首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Immunochemical studies on cytochrome P-450 in adrenal microsomes   总被引:2,自引:0,他引:2  
An antibody was prepared against electrophoretically homogeneous cytochrome P-450C21 purified from bovine adrenal microsomes. This antibody was used to compare various cytochromes P-450 in bovine and guinea pig adrenal microsomes. In an Ouchterlony double diffusion test, a spur formation was observed between the precipitin lines of the purified bovine cytochrome P-450C21 and guinea pig adrenal microsomes against anti-cytochrome P-450C21 IgG. Anti-cytochrome P-450C21 IgG inhibited 21-hydroxylation both of bovine and guinea pig adrenal microsomes but the inhibition was much more effective in the bovine microsomes than in the guinea pig microsomes. These results suggest that the 21-hydroxylase in the guinea pig microsomes has some molecular similarities to the bovine cytochrome P-450C21 and a part of the antibodies cross-reacts with the 21-hydroxylase in the guinea pig microsomes. Anti-cytochrome P-450C21 IgG did not inhibit the activities of 17 alpha-hydroxylase and C17,20-lyase in the bovine and guinea pig microsomes but stimulated these activities. This result shows that different species of cytochrome P-450 other than cytochrome P-450C21 catalyzes the 17 alpha-hydroxylation and C17,20 bond cleavage. The stimulation of 17 alpha-hydroxylation and C17,20 bond cleavage by blocking 21-hydroxylation indicates that the electron transfer systems for various cytochromes P-450 are intimately linked in adrenal microsomes.  相似文献   

2.
Conversion of progesterone to 17 alpha-hydroxyprogesterone plus androstenedione (17 alpha-hydroxylation) and to androstadienone (delta 16 synthetase activity) by microsomes from neonatal pig testis, were both inhibited by antibodies raised against homogeneous cytochrome P-450 C21 side-chain cleavage. Inhibition of the two activities showed the same relationship to the concentration of antibody added. Analogous results were obtained with pregnenolone as substrate. In a reconstituted enzyme system consisting of the homogeneous cytochrome P-450 C21 side-chain cleavage enzyme, P-450 reductase and NADPH, addition of cytochrome b5 resulted in the synthesis of the corresponding delta 16-C19-steroid from progesterone (androstadienone) and pregnenolone (androstadienol). The effect of cytochrome b5 was concentration-dependent and prevented by anti-cytochrome b5. It is concluded that the cytochrome P-450 C21 side-chain cleavage enzyme from pig testicular microsomes is also capable of synthesizing delta 16-C19-steroids and is, therefore, likely to be responsible for the large amounts of the pherormone androstadienone produced by male pigs.  相似文献   

3.
We have purified a cytochrome P-450 from microsomes of pig adrenal glands to homogeneity (11.1 n moles heme/mg protein) as demonstrated by electrophoresis on polyacrylamide gels with sodium dodecyl SO4 and by line of identity with an antibody using double diffusion. The enzyme shows both 17 alpha-hydroxylase and C17,20-lyase activities and therefore constitutes a C21 side-chain cleavage system like that previously purified in this laboratory from neonatal pig testis. Antibody to the testicular enzyme cross-reacts (line of identity) with both enzymes. It is concluded that the adrenal enzyme is the same or very similar to the testicular enzyme, that each enzyme possesses two enzymatic activities, and that microsomes provide some regulatory device to limit the lyase activity of the enzyme in vivo. No evidence was found for the usually accepted existence of an adrenal steroid 17 alpha-hydroxylase without lyase activity.  相似文献   

4.
Regulation of cytochromes P-450 21-hydroxylase (P-450C21) and P-450 17 alpha-hydroxylase/C17,20-lyase (P-450(17) alpha,lyase) activities and impairment of this regulation by Aroclor 1254 was studied in guinea-pig adrenal microsomes. In a membrane depleted system, a decrease in the normally predominant, P-450C21 activity and an increase in P-450(17) alpha,lyase activities was observed. The same deviations were observed in intact microsomes with increase in the reaction temperature (0-40 degrees C). Breaks in Arrhenius plots for activities of P-450C21 and P-450(17) alpha,lyase correlate with transition temperatures reported for the microsomal membrane. These results point to: (1) preference of a gel state membrane for catalytic expression of P-450C21 suggesting a clustered organization of this P-450 species with reductase; (2) preference of a fluid membrane for lyase activity suggesting a random collision mechanism for reduction of P-450(17) alpha,lyase. Aroclor 1254 introduced to reaction mixtures containing intact microsomes elicited basically the same changes as caused by depletion of the microsomal membrane or by increase in the incubation temperature. Lack of effect of Aroclor 1254 on P-450C21 and P-450(17) alpha,lyase activities in the membrane depleted system demonstrates that its interference with monooxygenase activities is mediated by the microsomal membrane. The similarities between altered cytochrome P-450 mediated activities in the presence of Aroclor 1254 and the deviations observed in the membrane depleted system or upon increase in the incubation temperature may suggest that this chemical exerts its impacts by influencing membrane fluidity.  相似文献   

