首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the possible roles of the Ras/Rho family members in the inside-out signals to activate integrins, we examined the ability of Ras/Rho small GTPases to stimulate avidity of alpha(5)beta(1) (VLA-5) to fibronectin in bone marrow-derived mast cells. We found that both Ha-Ras(Val-12) and R-Ras(Val-38) had strong stimulatory effects on adhesion and ligand binding activity of VLA-5 to fibronectin. However, only Ha-Ras(Val-12)-, but not R-Ras(Val-38)-induced adhesion was inhibited by wortmannin, which suggests that Ha-Ras(Val-12) is dependent on phosphatidylinositol (PI) 3-kinase on adhesion whereas R-Ras(Val-38) has another PI 3-kinase independent pathway to induce adhesion. The effector loop mutant Ha-Ras(Val-12)E37G, but not Y40C retained the ability to stimulate adhesion of mast cells to fibronectin. Consistently, PI 3-kinase p110delta, predominantly expressed in mast cells, interacted with Ha-Ras(Val-12) E37G, but not Y40C, which was also correlated with the levels of Akt phosphorylation in mast cells. Furthermore, marked adhesion was induced by a membrane-targeted version of p110delta. These results indicate that Ha-Ras(Val-12) activated VLA-5 through PI 3-kinase p110delta. The mutational effects of the R-Ras effector loop region on adhesion were not correlated with PI 3-kinase activities, consistent with our contention that R-Ras has a distinct pathway to modulate avidity of VLA-5.  相似文献   

2.
Phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/Akt) is thought to serve as an oncogenic signaling pathway which can be activated by Ras. The role of PI3K/Akt in Ras-mediated transformation of intestinal epithelial cells is currently not clear. Here we demonstrate that inducible expression of oncogenic Ha-Ras results in activation of PKB/Akt in rat intestinal epithelial cells (RIE-iHa-Ras), which was blocked by treatment with inhibitors of PI3K activity. The PI3K inhibitor, LY-294002, partially reversed the morphological transformation induced by Ha-Ras and resulted in a modest stimulation of apoptosis. The most pronounced phenotypic alteration following inhibition of PI3K was induction of G(1) phase cell cycle arrest. LY-294002 blocked the Ha-Ras-induced expression of cyclin D1, cyclin-dependent kinase (CDK) 2, and increased the levels of p27(kip). Both LY-294002 and wortmannin significantly reduced anchorage-independent growth of RIE-iHa-Ras cells. Forced expression of both the constitutively active forms of Raf (DeltaRaf-22W or Raf BXB) and Akt (Akt-myr) resulted in transformation of RIE cells that was not achieved by transfection with either the Raf mutant construct or Akt-myr alone. These findings delineate an important role for PI3K/Akt in Ras-mediated transformation of intestinal epithelial cells.  相似文献   

3.
4.
Colony-stimulating factor 1 (CSF-1) supports the proliferation, survival, and differentiation of bone marrow-derived cells of the monocytic lineage. In the myeloid progenitor 32D cell line expressing CSF-1 receptor (CSF-1R), CSF-1 activation of the extracellular signal-regulated kinase (ERK) pathway is both Ras and phosphatidylinositol 3-kinase (PI3-kinase) dependent. PI3-kinase inhibition did not influence events leading to Ras activation. Using the activity of the PI3-kinase effector, Akt, as readout, studies with dominant-negative and oncogenic Ras failed to place PI3-kinase downstream of Ras. Thus, PI3-kinase appears to act in parallel to Ras. PI3-kinase inhibitors enhanced CSF-1-stimulated A-Raf and c-Raf-1 activities, and dominant-negative A-Raf but not dominant-negative c-Raf-1 reduced CSF-1-provoked ERK activation, suggesting that A-Raf mediates a part of the stimulatory signal from Ras to MEK/ERK, acting in parallel to PI3-kinase. Unexpectedly, a CSF-1R lacking the PI3-kinase binding site (DeltaKI) remained capable of activating MEK/ERK in a PI3-kinase-dependent manner. To determine if Src family kinases (SFKs) are involved, we demonstrated that CSF-1 activated Fyn and Lyn in cells expressing wild-type (WT) or DeltaKI receptors. Moreover, CSF-1-induced Akt activity in cells expressing DeltaKI is SFK dependent since Akt activation was prevented by pharmacological or genetic inhibition of SFK activity. The docking protein Gab2 may link SFK to PI3-kinase. CSF-1 induced Gab2 tyrosyl phosphorylation and association with PI3-kinase in cells expressing WT or DeltaKI receptors. However, only in DeltaKI cells are these events prevented by PP1. Thus in myeloid progenitors, CSF-1 can activate the PI3-kinase/Akt pathway by at least two mechanisms, one involving direct receptor binding and one involving SFKs.  相似文献   

