首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The calcium-binding protein isolated from the sarcoplasm of the muscles of the sand worm Nereis diversicolor has four EF-hands and three active binding sites for Ca(2+) or Mg(2+). Nereis diversicolor sarcoplasmic calcium-binding protein contains three tryptophan residues at positions 4, 57, and 170, respectively. The Wt protein shows a very limited fluorescence increase upon binding of Ca(2+) or Mg(2+). Single-tryptophan-containing mutants were produced and purified. The fluorescence titrations of these mutants show a limited decrease of the affinity for calcium, but no alterations of the cooperativity. Upon adding calcium, Trp170 shows a strong fluorescence increase, Trp57 an extensive fluorescence decrease, and Trp4 shows no fluorescence change. Therefore mutant W4F/W170F is ideally suited to analyze the fluorescence titrations and to study the binding mechanism. Mutations of the calcium ligands at the z-position in the three binding sites show no effect at site I and a total loss of cooperativity at sites III and IV. The quenching of Trp57 upon calcium binding is dependent on the presence of arginine R25, but this residue is not just a simple dynamic quencher. The role of the salt bridge R25-D58 is also investigated.  相似文献   

2.
Inosine 5'-monophosphate dehydrogenase (IMPDH) catalyzes the oxidation of inosine 5'-monophosphate (IMP) to xanthosine 5'-monophosphate with the concomitant reduction of NAD to NADH. Escherichia coli IMPDH is activated by K(+), Rb(+), NH(+)(4), and Cs(+). K(+) activation is inhibited by Li(+), Na(+), Ca(2+), and Mg(2+). This inhibition is competitive versus K(+) at high K(+) concentrations, noncompetitive versus IMP, and competitive versus NAD. Thus monovalent cation activation is linked to the NAD site. K(+) increases the rate constant for the pre-steady-state burst of NADH production, possibly by increasing the affinity of NAD. Three mutant IMPDHs have been identified which increase the value of K(m) for K(+): Asp13Ala, Asp50Ala, and Glu469Ala. In contrast to wild type, both Asp13Ala and Glu469Ala are activated by all cations tested. Thus these mutations eliminate cation selectivity. Both Asp13 and Glu469 appear to interact with the K(+) binding site identified in Chinese hamster IMPDH. Like wild-type IMPDH, K(+) activation of Asp50Ala is inhibited by Li(+), Na(+), Ca(2+), and Mg(2+). However, this inhibition is noncompetitive with respect to K(+) and competitive with respect to both IMP and NAD. Asp50 interacts with residues that form a rigid wall in the IMP site; disruption of this wall would be expected to decrease IMP binding, and the defect could propagate to the proposed K(+) site. Alternatively, this mutation could uncover a second monovalent cation binding site.  相似文献   

3.
The effect of the familial hypertrophic cardiomyopathy mutations, A13T, F18L, E22K, R58Q, and P95A, found in the regulatory light chains of human cardiac myosin has been investigated. The results demonstrate that E22K and R58Q, located in the immediate extension of the helices flanking the regulatory light chain Ca(2+) binding site, had dramatically altered Ca(2+) binding properties. The K(Ca) value for E22K was decreased by approximately 17-fold compared with the wild-type light chain, and the R58Q mutant did not bind Ca(2+). Interestingly, Ca(2+) binding to the R58Q mutant was restored upon phosphorylation, whereas the E22K mutant could not be phosphorylated. In addition, the alpha-helical content of phosphorylated R58Q greatly increased with Ca(2+) binding. The A13T mutation, located near the phosphorylation site (Ser-15) of the human cardiac regulatory light chain, had 3-fold lower K(Ca) than wild-type light chain, whereas phosphorylation of this mutant increased the Ca(2+) affinity 6-fold. Whereas phosphorylation of wild-type light chain decreased its Ca(2+) affinity, the opposite was true for A13T. The alpha-helical content of the A13T mutant returned to the level of wild-type light chain upon phosphorylation. The phosphorylation and Ca(2+) binding properties of the regulatory light chain of human cardiac myosin are important for physiological function, and alteration any of these could contribute to the development of hypertrophic cardiomyopathy.  相似文献   