5.
Purified cytochrome P-450(17)alpha,lyase from guinea-pig adrenal microsomes, which catalyzes progesterone 17 alpha-hydroxylation and sequentially C17-C20 bond cleavage of the 17 alpha-hydroxyprogesterone, was successfully incorporated into liposomal membranes composed of only phosphatidylcholine or of a phospholipid mixture of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine at a molar ratio of 5:3:1. Although the purified P-450(17)alpha,lyase was readily converted into P-420 in the detergent-solubilized system without substrates, the P-450 embedded in the liposomal membranes was found to be quite stable without the substrates. Using the P-450(17)alpha,lyase-proteoliposomes, the interaction of steroids with P-450(17)alpha,lyase was studied for progesterone, 17 alpha-hydroxyprogesterone and androstenedione in the liposomal system by optical difference spectroscopy and by equilibrium dialysis. The partition coefficients of steroids between the aqueous phase and the liposomal membranes were determined by the equilibrium dialysis. They were about 1.4-1.6-times higher in phosphatidylcholine liposomes than in the liposomes of the lipid mixture. The dissociation constants of the P-450-steroid complexes were calculated from the apparent dissociation constants using the partition coefficients for the situation where the substrate-binding site faces the lipid phase of the membranes or where it faces the aqueous phase. The dissociation constant in the former case was not affected by the lipid composition. These results suggest that P-450(17)alpha,lyase might interact only with the substrates in the lipid phase of the liposomal membranes.  相似文献   

6.
Cytochrome P450c17 catalyzes 17 alpha-hydroxylation needed for cortisol synthesis and 17,20 lyase activity needed to produce sex steroids. Serine phosphorylation of P450c17 specifically increases 17,20 lyase activity, but the physiological factors regulating this effect remain unknown. Treating human adrenal NCI-H295A cells with the phosphatase inhibitors okadaic acid, fostriecin, and cantharidin increased 17,20 lyase activity, suggesting involvement of protein phosphatase 2A (PP2A) or 4 (PP4). PP2A but not PP4 inhibited 17,20 lyase activity in microsomes from cultured cells, but neither affected 17 alpha-hydroxylation. Inhibition of 17,20 lyase activity by PP2A was concentration-dependent, could be inhibited by okadaic acid, and was restored by endogenous protein kinases. PP2A but not PP4 coimmunoprecipitated with P450c17, and suppression of PP2A by small interfering RNA increased 17,20 lyase activity. Phosphoprotein SET found in adrenals inhibited PP2A, but not PP4, and fostered 17,20 lyase activity. The identification of PP2A and SET as post-translational regulators of androgen biosynthesis suggests potential additional mechanisms contributing to adrenarche and hyperandrogenic disorders such as polycystic ovary syndrome.  相似文献   

7.
CYP17 (17alpha-hydroxylase-17,20-lyase; also P450c17 or P450(17alpha)) catalyses the17alpha-hydroxylation of progestogens and the subsequent acyl-carbon cleavage of the 17alpha-hydroxylated products (lyase activity) in the biosynthesis of androgens. The enzyme also catalyses another type of acyl-carbon cleavage (direct cleavage activity) in which the 17alpha-hydroxylation reaction is by-passed. Human CYP17 is heavily dependent on the presence of the membrane form of cytochrome b(5) for both its lyase and direct cleavage activities. In the present study it was found that substitution of human CYP17 amino acids, Arg(347), Arg(358) and Arg(449), with non-cationic residues, yielded variants that were impaired in the two acyl-carbon bond cleavage activities, quantitatively to the same extent and these were reduced to between 3 and 4% of the wild-type protein. When the arginines were replaced by lysines, the sensitivity to cytochrome b(5) was restored and the acyl-carbon cleavage activities were recovered. All of the human mutant CYP17 proteins displayed wild-type hydroxylase activity, in the absence of cytochrome b(5). The results suggest that the bifurcated cationic charges at Arg(347), Arg(358) and Arg(449) make important contributions to the formation of catalytically competent CYP17.cytochrome b(5) complex. The results support our original proposal that the main role of cytochrome b(5) is to promote protein conformational changes which allow the iron-peroxo anion to form a tetrahedral adduct that fragments to produce the acyl-carbon cleavage products.  相似文献   