5.
Ras plays a key role in regulating cellular proliferation, differentiation, and transformation. Raf is the major effector of Ras in the Ras > Raf > Mek > extracellular signal-activated kinase (ERK) cascade. A second effector is phosphoinositide 3-OH kinase (PI 3-kinase), which, in turn, activates the small G protein Rac. Rac also has multiple effectors, one of which is the serine threonine kinase Pak (p65(Pak)). Here we show that Ras, but not Raf, activates Pak1 in cotransfection assays of Rat-1 cells but not NIH 3T3 cells. We tested agents that activate or block specific components downstream of Ras and demonstrate a Ras > PI 3-kinase > Rac/Cdc42 > Pak signal. Although these studies suggest that the signal from Ras through PI 3-kinase is sufficient to activate Pak, additional studies suggested that other effectors contribute to Pak activation. RasV12S35 and RasV12G37, two effector mutant proteins which fail to activate PI 3-kinase, did not activate Pak when tested alone but activated Pak when they were cotransfected. Similarly, RacV12H40, an effector mutant that does not bind Pak, and Rho both cooperated with Raf to activate Pak. A dominant negative Rho mutant also inhibited Ras activation of Pak. All combinations of Rac/Raf and Ras/Raf and Rho/Raf effector mutants that transform cells cooperatively stimulated ERK. Cooperation was Pak dependent, since all combinations were inhibited by kinase-deficient Pak mutants in both transformation assays and ERK activation assays. These data suggest that other Ras effectors can collaborate with PI 3-kinase and with each other to activate Pak. Furthermore, the strong correlation between Pak activation and cooperative transformation suggests that Pak activation is necessary, although not sufficient, for cooperative transformation of Rat-1 fibroblasts by Ras, Rac, and Rho.  相似文献   

6.
Kim S  Lee YZ  Kim YS  Bahk YY 《Proteomics》2008,8(15):3082-3093
Point mutations in three kinds of Ras protein (H-, K-, and N-Ras) that specifically occur in codons 12, 13, and 61 facilitate virtually all of the malignant phenotype of the cancer cells, including cellular proliferation, transformation, invasion, and metastasis. In order to elucidate an understanding into the oncogenic ras networks by H-, K-, and N-Ras/G12V, we have established various oncogenic ras expressing NIH/3T3 mouse embryonic fibroblast clones using the tetracycline-induction system, which are expressing Ras/G12V proteins under the tight control of expression by an antibiotics, doxycycline. Here we provide a catalog of proteome profiles in total cell lysates derived from three oncogenic ras expressing NIH/3T3 cells and a good in vitro model system for dissecting the protein networks due to these oncogenic Ras proteins. In this biological context, we compared total proteome changes by the combined methods of 2-DE, quantitative image analysis, and MALDI-TOF MS analysis using the unique Tet-on inducible expression system. There were a large number of common targets for oncogenic ras, which were identified in all three cell lines and consisted of 204 proteins (61 in the pH range of 4-7, 63 in 4.5-5.5, and 80 in 5.5-6.7). Differentially regulated expression was further confirmed for some subsets of candidates by Western blot analysis using specific antibodies. Taken together, we implemented a 2-DE-based proteomics approach to the systematical analysis of the dysregulations in the cellular proteome of NIH/3T3 cells transformed by three kinds of oncogenic ras. Our results obtained and presented here show that the comparative analysis of proteome from oncogenic ras expressing cells has yielded interpretable data to elucidate the differential protein expression directly and/or indirectly, and contributed to evaluate the possibilities for physiological, and therapeutic targets. Further studies are in progress to elucidate the implications of these findings in the regulation of Ras induced transformation.  相似文献   

7.
8.
The potential oncogenicity of PI3-kinases is revealed by two principal mechanisms: mutations causing gain of function and over-expression of wild-type proteins. Cancer-specific mutations in PIK3CA, the gene coding for the catalytic subunit p110a of PI 3-kinase, are oncogenic in the animal. These mutations are therefore significant determinants of the oncogenic cellular phenotype in human tumors and are appropriate and promising targets for small molecule inhibitors. Over-expression of wild-type p110b, g, and d induces oncogenic transformation in cell culture. Although these non-alpha isoforms of PI 3-kinase have not been found mutated in human cancer, deregulated expression could contribute to cellular oncogenic properties and deserves increased attention.  相似文献   

