proliferation and enhanced etoposide-induced apoptosis. In support of a role for hnRNPC in the invasiveness of GBM, highly aggressive U87MG cells showed higher hnRNPC expression levels and hnRNPC abundance in tissue arrays and also showed elevated levels as a function of brain tumor grade. Taken together, our data indicate that hnRNPC controls the aggressiveness of GBM cells through the regulation of PDCD4, underscoring the potential usefulness of hnRNPC as a prognostic and therapeutic marker of GBM.  相似文献   

9.
10.
MicroRNAs are emerging as important regulators of cancer-related processes. The miR-21 microRNA is overexpressed in a wide variety of cancers and has been causally linked to cellular proliferation, apoptosis, and migration. Inhibition of mir-21 in MCF-7 breast cancer cells causes reduced cell growth. Using array expression analysis of MCF-7 cells depleted of miR-21, we have identified mRNA targets of mir-21 and have shown a link between miR-21 and the p53 tumor suppressor protein. We furthermore found that the tumor suppressor protein Programmed Cell Death 4 (PDCD4) is regulated by miR-21 and demonstrated that PDCD4 is a functionally important target for miR-21 in breast cancer cells.  相似文献   

11.
The expression of programmed cell death 6 (PDCD6) is known to be down-regulated in cancer cell lines and ovarian cancer tissues compared to normal cells and tissues. In the current study, we characterized the specific function of PDCD6 as a novel pro-apoptotic protein. To define the roles of PDCD6 and cisplatin in tumorigenesis, we either over-expressed PDCD6 or treated it with cisplatin in SKOV-3 ovarian cancer cells. Both PDCD6 and cisplatin respectively inhibited cancer cell proliferation in a dose-dependent manner. The combined treatment of PDCD6 and cisplatin was more effective at suppressing cell growth than with either drug treatment alone, but had no effect with the treatment of caspase-3 and caspase-9 inhibitors. Cleavages of caspase-3, -8, -9, and poly (ADP-ribose) polymerase (PARP) in PDCD6-overexpressing cells were significantly increased after cisplatin treatment. Cell cycle analysis highly correlated with down-regulation of cyclin D1 and CDK4, and the induction of p16 and p27 as a cyclin-dependent kinase inhibitor. Additionally, PDCD6 also suppressed the phosphorylation of signaling regulators downstream of PI3K, including PDK1 and Akt. PDCD6 promotes TNFα-dependent apoptosis through the activation of NF-κB signaling pathways, increasing Bax, p53, and p21 expression, while also down-regulating Bcl-2 and Bcl-xL expression. The p21 and p53 promoter luciferase activities were enhanced by PDCD6, while there was no affect in p53−/− and p21−/−. At the same time, p53 activity was confirmed by UV irradiation and siPDCD6. Taken together, these results provide evidence that PDCD6 can mediate the pro-apoptotic activity of cisplatin or TNFα through the down-regulation of NF-κB expression.  相似文献   

12.
Programmed cell death 4 (PDCD4) is a RNA-binding protein that acts as a tumor suppressor in many cancer types, including colorectal cancer (CRC). During CRC carcinogenesis, PDCD4 protein levels remarkably decrease, but the underlying molecular mechanism for decreased PDCD4 expression is not fully understood. In this study, we performed bioinformatics analysis to identify miRNAs that potentially target PDCD4. We demonstrated miR-181b as a direct regulator of PDCD4. We further showed that activation of IL6/STAT3 signaling pathway increased miR-181b expression and consequently resulted in downregulation of PDCD4 in CRC cells. In addition, we investigated the biological effects of PDCD4 inhibition by miR-181b both in vitro and in vivo and found that miR-181b could promote cell proliferation and migration and suppress apoptosis in CRC cells and accelerate tumor growth in xenograft mice, potentially through targeting PDCD4. Taken together, this study highlights an oncomiR role for miR-181b in regulating PDCD4 in CRC and suggests that miR-181b may be a novel molecular therapeutic target for CRC.  相似文献   

13.
MicroRNAs are involved in cancer-related processes. The microRNA-21(miR-21) has been identified as the only miRNA over-expressed in a wide variety of cancers, including cervical cancer. However, the function of miR-21 is unknown in cervical carcinomas. In this study, we found that the inhibition of miR-21 in HeLa cervical cancer cells caused profound suppression of cell proliferation, and up-regulated the expression of the tumor suppressor gene PDCD4. We also provide direct evidence that PDCD4-3′UTR is a functional target of miR-21 and that the 18 bp putative target site can function as the sole regulatory element in HeLa cells. These results suggest that miR-21 may play an oncogenic role in the cellular processes of cervical cancer and may serve as a target for effective therapies.  相似文献   

