首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Red yeast rice which is a product of solid fermentation was prepared from several kinds of Thai glutinous rice (Oryza sativa L.) cv. Korkor 6 (RD6), Kam (Kam), and Sanpatong1 (SPT1). Monascus purpureus CMU001 isolated from available Chinese red yeast rice was used as the fermentation starter. The analysis for the presence and the content of monacolins, the cholesterol-lowering compounds, were carried out using high performance liquid chromatography (HPLC). The presence of the monacolins was confirmed by the retention time of the reference compounds and LC-MS. The results were compared to those obtained from the Chinese red yeast rice and Thai non-glutinous rice (Osativa L. cv. Mali105). The chromatograms show the presence of monacolin K acid form (MKA), compactin (P1), monacolin M acid form (MMA), monacolin K (MK), monacolin M (MM), and dehydromonacolin K (DMK). A large peak of a compound with the molecular weight of 358 was also detected but could not be identified. The amount of two important monacolins, compactin, and monacolin K, were determined. It was found that the highest amount of compactin and monacolin K were 21.98 and 33.79 mg/g, respectively, when using Thai rice varity Osativa L. cv. RD6 which was fermented without adding soybean milk.  相似文献   

2.
The effects of reduced water potential (ψ) on seed germination at 25 and 15 °C in unprimed (UP) and primed (P) seeds of two cultivars of sweet sorghum (cv. Keller and cv. Makueni local), were analyzed through the hydrotime model. Six ψ (from 0 to ?1.0 MPa) in polyethylene glycol 6000 (PEG) solutions were used for the tests. Seeds were primed in 250 g/L PEG solution at 15 °C for 48 h. Decreasing ψ of imbibition solution reduced and delayed germination. At 15 °C seeds germinated less and slower than at 25 °C at any ψ. Seeds of cv. Makueni local exhibited a greater sensitivity to water stress in terms of germination percentage, than seeds of cv. Keller, but they were faster in germination. Osmopriming was beneficial for seed germination, both in terms of final percentage and rate, at any temperature and ψ. The hydrotime analysis revealed that predicted θ H constant was increased when temperature was reduced to 15 °C and at this temperature median base water potential [ψ b(50)] for germination was higher (less negative) than at 25 °C. Seed priming shifted ψ b(50) towards more negative values and reduced θ H requirements for germination. At 25 °C the two cultivars behaved similarly while at 15 °C cv. Keller exhibited a ψ b more negative but required a greater θ H to germinate, indicating a greater water-stress tolerance but a slower germination, than cv. Makueni local. The application of the model allows to identify water stress tolerant cultivars during germination, to include into breeding programs for the selection of well-performing cultivars under stress conditions.  相似文献   

3.
Changes in the concentrations of gamma-aminobutyric acid (GABA), soluble calcium ions, glutamic acid, and the activity of glutamate decarboxylase (GAD) were investigated in non-germinated vs. germinated brown rice. Brown rice was germinated for 72 h by applying each of the following solutions: (1) distilled water, (2) 5 mM lactic acid, (3) 50 ppm chitosan in 5 mM lactic acid, (4) 5 mM glutamic acid, and (5) 50 ppm chitosan in 5 mM glutamic acid. GABA concentrations were enhanced in all of the germinated brown rice when compared to the non-germinated brown rice. The GABA concentration was highest in the chitosan/glutamic acid that germinated brown rice at 2,011 nmol/g fresh weight, which was 13 times higher than the GABA concentration in the non-germinated brown rice at 154 nmol/g fresh weight. The concentrations of glutamic acid were significantly decreased in all of the germinated rice, regardless of the germination solution. Soluble calcium and GAD were higher in the germinated brown rice with the chitosan/glutamic acid solution when compared to the rice that was germinated in the other solutions. GAD that was partially purified from germinated brown rice was stimulated about 3.6-fold by the addition of calmodulin in the presence of calcium. These data show that the germination of brown rice in a chitosan/glutamic acid solution can significantly increase GABA synthesis activity and the concentration of GABA.  相似文献   