9.
Activated Ras, but not Raf, causes transformation of RIE-1 rat intestinal epithelial cells, demonstrating the importance of Raf-independent effector signaling in mediating Ras transformation. To further assess the contribution of Raf-dependent and Raf-independent function in oncogenic Ras transformation, we evaluated the mechanism by which oncogenic Ras blocks suspension-induced apoptosis, or anoikis, of RIE-1 cells. We determined that oncogenic versions of H-, K-, and N-Ras, as well as the Ras-related proteins TC21 and R-Ras, protected RIE-1 cells from anoikis. Surprisingly, our analyses of Ras effector domain mutants or constitutively activated effectors indicated that activation of Raf-1, phosphatidylinositol 3-kinase (PI3K), or RalGDS alone is not sufficient to promote Ras inhibition of anoikis. Treatment of Ras-transformed cells with the U0126 MEK inhibitor caused partial reversion to an anoikis-sensitive state, indicating that extracellular signal-regulated kinase activation contributes to inhibition of anoikis. Unexpectedly, oncogenic Ras failed to activate Akt, and treatment of Ras-transformed RIE-1 cells with the LY294002 PI3K inhibitor did not affect anoikis resistance or growth in soft agar. Thus, while important for Ras transformation of fibroblasts, PI3K may not be involved in Ras transformation of RIE-1 cells. Finally, inhibition of epidermal growth factor receptor kinase activity did not overcome Ras inhibition of anoikis, indicating that this autocrine loop essential for transformation is not involved in anoikis protection. We conclude that a PI3K- and RalGEF-independent Ras effector(s) likely cooperates with Raf to confer anoikis resistance upon RIE-1 cells, thus underscoring the complex nature by which Ras transforms cells.  相似文献   

10.
Ras proteins activate diverse effector molecules. Depending on the cellular context, Ras activation may have different biological consequences: induction of cell proliferation, senescence, survival, or death. Augmentation and selective activation of particular effector molecules may underlie various Ras actions. In fact, Ras effector-loop mutants interacting with distinctive effectors provide evidence for such selectivity. Interactions of active Ras with escort proteins, such as galectin-1, could also direct Ras selectivity. Here we show that in comparison with Ras transfectants, H-Ras/galectin-1 or K-Ras4B/galectin-1 co-transfectants exhibit enhanced and prolonged epidermal growth factor (EGF)-stimulated increases in Ras-GTP, Raf-1 activity, and active extracellular signal-regulated kinase. Galectin-1 antisense RNA inhibited these EGF responses. Conversely, Ras and galectin-1 co-transfection inhibited the EGF-stimulated increase in phosphoinositide 3-kinase (PI3K) activity. Galectin-1 transfection also inhibited Ras(G12V)-induced PI3K but not Raf-1 activity. Galectin-1 co-immunoprecipitated with Ras(G12V) or with Ras(G12V/T35S) that activate Raf-1 but not with Ras(G12V/Y40C) that activates PI3K. Thus, galectin-1 binds active Ras and diverts its signal to Raf-1 at the expense of PI3K. This demonstrates a novel mechanism controlling the duration and selectivity of the Ras signal. Ras gains selectivity when it is associated with galectin-1, mimicking the selectivity of Ras(T35S), which activates Raf-1 but not PI3K.  相似文献   