14.
Cheng W  Liu T  Wan X  Gao Y  Wang H 《The FEBS journal》2012,279(11):2047-2059
In ovarian cancer, CD44(+) /CD117(+) stem cells, also known as cancer-initiating cells (CICs), are highly proliferative, have a low degree of differentiation, and are resistant to chemotherapeutics. Therefore, the CD44(+) /CD117(+) subpopulation is thought to be an important target for novel therapeutic strategies. In this study, we investigated the role of microRNA-199a (miR-199a) in ovarian cancer stem cells. Luciferase reporter gene assays confirmed that miR-199a targets CD44 via an miR-199a-binding site in the 3'-UTR. CD44(+) /CD117(+) ovarian CICs were enriched from human primary ovarian tumor tissues and confirmed by flow cytometric sorting. miR-199a was cloned and transfected into ovarian CICs. CD44 mRNA and protein expression was significantly decreased in miR-199a-transfected ovarian CICs as compared with miR-199a mutant-transfected and untransfected cells. Cell cycle analysis, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide proliferation assays, the colony formation assay and the transwell migration assay indicated that miR-199a significantly affected cell cycle regulation and suppressed the proliferation and invasive capacity of ovarian CICs in?vitro. miR-199a significantly increased the chemosensitivity of ovarian CICs to cisplatin, pacitaxel, and adriamycin, and reduced mRNA expression of the multidrug resistance gene ABCG2 as compared with miR-199a mutant-transfected and untransfected cells. The expression of stemness markers was also significantly reduced in miR-199a-transfected CICs as compared with miR-199a mutant-transfected and untransfected ovarian cells. Furthermore, xenograft experiments confirmed that miR-199a suppressed the growth of xenograft tumors formed by ovarian CICs in?vivo. Thus, expression of endogenous mature miR-199a may prevent tumorigenesis in human ovarian cancer by regulating expression of its target gene CD44.  相似文献   

15.
Both miRNAs and nitric oxide (NO) play important roles in colonic inflammation and tumorigenesis. Resistance of colonic epithelial cells to apoptosis may contribute to tumor development. We hypothesized that some miRNAs could increase the resistance of colonic cancer cells to nitric oxide-induced apoptotic cell death. Here we show that NO induced apoptosis and stimulated expression of some miRNAs. Loss of p53 not only blocked NO-induced apoptosis but also dramatically inhibited the expression of NO-related miRNAs, such as miR-34, miR-203, and miR-1301. In addition, blockage of p53-dependent miRNAs significantly reduced NO-induced apoptosis. Furthermore, forced expression of these miRNAs rendered HT-29 cells, which are resistant to apoptosis with mutant p53, more sensitive to NO-induced apoptotic cell death. Most interestingly, in a colitis-associated colon cancer mouse model, the level of miRNAs dropped significantly, accompanied by downregulation of p21, which is a key target gene of p53. In human colorectal cancer samples, the expression of miR-34 significantly correlated with the level of inducible nitric oxide synthase (iNOS). We contend that increased NO production may select cells with low levels of p53-dependent miRNAs which contributes to human colonic carcinogenesis and tumor progression.  相似文献   

16.
Gong C  Yao Y  Wang Y  Liu B  Wu W  Chen J  Su F  Yao H  Song E 《The Journal of biological chemistry》2011,286(21):19127-19137
Trastuzumab resistance emerges to be a major issue in anti-human epidermal growth factor receptor 2 (HER2) therapy for breast cancers. Here, we demonstrated that miR-21 expression was up-regulated and its function was elevated in HER2(+) BT474, SKBR3, and MDA-MB-453 breast cancer cells that are induced to acquire trastuzumab resistance by long-term exposure to the antibody, whereas protein expression of the PTEN gene, a miR-21 target, was reduced. Blocking the action of miR-21 with antisense oligonucleotides re-sensitized the resistant cells to the therapeutic activities of trastuzumab by inducing growth arrest, proliferation inhibition, and G(1)-S cell cycle checking in the presence of the antibody. Ectopic expression of miR-21 in HER2(+) breast cancer cells confers resistance to trastuzumab. Rescuing PTEN expression with a p3XFLAG-PTEN-mut construct with deleted miR-21 targeting sequence at its 3' UTR restored the growth inhibition of trastuzumab in the resistant cells by inducing PTEN activation and AKT inhibition. In vivo, administering miR-21 antisense oligonucleotides restored trastuzumab sensitivity in the resistant breast cancer xenografts by inducing PTEN expression, whereas injection of miR-21 mimics conferred trastuzumab resistant in the sensitive breast tumors via PTEN silence. Up-regulatin of miR-21 in tumor biopsies obtained from patients receiving pre-operative trastuzumab therapy was associated with poor trastuzumab response. Therefore, miR-21 overexpression contributes to trastuzumab resistance in HER2(+) breast cancers and antagonizing miR-21 demonstrates therapeutic potential by sensitizing the malignancy to anti-HER2 treatment.  相似文献   