4.
The objective of this study is to elucidate the roles of silicon (Si) in enhancing tolerance to excess zinc (Zn) in two contrasting rice (Oryza sativa L.) cultivars: i.e. cv. TY-167 (Zn-resistant) and cv. FYY-326 (Zn-sensitive). Root morphology, antioxidant defense reactions and lipid peroxidation, and histochemical staining were examined in rice plants grown in the nutrient solutions with normal (0.15 μM) and high (2 mM) Zn supply, without or with 1.5 mM Si. Significant inhibitory effects of high Zn treatment on plant growth were observed. Total root length (TRL), total root surface area (TRSA) and total root tip amount (TRTA) of both cultivars were decreased significantly in plants treated with high Zn, whereas these root parameters were significantly increased when Zn-stressed plants were supplied with 1.5 mM Si. Supply of Si also significantly decreased Zn concentration in shoots of both cultivars, indicating lower root-to-shoot translocation of Zn. Moreover, superoxide dismutase (SOD), catalase (CAT), and asorbate peroxidase (APX) activities were increased, whereas malondialdehyde (MDA) and hydrogen peroxide (H2O2) concentrations were decreased in Si-supplied plants of both Zn-sensitive and Zn-resistant rice cultivars exposed to Zn stress. These alleviative effects of Si, further confirmed by the histochemical staining methods, were more prominent in the Zn-resistant cultivar than in the Zn-sensitive one. Taken together, all these results suggest that Si-mediated alleviation of Zn toxicity is mainly attributed to Si-mediated antioxidant defense capacity and membrane integrity. The possible role of Si in reduction of root-to-shoot translocation of Zn can also be considered.  相似文献   

5.
《Annals of botany》1996,77(6):599-604
Differences in germination of intact and dehusked seeds of two japonica and two indica cultivars of rice (Oryza sativaL.) were examined during the development and maturation of seeds both under high-temperature (30/23°C) and low-temperature (20/13°C) regimes and a 14-h photoperiod in growth cabinets. As described previously for seeds grown in the paddy fields, germination of freshly harvested japonica rice seeds that developed and matured in growth cabinets was inhibited by dehusking. We observed a roughly consistent triphasic pattern with respect to the germination of intact and dehusked seeds during the development and maturation of seeds of indica and japonica rice. The triphasic pattern consisted of: (a) an initial phase, during which germination was stimulated by dehusking both in indica and japonica rice; (b) a second phase during which almost no dehusked seeds of indica or japonica rice germinated; and (c) a third phase during which intrinsic differences between indica and japonica rice were observed, with dehusking stimulating germination of indica rice but inhibiting that of japonica. Temperature regimes did not affect this triphasic pattern, but the time from the day of anthesis to mass maturity was affected by temperature regimes, and the effect was more pronounced in indica than in japonica rice.  相似文献   

6.
Seedlings of two Indica rice (Oryza sativa L.) cvs. HUR-105 and Vandana, differing in Al-tolerance were used to identify the key mechanisms involved in their differential behaviour towards Al toxicity. Cv. HUR-105 appeared to be Al sensitive by showing significant reduction (p ≤ 0.01) in root/shoot length, fresh weight, dry weight and water content in presence of 421 μM Al3+ in growth medium whereas cv. Vandana appeared to be fairly Al3+ tolerant. A conspicuous and significant reduction in dry weight of root and shoot was observed in Al sensitive cv. HUR-105 with 178 μM Al3+ treatment for 3 days. Al was readily taken up by the roots and transported to shoots in both the rice cultivars. Localization of absorbed Al was always greater in roots than in shoots. Our results of the production of reactive oxygen species (ROS) H2O2 and O2 .? and activities of major antioxidant enzymes such as total superoxide dismutase (SOD), Cu/Zn SOD, Mn SOD, Fe SOD, catalase (CAT) and guaiacol peroxidase revealed Al induced higher oxidative stress, greater production of ROS and lesser capacity to scavenge ROS in cv. HUR-105 than Vandana. With Al treatment, higher oxidative stress was noted in shoots than in roots. Greatly enhanced activities of SOD (especially Fe and Mn SOD) and CAT in Al treated seedlings of cv. Vandana suggest the role of these enzymes in Al tolerance. Furthermore, a marked presence of Fe SOD in roots and shoots of the seedlings of Al tolerant cv. Vandana and its significant (p ≤ 0.01) increase in activity due to Al-treatment, appears to be the unique feature of this cultivar and indicates a vital role of Fe SOD in Al-tolerance in rice.  相似文献   