11.
CalDAG-GEFIII activation of Ras, R-ras, and Rap1   总被引:10,自引:0,他引:10  
We characterized a novel guanine nucleotide exchange factor (GEF) for Ras family G proteins that is highly homologous to CalDAG-GEFI, a GEF for Rap1 and R-Ras, and to RasGRP/CalDAG-GEFII, a GEF for Ras and R-Ras. This novel GEF, referred to as CalDAG-GEFIII, increased the GTP/GDP ratio of Ha-Ras, R-Ras, and Rap1 in 293T cells. CalDAG-GEFIII promoted the guanine nucleotide exchange of Ha-Ras, R-Ras, and Rap1 in vitro also, indicating that CalDAG-GEFIII exhibited the widest substrate specificity among the known GEFs for Ras family G proteins. Expression of CalDAG-GEFIII was detected in the glial cells of the brain and the glomerular mesangial cells of the kidney by in situ hybridization. CalDAG-GEFIII activated ERK/MAPK most efficiently, followed by CalDAG-GEFII and CalDAG-GEFI in 293T cells. JNK activation was most prominent in cells expressing CalDAG-GEFII, followed by CalDAG-GEFIII and CalDAG-GEFI. Expression of CalDAG-GEFIII induced neuronal differentiation of PC12 cells and anchorage-independent growth of Rat1A cells less efficiently than did CalDAG-GEFII. Thus, co-activation of Rap1 by CalDAG-GEFIII apparently attenuated Ras-MAPK-dependent neuronal differentiation and cellular transformation. Altogether, CalDAG-GEFIII activated a broad range of Ras family G proteins and exhibited a biological activity different from that of either CalDAG-GEFI or CalDAG-GEFII.  相似文献   

12.
Gupta S  Ramjaun AR  Haiko P  Wang Y  Warne PH  Nicke B  Nye E  Stamp G  Alitalo K  Downward J 《Cell》2007,129(5):957-968
Ras proteins signal through direct interaction with a number of effector enzymes, including type I phosphoinositide (PI) 3-kinases. Although the ability of Ras to control PI 3-kinase has been well established in manipulated cell culture models, evidence for a role of the interaction of endogenous Ras with PI 3-kinase in normal and malignant cell growth in vivo has been lacking. Here we generate mice with mutations in the Pi3kca gene encoding the catalytic p110alpha isoform that block its interaction with Ras. Cells from these mice show proliferative defects and selective disruption of signaling from growth factors to PI 3-kinase. The mice display defective development of the lymphatic vasculature, resulting in perinatal appearance of chylous ascites. Most importantly, they are highly resistant to endogenous Ras oncogene-induced tumorigenesis. The interaction of Ras with p110alpha is thus required in vivo for certain normal growth factor signaling and for Ras-driven tumor formation.  相似文献   

13.
We have reported previously that Ras interacts with the catalytic subunit of phosphoinositide 3-kinase (PI 3-kinase) in a GTP-dependent manner. The affinity of the interaction of Ras-GTP with p85alpha/p110alpha is shown here to be approximately 150 nM. The site of interaction on the p110alpha and beta isoforms of PI 3-kinase lies between amino acid residues 133 and 314. A point mutation in this region, K227E, blocks the GTP-dependent interaction of PI 3-kinase p110alpha with Ras in vitro and the ability of Ras to activate PI 3-kinase in intact cells. In addition, this mutation elevates the basal activity of PI 3-kinase in intact cells, suggesting a direct influence of the Ras binding site on the catalytic activity of PI 3-kinase. Using an in vitro reconstitution assay, it is shown that the interaction of Ras-GTP, but not Ras-GDP, with PI 3-kinase leads to an increase in its enzymatic activity. This stimulation is synergistic with the effect of tyrosine phosphopeptide binding to p85, particularly at suboptimal peptide concentrations. These data show that PI 3-kinase is regulated by a number of mechanisms, and that Ras contributes to the activation of this lipid kinase synergistically with tyrosine kinases.  相似文献   

14.
Ras promotes robust survival of many cell systems by activating the phosphatidylinositol 3-kinase (PI3-kinase)/Akt pathway, but little is understood about the survival functions of the Ras/ERK pathway. We have used three different effector-loop mutant forms of Ras, each of which activates a single downstream effector pathway, to dissect their individual contributions to survival of nerve growth factor (NGF)-dependent sympathetic neurons. The PI3-kinase pathway-selective protein Ras(Val-12)Y40C was as powerful as oncogenic Ras(Val-12) in preventing apoptosis induced by NGF deprivation but conferred no protection against apoptosis induced by cytosine arabinoside. Identical results were obtained with transfected Akt. In contrast, the ERK pathway-selective protein Ras(Val-12)T35S had no protective effects on NGF-deprived neurons but was almost as strongly protective as Ras(Val-12) against cytosine arabinoside-induced apoptosis. The protective effects of Ras(Val-12)T35S against cytosine arabinoside were completely abolished by the ERK pathway inhibitor PD98059. Ras(Val-12)E37G, an activator of RalGDS, had no survival effect on either death pathway, similar to RasS17N, the full survival antagonist. Thus, Ras provides two independent survival pathways each of which inhibits a distinct apoptotic mechanism. Our study presents one of the few clear-cut cases where only the Ras/ERK, but not the Ras/PI3K/Akt pathway, plays a dominant survival signaling role.  相似文献   