8.
Cytochrome P450c17 catalyzes the 17alpha-hydroxylase activity required for glucocorticoid synthesis and the 17,20 lyase activity required for sex steroid synthesis. Most P450 enzymes have fixed ratios of their various activities, but the ratio of these two activities of P450c17 is regulated post-translationally. We have shown that serine phosphorylation of P450c17 and the allosteric action of cytochrome b5 increase 17,20 lyase activity, but it has not been apparent whether these two post-translational mechanisms interact. Using purified enzyme systems, we now show that the actions of cytochrome b5 are independent of the state of P450c17 phosphorylation. Suppressing cytochrome b5 expression in human adrenal NCI-H295A cells by >85% with RNA interference had no effect on 17alpha-hydroxylase activity but reduced 17,20 lyase activity by 30%. Increasing P450c17 phosphorylation could compensate for this reduced activity. When expressed in bacteria, human P450c17 required either cytochrome b5 or phosphorylation for 17,20 lyase activity. The combination of cytochrome b5 and phosphorylation was not additive. Cytochrome b5 and phosphorylation enhance 17,20 lyase activity independently of each other, probably by increasing the interaction between P450c17 and NADPH-cytochrome P450 oxidoreductase.  相似文献   

9.
The microsomal fraction isolated from the testis of the urodele amphibian, Necturus maculosus, is very rich in cytochrome P-450 and three cytochrome P-450-dependent steroidogenic enzyme activities, 17 alpha-hydroxylase, C-17, 20-lyase, and aromatase. In this study, we investigated aspects of these reactions using both spectral and enzyme techniques. In animals obtained at different points in the annual cycle, Necturus testis microsomal P-450 concentrations ranged from 0.6-1.8 nmol/mg protein. Substrates for the three enzymes generated type I difference spectra; progesterone and 17 alpha-hydroxyprogesterone appeared to bind to one P-450 species while the aromatase substrates, androstenedione, 19-hydroxyandrostenedione, and testosterone, all bound to another P-450 species. Spectral binding constants (Ks) for these interactions were determined. Michaelis constants (Km) and maximum velocities were determined for progesterone 17 alpha-hydroxylation, 17 alpha-hydroxyprogesterone side-chain cleavage, and for the aromatization of androstenedione, 19-hydroxyandrostenedione, and testosterone. Measured either by spectral or kinetic methods, progesterone, androstenedione, and 19-hydroxyandrostenedione were high affinity substrates (Ks or Km less than 0.3 microM), while 17 alpha-hydroxyprogesterone and testosterone were low affinity substrates (Ks or Km = 0.6-4.8 microM). As evidence for the participation of cytochrome P-450 in these reactions, carbon monoxide was found to inhibit each of the enzyme activities studied. The activity of NADPH-cytochrome c reductase, a component of cytochrome P-450-dependent reactions, was also high in Necturus testis microsomes.  相似文献   

10.
The cytochrome P-450 of gonadal microsomes is an integral component of the steroid converting enzymes, 17 alpha-hydroxylase and 17,20-lyase. Interaction of the steroid substrates with this cytochrome results in a shift in the Soret band as measured by difference spectroscopy. In these studies it is shown that in contrast to placental microsomal cytochrome P-450 which binds C19 steroids, testis microsomal cytochrome P-450 primarily binds C21 steroids. However, addition of a 17 alpha- methyl, 17 beta-acetate or a 17 beta-benzoate group to testosterone permits interaction. The addition of hydroxyl or methyl groups to other positions does not affect binding. The presence of multiple oxygen functions on C21 steroids, as in cortisol and corticosterone, precludes interaction. At least one oxygen function seems necessary for binding as 5 alpha- and 5 beta-pregnane do not bind whereas 20-deoxypregnenolone (5-pregnen-3 beta-ol) does bind. These findings indicate that factors in addition to hydrophobic interactions dictate the binding of steroid substrates to testis microsomal cytochrome P-450.  相似文献   