7.
The fruity odor of Chinese liquor is largely derived from ester formation. Ethyl caproate, an ethyl ester eliciting apple-like flavor, is one of the most important esters in the strong aromatic Chinese liquor (or Luzhou-flavor liquor), which is the most popular and best-selling liquor in China. In the traditional fermentation process, ethyl caproate in strong aromatic liquor is mainly produced by aroma-producing yeast, bacteria, and mold with high esterification abilities in a mud pit at later fermentation stages at the expense of both fermentation time and grains rather than by the ethanol-fermenting yeast Saccharomyces cerevisiae. To increase the production of ethyl caproate by Chinese liquor yeast (S. cerevisiae AY15) and shorten the fermentation period, we constructed a recombinant strain EY15 by overexpressing EHT1 (encoding ethanol hexanoyl transferase), in which FAA1 (encoding acyl-CoA synthetases) was deleted. In liquid fermentation of corn hydrolysate and solid fermentation of sorghum, ethyl caproate production by EY15 was remarkably increased to 2.23 and 2.83 mg/L, respectively, which were 2.97- and 2.80-fold higher than those of the parental strain AY15. Furthermore, an increase in ethyl octanoate (52 and 43 %) and ethyl decanoate (61 and 40 %) production was observed. The differences in fermentation performance between EY15 and AY15 were negligible. This study resulted in the creation of a promising recombinant yeast strain and introduced a method that can be used for the clean production of strong aromatic Chinese liquor by ester-producing S. cerevisiae without the need for a mud pit.  相似文献   

8.
In this study, an ethanol fermentation waste (EFW) was characterized for use as an alternative to yeast extract for bulk fermentation processes. EFW generated from a commercial plant in which ethanol is produced from cassava/rice/wheat/barley starch mixtures using Saccharomyces cerevisiae was used for lactic acid production by Lactobacillus paracasei. The effects of temperature, pH, and duration on the autolysis of an ethanol fermentation broth (EFB) were also investigated. The distilled EFW (DEFW) contained significant amounts of soluble proteins (2.91 g/l), nitrogen (0.47 g/l), and amino acids (24.1 mg/l). The autolysis of the EFB under optimum conditions released twice as much amino acids than in the DEFW. Batch fermentation in the DEFW increased the final lactic acid concentration, overall lactic acid productivity, and lactic acid yield on glucose by 17, 41, and 14 %, respectively, in comparison with those from comparable fermentation in a lactobacillus growth medium (LGM) that contained 2 g/l yeast extract. Furthermore, the overall lactic acid productivity in the autolyzed then distilled EFW (ADEFW) was 80 and 27 % higher than in the LGM and DEFW, respectively.  相似文献   

9.
Water deficit for rice is a worldwide concern, and to produce drought-tolerant varieties, it is essential to elucidate molecular mechanisms associated with water deficit tolerance. In the present study, we investigated the differential responses of nonenzymatic antioxidants ascorbate (AsA), glutathione (GSH), and their redox pool as well as activity levels of enzymes of ascorbate–glutathione cycle in seedlings of drought-sensitive rice (Oryza sativa L.) cv. Malviya-36 and drought-tolerant cv. Brown Gora subjected to water deficit treatment of ?1.0 and ?2.1 MPa for 24–72 h using PEG-6000 in sand cultures. Water deficit caused increased production of reactive oxygen species such as O2??, H2O2, and HO? in the tissues, and the level of production was higher in the sensitive than the tolerant cultivar. Water deficit caused reduction in AsA and GSH and decline in their redox ratios (AsA/DHA and GSH/GSSG) with lesser decline in tolerant than the sensitive seedlings. With progressive level of water deficit, the activities of monodehydroascorbate reductase, dehydroascorbate reductase, ascorbate peroxidase (APX), and glutathione transferase increased in the seedlings of both rice cultivars, but the increased activity levels were higher in the seedlings of drought-tolerant cv. Brown Gora compared to the sensitive cv. Malviya-36. Greater accumulation of proline was observed in stressed seedlings of tolerant than the sensitive cultivar. In-gel activity staining of APX revealed varying numbers of their isoforms and their differential expression in sensitive and tolerant seedlings under water deficit. Results suggest that an enhanced oxidative stress tolerance by a well-coordinated cellular redox state of ascorbate and glutathione in reduced forms and induction of antioxidant defense system by elevated activity levels of enzymes of ascorbate–glutathione cycle is associated with water deficit tolerance in rice.  相似文献   