15.
16.
Ras and Rho family GTPases have been ascribed important roles in signalling pathways determining cellular morphology and growth. Here we investigated the roles of the GTPases Ras, Cdc42, Rac1, and Rho and that of phosphatidylinositol 3-kinase (PI 3-kinase) in the pathway leading from serum starvation to neurite outgrowth in N1E-115 neuroblastoma cells. Serum-starved cells grown on a laminin matrix exhibited integrin-dependent neurite outgrowth. Expression of dominant negative mutants of Ras, PI 3-kinase, Cdc42, or Rac1 all blocked this neurite outgrowth, while constitutively activated mutants of Ras, PI 3-kinase, or Cdc42 were each sufficient to promote outgrowth even in the presence of serum. A Ras(H40C;G12V) double mutant which binds preferentially to PI 3-kinase also promoted neurite formation. Activated Ras(G12V)-induced outgrowth required PI 3-kinase activity, but activated PI 3-kinase-induced outgrowth did not require Ras activity. Although activated Rac1 by itself did not induce neurites, neurite outgrowth induced by activated Cdc42(G12V) was Rac1 dependent. Cdc42(G12V)-induced neurites appeared to lose their normal polarization, almost doubling the average number of neurites produced by a single cell. Outgrowth induced by activated Ras or PI 3-kinase required both Cdc42 and Rac1 activity, but Cdc42(G12V)-induced outgrowth did not need Ras or PI 3-kinase activity. Active Rho(G14V) reduced outgrowth promoted by Ras(G12V). Finally, expression of dominant negative Jun N-terminal kinase or extracellular signal-regulated kinase did not inhibit outgrowth, suggesting these pathways are not essential for this process. Our results suggest a hierarchy of signalling where Ras signals through PI 3-kinase to Cdc42 and Rac1 activation (and Rho inactivation), culminating in neurite outgrowth. Thus, in the absence of serum factors, Ras may initiate cell cycle arrest and terminal differentiation in N1E-115 neuroblastoma cells.  相似文献   

17.
Phosphatidylinositol 3-kinase (PI 3-kinase) plays a role in late stages of endocytosis as well as in cellular proliferation and transformation. The SH3 domain of its regulatory p85 subunit stimulates the GTPase activity of dynamin in vitro. Dynamin is a GTPase enzyme required for endocytosis of activated growth factor receptors. An interaction between these proteins has not been demonstrated in vivo. Here, we report that dynamin associates with PI 3-kinase in hematopoietic cells. We detected both p85 and PI 3-kinase activity in dynamin immune complexes from IL-3-dependent BaF3 cells. However, this association was significantly reduced in BaF3 cells transformed with the BCR/abl oncogene. After transformation only a 4-fold increase in PI 3-kinase activity was detected in dynamin immune complexes, whereas grb2 associated activity was elevated 20-fold. Furthermore, dynamin inhibited the activity of both purified recombinant and immunoprecipitated PI 3-kinase. In BaF3 cells expressing a temperature-sensitive mutant of BCR/abl, a significant decrease in p85 and dynamin association was observed 4 h after the induction of BCR/abl activity. In contrast, in IL-3-stimulated parental BaF3 cells, this association was increased. Our results demonstrate an in vivo association of PI 3-kinase with dynamin and this interaction regulates the activity of PI 3-kinase.  相似文献   