17.
Resistance to conventional chemotherapy remains a major cause of cancer relapse and cancer-related deaths. Therefore, there is an urgent need to overcome resistance barriers. To improve cancer treatment approaches, it is critical to elucidate the basic mechanisms underlying drug resistance. Increasingly, the mechanisms involving micro-RNAs (miRNAs) are studied because miRNAs are also considered practical therapeutic options due to high degrees of specificity, efficacy, and accuracy, as well as their ability to target multiple genes at the same time. Years of research have firmly established miR-34 as a key tumor suppressor miRNA whose target genes are involved in drug resistance mechanisms. Indeed, numerous articles show that low levels of circulating miR-34 or tumor-specific miR-34 expression are associated with poor response to chemotherapy. In addition, elevation of inherently low miR-34 levels in resistant cancer cells effectively restores sensitivity to chemotherapeutic agents. Here, we review this literature, also highlighting some contradictory observations. In addition, we discuss the potential utility of miR-34 expression as a predictive biomarker for chemotherapeutic drug response. Although caution needs to be exercised, miR-34 is emerging as a biomarker that could improve cancer precision medicine.  相似文献   

18.
The majority of ovarian tumors eventually recur in a drug resistant form. Using cisplatin sensitive and resistant cell lines assembled into 3D spheroids we profiled gene expression and identified candidate mechanisms and biological pathways associated with cisplatin resistance. OVCAR-8 human ovarian carcinoma cells were exposed to sub-lethal concentrations of cisplatin to create a matched cisplatin-resistant cell line, OVCAR-8R. Genome-wide gene expression profiling of sensitive and resistant ovarian cancer spheroids identified 3,331 significantly differentially expressed probesets coding for 3,139 distinct protein-coding genes (Fc >2, FDR < 0.05) (S2 Table). Despite significant expression changes in some transporters including MDR1, cisplatin resistance was not associated with differences in intracellular cisplatin concentration. Cisplatin resistant cells were significantly enriched for a mesenchymal gene expression signature. OVCAR-8R resistance derived gene sets were significantly more biased to patients with shorter survival. From the most differentially expressed genes, we derived a 17-gene expression signature that identifies ovarian cancer patients with shorter overall survival in three independent datasets. We propose that the use of cisplatin resistant cell lines in 3D spheroid models is a viable approach to gain insight into resistance mechanisms relevant to ovarian tumors in patients. Our data support the emerging concept that ovarian cancers can acquire drug resistance through an epithelial-to-mesenchymal transition.  相似文献   

19.
《FEBS letters》2014,588(24):4654-4664
We have previously reported that synthetic dsRNA can activate p21 expression by targeting the p21 promoter, thereby suppressing the proliferation of human bladder cancer cells. As complementarity between dsRNA and its target sequences is necessary for RNA activation, miRNAs may also trigger p21 expression through the same mechanism. Here, the expression levels of three miRNAs (miR-370, miR-1180 and miR-1236) decreased in bladder cancer tissues compared to healthy controls and the levels of these mRNAs positively correlated with p21 mRNA levels. The three miRNAs induced nuclear p21 expression through p21-promoter binding. Overexpression of the three miRNAs inhibited the proliferation of bladder cancer cells mainly by regulating p21. Therefore, these miRNAs could be candidates for anti-cancer drugs.  相似文献   

20.
EF24 is a curcumin analog that has improved anticancer activity over curcumin, but its therapeutic potential and mechanism of action is unknown, which is important to address as curcumin targets multiple signaling pathways. EF24 inhibits the NF-κB but not the JAK-STAT signaling pathway in DU145 human prostate cancer cells and B16 murine melanoma cells. EF24 induces apoptosis in these cells apparently by inhibiting miR-21 expression, and also enhances the expression of several miR-21 target genes, PTEN and PDCD4. EF24 treatment significantly suppressed the growth of DU145 prostate cancer xenografts in immunocompromised mice and resulted in tumor regression. EF24 enhanced the expression of the miR-21 target PTEN in DU145 tumor tissue, but suppressed the expression of markers of proliferating cells (cyclin D1 and Ki67). In syngeneic mice injected with B16 cells, EF24 treatment inhibited the formation of lung metastasis, prolonged animal survival, inhibited miR-21 expression and increased the expression of miR-21 target genes. Expression profiling of miRNAs regulated by EF24 in vitro and in vivo showed that the antitumor activity of EF24 reflected the enhanced expression of potential tumor suppressor miRNAs as well as the suppressed expression of oncogenic miRNAs, including miR-21. Taken together, our data suggest that EF24 is a potent anticancer agent and selectively targets NF-κB signaling and miRNA expression, indicating that EF24 has significant potential as a therapeutic agent in various cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号