10.
This study was carried out to see the impact of Angoumois grain moth (AGM) on different cultivars of barley so that we must grow resistant variety of barley or improve those which are susceptible to it. Eggs of Sitotroga cerealella (Oliv.) were collected and reared in incubators available in Stored Product Entomology Laboratory, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, under temperature 27 ± 2°C and 60 ± 2% relative humidity. For the experiment, five different cultivars of barley; Sanober-96, Jau-83, Soorab-96, ICBA and Sterling were selected for AGM feed. After an interval of 30, 60 and 90 days of infestation, percentage damage and weight loss in grains were determined. After carrying out laboratory and field germination tests, viability of different cultivars were checked. Damage was maximum in variety Soorab (99.38%), which becomes susceptible while it was minimum in Sanober-96 (90.62%), which becomes resistant. Weight loss was maximum in variety Soorab (49.71%), which becomes susceptible and was minimum in Sanober-96 (45.32%), which becomes resistant. Damage was positively correlated with weight loss and negatively correlated with seed germination. In germination tests, on filter paper, maximum germination was found in variety Sterling (3%) which becomes resistant and it was minimum in ICBA which becomes susceptible (0%). In sand germination test, maximum seeds germinated in variety Sanober-96 (2%), and minimum seeds germinated in ICBA (0%). By calculating the percentage of losses of different cultivars, it was found that none of cultivars proved itself completely resistant or susceptible.  相似文献   

11.
Weeds and crops that grow together often confront similar types of environmental stress, especially drought stress. Weedy rice (Oryza sativa f. spontanea) and cultivated rice (O. sativa L.) provide a unique pair consisting of a weed and a conspecific model crop that can be used to study the drought tolerance of plants across a large distributional range. The investigation on weedy rice's damage to paddy fields showed that it was more serious in dry direct seeding than water direct seeding. Compared with water direct seeding, the seeds of cultivated rice and weedy rice in dry direct seeding will absorb water and germinate under the condition of insufficient soil moisture. Our hypothesis is that weedy rice seeds have evolved stronger germination ability than coexisting cultivated rice under water stress, so that they can obtain more growth space in the early stage in dry direct seeding and thus obtain higher fitness. Seeds of weedy rice populations and coexisting rice cultivars were collected from 61 sites across China and were germinated with 20% polyethylene glycol‐6000 to simulate drought stress. Two drought response indices, which assessed germination rate and germination index, plus one germination stress tolerance index, indicated significantly greater drought tolerance in weedy rice populations than in coexisting rice cultivars (P < 0.01). Drought tolerance for the three indexes were indica weedy rice > indica rice cultivars, japonica weedy rice > japonica rice cultivars, and indica weedy rice > japonica rice cultivars. These results indicate that weedy rice populations show stronger drought stress tolerance than coexisting rice cultivars at various sites, specifically during the seed germination period. Furthermore, Pearson's correlation found that drought response of weedy rice populations and coexisting rice cultivars were significantly different with these environmental factors: latitude, altitude, annual mean precipitation, mean annual temperature, mean precipitation in the sowing month, mean temperature in the sowing month, and sowing methods. Weedy rice shows different patterns of drought tolerance variation across geographical (latitude and altitude) and environmental (precipitation) gradients compared to coexisting rice cultivars. This study suggests that weedy rice might have evolved new drought tolerance and could provide a useful source of genetic resources for improving drought tolerance of crop cultivars and breeding direct seeded cultivars to reduce the usage of seeds in direct seeding.  相似文献   

12.
Red onion accelerated the germination of rice seeds and inhibited microbial infestation during germination. After germination with red onion for 16 h at 35 °C, super-hard rice EM10 showed a higher germination ratio (2.3 times), and it contained more GABA (2.3 times) and glucose (2.9 times) than that soaked without onion. Due to soaking with red onion, germinated EM10 was fortified with quercetin (18 mg/100 g).  相似文献   

13.