4.
Lathrop B  Gadd M  Biltonen RL  Rule GS 《Biochemistry》2001,40(11):3264-3272
Changes in the affinity of calcium for phospholipase A2 from Agkistrodon piscivorus piscivorus during activation of the enzyme on the surface of phosphatidylcholine vesicles have been investigated by site-directed mutagenesis and fluorescence spectroscopy. Changes in fluorescence that occur during lipid binding and subsequent activation have been ascribed to each of the three individual Trp residues in the protein. This was accomplished by generating a panel of mutant proteins, each of which lacks one or more Trp residues. Both Trp21, which is found in the interfacial binding region, and Trp119 show changes in fluorescence upon protein binding to small unilamellar zwitterionic vesicles or large unilamellar vesicles containing sufficient anionic lipid. Trp31, which is near the Ca2+ binding loop, exhibits little change in fluorescence upon lipid bilayer binding. A change in the fluorescence of the protein also occurs during activation of the enzyme. These changes arise from residue Trp31 as well as residues Trp21 and Trp119. The calcium dependence of the fluorescence change of Trp31 indicates that the affinity of the enzyme for calcium increases at least 3 orders of magnitude upon activation. These studies suggest either that a change in conformation of the enzyme occurs upon activation or that the increase in calcium affinity reflects formation of a ternary complex of calcium, enzyme, and substrate.  相似文献   

5.
TRPM4, a Ca(2+)-activated cation channel of the transient receptor potential superfamily, undergoes a fast desensitization to Ca(2+). The mechanisms underlying the alterations in Ca(2+) sensitivity are unknown. Here we show that cytoplasmic ATP reversed Ca(2+) sensitivity after desensitization, whereas mutations to putative ATP binding sites resulted in faster and more complete desensitization. Phorbol ester-induced activation of protein kinase C (PKC) increased the Ca(2+) sensitivity of wild-type TRPM4 but not of two mutants mutated at putative PKC phosphorylation sites. Overexpression of a calmodulin mutant unable to bind Ca(2+) dramatically reduced TRPM4 activation. We identified five Ca(2+)-calmodulin binding sites in TRPM4 and showed that deletion of any of the three C-terminal sites strongly impaired current activation by reducing Ca(2+) sensitivity and shifting the voltage dependence of activation to very positive potentials. Thus, the Ca(2+) sensitivity of TRPM4 is regulated by ATP, PKC-dependent phosphorylation, and calmodulin binding at the C terminus.  相似文献   

6.
We have previously shown that the K(+) site found in ascorbate peroxidase can be successfully engineered into the closely homologous peroxidase, cytochrome c peroxidase (CCP) (Bonagura, C. A. , Sundaramoorthy, M., Pappa, H. S., Patterson, W. R., and Poulos, T. L. (1996) Biochemistry 35, 6107-6115; Bonagura, C. A., Sundaramoorthy, M., Bhaskar, B., and Poulos, T. L. (1999) Biochemistry 38, 5538-5545). All other peroxidases bind Ca(2+) rather than K(+). Using the K(+)-binding CCP mutant (CCPK2) as a template protein, together with observations from structural modeling, mutants were designed that should bind Ca(2+) selectively. The crystal structure of the first generation mutant, CCPCA1, showed that a smaller cation, perhaps Na(+), is bound instead of Ca(2+). This is probably because the full eight-ligand coordination sphere did not form owing to a local disordering of one of the essential cation ligands. Based on these observations, a second mutant, CCPCA2, was designed. The crystal structure showed Ca(2+) binding in the CCPCA2 mutant and a well ordered cation-binding loop with the full complement of eight protein to cation ligands. Because cation binding to the engineered loop results in diminished CCP activity and destabilization of the essential Trp(191) radical as measured by EPR spectroscopy, these measurements can be used as sensitive methods for determining cation-binding selectivity. Both activity and EPR titration studies show that CCPCA2 binds Ca(2+) more effectively than K(+), demonstrating that an iterative protein engineering-based approach is important in switching protein cation selectivity.  相似文献   