11.
Male pigs are routinely castrated to prevent the accumulation of testicular 16-androstene steroids, in particular 5α-androst-16-en-3-one (5α-androstenone), which contribute to an off-odour and off-flavour known as boar taint. Cytochrome P450C17 (CYP17A1) catalyses the key regulatory step in the formation of the 16-androstene steroids from pregnenolone by the andien-β synthase reaction or the synthesis of the glucocorticoid and sex steroids via 17α-hydroxylase and C17,20 lyase pathways respectively. We have expressed CYP17A1, along with cytochrome P450 reductase (POR), cytochrome b5 reductase (CYB5R3) and cytochrome b5 (CYB5) in HEK-293FT cells to investigate the importance of the two forms of porcine CYB5, CYB5A and CYB5B, in both the andien-β synthase as well as the 17α-hydroxylase and C17,20 lyase reactions. Increasing the ratio of CYB5A to CYP17A1 caused a decrease in 17α-hydroxylase (p < 0.013), a transient increase in C17,20 lyase, and an increase in andien-β synthase activity (p < 0.0001). Increasing the ratio of CYB5B to CYP17A1 also decreased 17α-hydroxylase, but did not affect the andien-β synthase activity; however, the C17,20 lyase, was significantly increased. These results demonstrate the differential effects of two forms of CYB5 on the three activities of porcine CYP17A1 and show that CYB5B does not stimulate the andien-β synthase activity of CYP17A1.  相似文献   

12.
The role of cytochrome b5 in adrenal microsomal steroidogenesis was studied in guinea pig adrenal microsomes and also in the liposomal system containing purified cytochrome P-450s and NADPH-cytochrome P-450 reductase. Preincubation of the microsomes with anti-cytochrome b5 immunoglobulin decreased both 17 alpha- and 21-hydroxylase activity in the microsomes. In liposomes containing NADPH-cytochrome P-450 reductase and P-450C21 or P-450(17) alpha,lyase, addition of a small amount of cytochrome b5 stimulated the hydroxylase activity while a large amount of cytochrome b5 suppressed the hydroxylase activity. The effect of cytochrome b5 on the rates of the first electron transfer to P-450C21 in liposome membranes was determined from stopped flow measurements and that of the second electron transfer was estimated from the oxygenated difference spectra in the steady state. It was indicated that a small amount of cytochrome b5 activated the hydroxylase activity by supplying additional second electrons to oxygenated P-450C21 in the liposomes while a large amount of cytochrome b5 might suppress the activity through the interferences in the interaction between the reductase and P-450C21.  相似文献   

13.
Two inhibitors of the cholesterol side chain cleavage reaction were tested for their ability to inhibit bovine adrenocortical 17 alpha-hydroxylase and 21-hydroxylase activities. One inhibitor, 22-amino-23,24-bisnor-5-cholen-3 beta-ol (22-ABC), was found to be a potent inhibitor of 17 alpha-hydroxylation of either progesterone or pregnenolone but was inactive on 21-hydroxylase activity. 22-ABC was found to be a competitive inhibitor of 17 alpha-hydroxylase (cytochrome P-45017 alpha) activity, having an apparent inhibitor constant of 29 nM when using pregnenolone as the substrate. Spectral binding studies showed that 22-ABC produces a type II difference spectrum when added to a bovine adrenocortical microsomal preparation, due presumably to a coordination of its amine nitrogen atom to the heme-iron of cytochrome P-45017 alpha. The second cholesterol side chain cleavage inhibitor tested, (20R)-20-phenyl-5-pregnene-3 beta,20-diol (20-PPD), was found not to inhibit either the 21- or 17 alpha-hydroxylase activities. It is proposed that the phenyl group projecting from C-20 of 20-PPD prevents this steroid from binding to cytochrome P-45017 alpha. The discriminatory interaction of these two steroids with adrenocortical cytochromes P-450 provides some insight with respect to possible structural features of the active-site regions of these enzymes.  相似文献   