Background and aims

This study aimed to investigate the roles of silicon (Si) in ameliorating manganese (Mn) toxicity in two rice (Oryza sativa L.) cultivars: i.e. cv. Xinxiangyou 640 (XXY), a Mn-sensitive cultivar and cv. Zhuliangyou 99 (ZLY), a Mn-tolerant cultivar.

Methods

Plants were cultured in nutrient solution containing normal Mn (6.7 μM) or high Mn (2.0 mM), both with or without Si supply at 1.5 mM Si.

Results

Plant growth was severely inhibited by high Mn in cv. XXY, but was enhanced by Si supply. In cv. XXY, Si-enhanced tolerance resulted from a restriction of Mn transport, whereas in cv. ZLY Mn uptake was depressed. In cv. XXY, high Mn significantly increased superoxide dismutase (SOD), catalase and ascorbate peroxidase activities but decreased non-protein thiols and glutathione concentrations, leading to accumulation of H2O2 and malondialdehyde. The addition of Si significantly counteracted high Mn-elevated malondialdehyde and H2O2 concentrations and enhanced plant growth. In cv. ZLY, high Mn considerably raised SOD activities and glutathione concentrations, thus leading to relatively low oxidative damage.

Conclusions

Si-enhanced Mn tolerance was attributed mainly to restricted Mn transport in cv. XXY but to depressed Mn uptake in cv. ZLY. Silicon mainly influenced non-enzymatic antioxidants in these two rice cultivars under high Mn stress.  相似文献   

14.
Chlorophyll content (SPAD values) of leaves, 1-aminocyclopropane-1-carboxylic acid synthase (ACS) activities and ethylene production of inferior spikelets, aboveground biomass, grain yield, and yield components were studied to compare the effects of 1-methylcyclopropene (1-MCP) on plant growth, and inferior spikelet development in hybrid rice (Oryza sativa L.) differing in panicle architectures. There were four hybrid rice cultivars in this trial, including two lax-panicled cultivars, Liangyoupeijiu (LYPJ) and Guodao 6 (GD6), and two compact-panicled cultivars, Yongyou 9 (YY9) and Yongyou 12 (YY12). Results showed that chlorophyll content of leaves in 1-MCP treatment was higher than control (CK) after application of 1-MCP. ACS activities and ethylene production in 1-MCP treatment for LYPJ, GD6, and YY9 were significantly decreased compared to their corresponding CK. Aboveground biomass and grain yield of cultivars were increased with the increase of chlorophyll content of leaves, but decreased with the increase of ACS activities and ethylene production of inferior spikelets. On average, grain yield in 1-MCP treatment for LYPJ was increased by 7.3 % compared to CK, GD6 was increased by 2.6 %, YY9 was increased by 3.2 %, and YY12 was increased by 0.8 %, respectively. Application of 1-MCP showed marked effects on increasing spikelet fertility and harvest index of cultivars, but exhibited little effects on improving sink capacity and 1,000-grain weight. Our results indicate that 1-MCP could play a positive role in regulating the growth and development of hybrid rice with lax panicles or with compact panicles.  相似文献   

15.
16.
γ-Aminobutyric acid (GABA), a non-protein amino acid, is a bioactive component in the food, feed and pharmaceutical fields. To establish an effective single-step production system for GABA, a recombinant Corynebacterium glutamicum strain co-expressing two glutamate decarboxylase (GAD) genes (gadB1 and gadB2) derived from Lactobacillus brevis Lb85 was constructed. Compared with the GABA production of the gadB1 or gadB2 single-expressing strains, GABA production by the gadB1gadB2 co-expressing strain increased more than twofold. By optimising urea supplementation, the total production of l-glutamate and GABA increased from 22.57 ± 1.24 to 30.18 ± 1.33 g L?1, and GABA production increased from 4.02 ± 0.95 to 18.66 ± 2.11 g L?1 after 84-h cultivation. Under optimal urea supplementation, l-glutamate continued to be consumed, GABA continued to accumulate after 36 h of fermentation, and the pH level fluctuated. GABA production increased to a maximum level of 27.13 ± 0.54 g L?1 after 120-h flask cultivation and 26.32 g L?1 after 60-h fed-batch fermentation. The conversion ratio of l-glutamate to GABA reached 0.60–0.74 mol mol?1. By co-expressing gadB1 and gadB2 and optimising the urea addition method, C. glutamicum was genetically improved for de novo biosynthesis of GABA from its own accumulated l-glutamate.  相似文献   