18.
A number of reports have identified phosphatidylinositol 3-kinase as a downstream effector of Ras in various cellular settings, in contrast to others supporting the notion that phosphatidylinositol 3-kinase acts upstream of Ras. Here, we used Xenopus oocytes, a model of Ras-mediated cell cycle progression (G2/M transition) to analyze the contribution of phosphatidylinositol 3-kinase to insulin/Ras-dependent signaling pathways leading to germinal vesicle breakdown and to ascertain whether phosphatidylinositol 3-kinase acts upstream or downstream of Ras in those signaling pathways. We analyzed the process of meiotic maturation induced by progesterone, insulin or micro-injected oncogenic Ras (Lys12) proteins in the presence and absence of specific inhibitors of phosphatidylinositol 3-kinase activity. As expected, the progesterone-induced maturation was independent of phosphatidylinositol 3-kinase since similar rates of germinal vesicle breakdown were produced by the hormone in the presence and absence of wortmannin and LY294002. In contrast, insulin-induced germinal vesicle breakdown was completely blocked by pre-incubation with the inhibitors prior to insulin treatment. Interestingly, similar rates of germinal vesicle breakdown were obtained in Ras (Lys12)-injected oocytes, independently of whether or not they had been pre-treated with phosphatidylinositol 3-kinase inhibitors. The effect of wortmannin or LY294002 on MAPK and Akt activation by progesterone, insulin or Ras was also analyzed. Whereas insulin activated those kinases in a phosphatidylinositol 3-kinase-dependent manner, progesterone and Ras were able to activate those kinases in the absence of phosphatidylinositol 3-kinase activity. Since Ras is a necessary and sufficient downstream component of insulin signaling pathways leading to germinal vesicle breakdown, these observations demonstrate that phosphatidylinositol 3-kinase is not a downstream effector of Ras in insulin/Ras-dependent signaling pathways leading to entry into the M phase in Xenopus oocytes.  相似文献   

19.
A series of pieces of evidence have shown that Ras protein acts as a transducer of the platelet-derived growth factor (PDGF) receptor-mediated signaling pathway: (i) formation of Ras.GTP is detected immediately on PDGF stimulation, and (ii) a dominant inhibitory mutant Ras, as well as a neutralizing anti-Ras antibody, can interfere with PDGF-induced responses. On the other hand, several signal transducing molecules including phosphatidylinositol 3-kinase (PI3-K), GTPase-activating protein (GAP), and phospholipase C gamma (PLC gamma) bind directly to the PDGF receptor and become tyrosine phosphorylated. Recently, it was shown that specific phosphorylated tyrosines of the PDGF receptor are responsible for interaction between the receptor and each signaling molecule. However, the roles of these signaling molecules have not been elucidated, and it remains unclear which molecules are implicated in the Ras pathway. In this study, we measured Ras activation in cell lines expressing mutant PDGF receptors that are deficient in coupling with specific molecules. In fibroblast CHO cells, a mutant receptor (Y708F/Y719F [PI3-K-binding sites]) was unable to stimulate Ras, whereas another mutant (Y739F [the GAP-binding site]) could do so, suggesting an indispensable role of PI3-K or a protein that binds to the same sites as PI3-K for PDGF-stimulated Ras activation. By contrast, both of the above mutants were capable of stimulating Ras protein in a pro-B-cell line, BaF3. Furthermore, a mutant receptor (Y977F/Y989F [PLC gamma-binding sites]) could fully activate Ras, and the direct activation of protein kinase C and calcium mobilization had almost no effect on the GDP/GTP state of Ras in this cell line. These results suggest that, in the pro-B-cell transfectants, each of the above pathways (PI3-K, GAP, and PLC gamma) can be eliminated without a loss of Ras activation. It remains unclear whether another unknown essential pathway which regulates Ras protein exists within BaF3 cells. Therefore, it is likely that several different PDGF receptor-mediated signaling pathways function upstream of Ras, and the extent of the contribution of each pathway for the regulation of Ras may differ among different cell types.  相似文献   

20.
We investigated the production of hyaluronan (HA) and its effect on cell motility in cells expressing the v-src mutants. Transformation of 3Y1 by v-src virtually activated HA secretion, whereas G2A v-src, a nonmyristoylated form of v-src defective in cell transformation, had no effect. In cells expressing the temperature-sensitive mutant of v-Src, HA secretion was temperature dependent. In addition, HA as small as 1 nM, on the other side, activated cell motility in a tumor-specific manner. HA treatment strongly activated the motility of v-Src-transformed 3Y1, whereas it showed no effect on 3Y1- and 3Y1-expressing G2A v-src. HA-dependent cell locomotion was strongly blocked by either expression of dominant-negative Ras or treatment with a Ras farnesyltransferase inhibitor. Similarly, both the MEK1 inhibitor and the kinase inhibitor clearly inhibited HA-dependent cell locomotion. In contrast, cells transformed with an active MEK1 did not respond to the HA. Finally, an anti-CD44-neutralizing antibody could block the activation of cell motility by HA as well as the HA-dependent phosphorylation of mitogen-activated protein kinase and Akt. Taken together, these results suggest that simultaneous activation of the Ras-mitogen-activated protein kinase pathway and the phosphoinositide 3-kinase pathway by the HA-CD44 interaction is required for the activation of HA-dependent cell locomotion in v-Src-transformed cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号