14.
Human cytochrome P450 17alpha-hydroxylase (CYP17) catalyses not only the 17alpha-hydroxlation of pregnenolone and progesterone and the C17,20-side chain cleavage (lyase) of 17alpha-hydroxypregnenolone, necessary for the biosynthesis of C21-glucocorticoids and C19-androgens, but also catalyses the 16alpha-hydroxylation of progesterone. In efforts to understand the complex enzymology of CYP17, structure/function relationships have been reported previously after expressing recombinant DNAs, encoding CYP17 from various species, in nonsteroidogenic mammalian or yeast cells. A major difference between species resides in the lyase activity towards the hydroxylated intermediates and in the fact that the secretion of C19-steroids take place, in some species, principally in the gonads. Because human and higher primate adrenals secrete steroids, CYP17 has been characterized in the Cape baboon, a species more closely related to humans, in an effort to gain a further understanding of the reactions catalysed by CYP17. Baboon and human CYP17 cDNA share 96% homology. Baboon CYP17 has apparent Km and V values for pregnenolone and progesterone of 0.9 micro m and 0.4 nmol.h-1.mg protein-1 and 6.5 micro m and 3.9 nmol.h-1.mg protein-1, respectively. Baboon CYP17 had a significantly higher activity for progesterone hydroxylation relative to pregnenolone. No 16alpha-hydroxylase and no lyase activity for 17alpha-hydroxyprogesterone. Sequence analyses showed that there are 28 different amino acid residues between human and baboon CYP17, primarily in helices F and G and the F-G loop.  相似文献   

15.
Capillary gas chromatographic 'steroid profiling' has been utilised to separate and quantify the metabolites (derivatized as methyloximes and/or trimethylsilyl ethers) formed from pregnenolone after incubation with rat testicular microsomes. A wide range of steroid metabolites was found, indicating that both the 5-ene and 4-ene pathways of testosterone biosynthesis were operating, as well as 16 alpha-hydroxylation, 20 beta-reduction and the formation of several C19 steroids (the 16-androstenes). At the concentration used, Metyrapone markedly inhibited 16 alpha- and 17-hydroxylation and side-chain cleavage of 17-hydroxylated C21 steroids. 16-Androstene production was also markedly inhibited and the formation of other metabolites was affected to lesser extents. Oxytocin abolished the formation of all C21 and C19 metabolites of pregnenolone.  相似文献   

16.
We have found cytochrome P-450(17alpha) in the islets of Langerhans of rat pancreas. Its existence coincided with that of insulin and demarcated those of glucagon and somatostatin, demonstrating the localization in beta-cells. The enzyme has not only 17alpha-hydroxylase activity but also lyase one, which is a prerequisite for androgen biosynthesis. The pancreatic microsomes converted progesterone mainly to androstenedione with a minor production of 17alpha-hydroxyprogesterone. Due to a low activity of the built-in lyase, cytochrome P-450(17alpha) requires a sufficient electron-transfer from P-450 reductase or presence of an activator to promote the C-C bond cleavage. In beta-cells, P-450 reductase was abundant and could efficiently transfer electrons to P-450(17alpha). Actually, inhibition with anti-P-450 reductase or limitation of NADPH preferentially reduced the lyase activity. Androstenedione was accumulated when its further metabolism was suppressed. We also found localization of cytochrome P-450scc and 3beta-hydroxysteroid dehydrogenase in beta-cells. These results indicate that the immediate substrate for androgen formation, progesterone, is intracellularly produced and is converted mainly to androstenedione with support by an efficient electron supply from P-450 reductase. The product was supposed to be further metabolized to the reduced derivatives such as testosterone, 5alpha-androstanedione, and dihydrotestosterone, which would act as local steroids in the islets of Langerhans.  相似文献   

17.
The properties and the purity of a cytochrome P-450 (17 alpha-hydroxylase) from porcine adrenal microsomes have been examined following a report that the corresponding enzyme from bovine adrenocortical microsomes is inactive as a 17 alpha-hydroxylase and fails to show a high spin spectrum on addition of substrate, once the enzyme has been purified (Bumpus, J. A., and Dus, K. M. (1982) J. Biol. Chem. 257, 12696-12704). The purity of the porcine enzyme was demonstrated by electrophoresis on polyacrylamide with sodium dodecyl sulfate, immunoelectrophoresis, and NH2-terminal amino acid sequence (16 residues). The pure enzyme shows Mr = 54,000, heme content of greater than 0.8 nmol/nmol of protein, and absorption spectra typical of cytochrome P-450. The enzyme is active with both delta 4 (progesterone) and delta 5 (pregnenolone) substrates as a 17 alpha-hydroxylase and with the corresponding 17 alpha-hydroxysteroids as a C17,20-lyase. All four substrates produce typical type I spectra with the enzyme (so-called high spin form). We conclude that: 1) porcine adrenal microsomes contain a 17 alpha-hydroxylase/C17,20-lyase which is a single protein molecule readily purified to an enzymatically active form; 2) the C17,20-lyase activity is largely suppressed in the microsomes; and 3) the enzyme closely resembles that found in testicular microsomes. We propose that this enzyme be referred to as the adrenal C21 steroid side chain cleavage enzyme.  相似文献   