17.
18.
The response to drought stress on germination was investigated on three hybrids of ornamental sunflower, ‘Hadar’, ‘Pazit’, and ‘Zohar’. Different levels of water potential [Ψ: 0.0 (control), ?0.15, ?0.30, ?0.45, ?0.60, ?0.75, and ?0.90 MPa] were adopted using polyethylene glycol-6000 (PEG6000) at four germination temperatures (15, 20, 25, and 30 °C). Final germination percentage, mean germination time, germination index, germination rate index, and germination stress tolerance index were used to evaluate the genotype response to PEG-induced water stress. Shoot and root length and fresh and dry weight were measured on seeds germinated at 20 °C under the different levels of water potentials. During germination, the three ornamental sunflowers showed to be more sensitive to suboptimal temperature than to supraoptimal. Decreasing water potential of imbibition solution progressively inhibited and delayed seed germination. Among cultivars, ‘Hadar’ and ‘Pazit’ performed better at temperature lower than 30 °C. ‘Zohar’ showed a lower sensitivity to PEG-induced water stress at all temperature conditions. Water stress during seed germination depressed the following seedling growth under favourable conditions. As a result, shoot and root length and fresh and dry weight was significantly lower in seedlings from seed germinated at ψ ≤ 0.45 MPa.  相似文献   

19.
A recombinant inbred population developed from a cross between high-yielding lowland rice (Oryza sativa L.) subspecies indica cv. IR64 and upland tropical rice subspecies japonica cv. Cabacu was used to identify quantitative trait loci (QTLs) for grain yield (GY) and component traits under reproductive-stage drought stress. One hundred fifty-four lines were grown in field trials in Indonesia under aerobic conditions by giving surface irrigation to field capacity every 4 days. Water stress was imposed for a period of 15 days during pre-flowering by withholding irrigation at 65 days after seeding. Leaf rolling was scored at the end of the stress period and eight agronomic traits were evaluated after recovery. The population was also evaluated for root pulling force, and a total of 201 single nucleotide polymorphism markers were used to construct the molecular genetic linkage map and QTL mapping. A QTL for GY under drought stress was identified in a region close to the sd1 locus on chromosome 1. QTL meta-analysis across diverse populations showed that this QTL was conserved across genetic backgrounds and co-localized with QTLs for leaf rolling and osmotic adjustment (OA). A QTL for percent seed set and grains per panicle under drought stress was identified on chromosome 8 in the same region as a QTL for OA previously identified in three different populations.  相似文献   

20.
Plant growth and productivity are greatly affected due to changes in the environmental conditions. In the present investigation, the interactive effects of two important abiotic stresses, i.e., water deficit and Al toxicity, were examined in the seedlings of two rice (Oryza sativa L.) cvs. Malviya-36 (water deficit/Al sensitive) and Vandana (water deficit/Al tolerant). When 15 days grown seedlings were exposed to water deficit (created with 15 % polyethylene glycol 6000) or Al (1 mM AlCl3) treatment or both the treatments together for 48 h, the lengths of root/shoot, relative water content, and chlorophyll greatly declined in the seedlings of the sensitive cultivar, whereas in the tolerant seedlings, either little or insignificant decline in these parameters was observed due to the treatments. Seedlings subjected to water deficit or Al treatment alone or in combination showed increased intensity of the isoenzyme activity bands of superoxide dismutase (SOD), guaiacol peroxidase (GPX), and ascorbate peroxidase (APX) in in-gel activity staining studies. Water deficit caused decrease in intensity of catalase (CAT) activity bands; however, when seedlings were exposed to AlCl3 alone or in combination with water deficit, the intensity of the CAT isoforms increased in both the rice cultivars. The level of expression of the activity bands of SOD, CAT, GPX, and APX was always higher in the seedlings of tolerant cv. Vandana compared to the sensitive cv. Malviya-36 under both controls as well as stress treatments. Higher intensity of isozymes representing higher activity levels of antioxidative enzymes in the rice seedlings and their further increase under water deficit, Al exposure, or in combination of both the stresses appears to serve as useful marker for specifying a combination of water deficit and Al tolerance in rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号