18.
We have isolated cDNA clones of the mRNA for cytochrome P-450 that catalyzes the steroid C-21 hydroxylation (P-450(C21)), which specifically catalyzes 21-hydroxylation of steroids in the microsomes of bovine adrenal cortex by using synthetic oligonucleotides as probes. Sequence determination of the cloned cDNA showed that it contains 2157 nucleotides and a poly(A) chain and that a single open reading frame of 1488 nucleotides codes for a polypeptide of 496 amino acids with a molecular weight of 56,113. The deduced amino acid composition is in agreement with that determined by direct amino acid analysis of purified P-450(C21) and the predicted primary structure contained amino acid sequences of N-terminal region and two internal tryptic fragments of the protein so far analyzed. Comparing the amino acid sequence with those of other forms of P-450 reveals that a conserved amino acid sequence containing a putative heme-binding cysteine is present in the equivalent position, proximate to the COOH terminus of the molecules and that P-450(C21) is phylogenically situated in an intermediate position between steroidogenic mitochondrial cytochrome P-450 which catalyzes the side-chain cleavage of cholesterol (P-450(SCC)) and drug-metabolizing microsomal P-450s. However, the amino acid sequence of P-450(C21) is much closer to that of drug-metabolizing P-450s than to that of P-450(SCC).  相似文献   

19.
A cytochrome P-450 catalysing 25-hydroxylation of vitamin D3 was purified from liver mitochondria of untreated rabbits. The enzyme fraction contained 9 nmol of cytochrome P-450/mg of protein and showed only one protein band with an apparent Mr of 52,000 upon SDS/polyacrylamide-gel electrophoresis. The preparation showed a single protein spot with an apparent isoelectric point of 7.8 and an Mr of approx. 52,000 upon two-dimensional isoelectric-focusing-polyacrylamide-gel electrophoresis. The purified cytochrome P-450 catalysed 25-hydroxylation of vitamin D3 up to 5000 times more efficiently than did the mitochondria. The cytochrome P-450 required both ferredoxin and ferredoxin reductase for catalytic activity. Microsomal NADPH-cytochrome P-450 reductase could not replace ferredoxin and ferredoxin reductase. The cytochrome P-450 catalysed, in addition to 25-hydroxylation of vitamin D3, the 25-hydroxylation of 1 alpha-hydroxyvitamin D3 and the 26-hydroxylation of 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol. The enzyme did not catalyse side-chain cleavage of cholesterol, 11 beta-hydroxylation of deoxycorticosterone, 1 alpha-hydroxylation of 25-hydroxyvitamin D3, hydroxylations of lauric acid and testosterone or demethylation of benzphetamine. The results raise the possibility that the 25-hydroxylation of vitamin D3 and the 26-hydroxylation of C27 steroids are catalysed by the same species of cytochrome P-450 in liver mitochondria. The possible role of the liver mitochondrial cytochrome P-450 in the metabolism of vitamin D3 is discussed.  相似文献   

20.
The steroid 17-hydroxylase cytochrome P450 (CYP17) found in mammalian adrenal and gonadal tissues typically exhibits not only steroid 17-hydroxylase activity but also C-17,20-lyase activity. These two reactions, catalyzed by CYP17, allow for the biosynthesis of the glucocorticoids in the adrenal cortex, as a result of the 17-hydroxylase activity, and for the biosynthesis of androgenic C(19) steroids in the adrenal cortex and gonads as a result of the additional lyase activity. A major difference between species with regard to adrenal steroidogenesis resides in the lyase activity of CYP17 toward the hydroxylated intermediates and in the fact that the secretion of C(19) steroids takes place, in some species, exclusively in the gonads. Ovine CYP17 expressed in HEK 293 cells converts progesterone to 17-hydroxyprogesterone and pregnenolone to dehydroepiandrosterone via 17-hydroxypregnenolone. In ovine adrenal microsomes, minimal if any lyase activity was observed toward either progesterone or pregnenolone. Others have demonstrated the involvement of cytochrome b(5) in the augmentation of CYP17 lyase activity. Although the presence of cytochrome b(5) in ovine adrenocortical microsomes was established, ovine adrenal microsomes did not convert pregnenolone or 17-hydroxypregnenolone to dehydroepiandrosterone. Furthermore the addition of purified ovine cytochrome b(5) to ovine adrenal microsomes did not promote lyase activity. We conclude that, in the ovine adrenal cortex, factors other than cytochrome b(5) influence the lyase activity of ovine CYP17.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号