7.
BK (Slo1) potassium channels are activated by millimolar intracellular Mg(2+) as well as micromolar Ca(2+) and membrane depolarization. Mg(2+) and Ca(2+) act in an approximately additive manner at different binding sites to shift the conductance-voltage (G(K)-V) relation, suggesting that these ligands might work through functionally similar but independent mechanisms. However, we find that the mechanism of Mg(2+) action is highly dependent on voltage sensor activation and therefore differs fundamentally from that of Ca(2+). Evidence that Ca(2+) acts independently of voltage sensor activation includes an ability to increase open probability (P(O)) at extreme negative voltages where voltage sensors are in the resting state; 2 microM Ca(2+) increases P(O) more than 15-fold at -120 mV. However 10 mM Mg(2+), which has an effect on the G(K)-V relation similar to 2 microM Ca(2+), has no detectable effect on P(O) when voltage sensors are in the resting state. Gating currents are only slightly altered by Mg(2+) when channels are closed, indicating that Mg(2+) does not act merely to promote voltage sensor activation. Indeed, channel opening is facilitated in a voltage-independent manner by Mg(2+) in a mutant (R210C) whose voltage sensors are constitutively activated. Thus, 10 mM Mg(2+) increases P(O) only when voltage sensors are activated, effectively strengthening the allosteric coupling of voltage sensor activation to channel opening. Increasing Mg(2+) from 10 to 100 mM, to occupy very low affinity binding sites, has additional effects on gating that more closely resemble those of Ca(2+). The effects of Mg(2+) on steady-state activation and I(K) kinetics are discussed in terms of an allosteric gating scheme and the state-dependent interactions between Mg(2+) and voltage sensor that may underlie this mechanism.  相似文献   

8.
The two-way and three-way interactions among active-site-blocked bovine thrombin, bovine protein C, and the elastase fragment of rabbit thrombomodulin (elTM) were examined by analytical ultracentrifugation at 23.3 degrees C in 100 mM NaCl, 50 mM Tris (pH 7.65), and 1 mM benzamidine, in the presence of 0 to 5 mM calcium chloride. Thrombin and elTM form a tight (Kd less than 10(-8) M) 1:1 complex in the absence of Ca2+ that weakens with the addition of Ca2+ (Kd approximately 4 microM in 5 mM Ca2+). Without Ca2+, thrombin and protein C form a 1:1 complex (Kd approximately 1 microM) and what appears to be a 1:2 thrombin-protein C complex. The Kd for the 1:1 complex weakens over 100-fold in 5 mM CaCl2. Protein C and elTM form a Ca(2+)-independent 1:1 complex (Kd approximately 80 microM). Nearly identical binding to thrombin and elTM is observed when active-site-blocked activated bovine protein C is substituted for protein C. Thrombin inhibited by diisopropyl fluorophosphate and thrombin inhibited by a tripeptide chloromethyl ketone exhibited identical behavior in binding experiments, suggesting that the accessibility of protein C to the substrate recognition cleft of these two forms of thrombin is nearly equal. Human protein C binds with lower affinity than bovine protein C. Ternary mixtures also were examined. Protein C, elTM, and thrombin form a 1:1:1 complex which dissociates with increasing [Ca2+]. In the absence of Ca2+, protein C binds to the elTM-thrombin complex with an apparent Kd approximately 1 microM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Neuronal calcium sensor-1 (NCS-1), a Ca(2+)-binding protein, plays an important role in the modulation of neurotransmitter release and phosphatidylinositol signaling pathway. It is known that the physiological activity of NCS-1 is governed by its myristoylation. Here, we present the role of myristoylation of NSC-1 in governing Ca(2+) binding and Ca(2+)-induced conformational changes in NCS-1 as compared with the role in the nonmyristoylated protein. The (45)Ca binding and isothermal titration calorimetric data show that myristoylation increases the degree of cooperativity; thus, the myristoylated NCS-1 binds Ca(2+) more strongly (with three Ca(2+) binding sites) than the non-myristoylated one (with two Ca(2+) binding sites). Both forms of protein show different conformational features in far-UV CD when titrated with Ca(2+). Large conformational changes were seen in the near-UV CD with more changes in the case of nonmyristoylated protein than the myristoylated one. Although the changes in the far-UV CD upon Ca(2+) binding were not seen in E120Q mutant (disabling EF-hand 3), the near-UV CD changes in conformation also were not influenced by this mutation. The difference in the binding affinity of myristoylated and non-myristoylated proteins to Ca(2+) also was reflected by Trp fluorescence. Collisional quenching by iodide showed more inaccessibility of the fluorophore in the myristoylated protein. Mg(2+)-induced changes in near-UV CD are different from Ca(2+)-induced changes, indicating ion selectivity. 8-Anilino-1-naphthalene sulfonic acid binding data showed solvation of the myristoyl group in the presence of Ca(2+), which could be attributed to the myristoyl-dependent conformational changes in NCS-1. These results suggest that myristoylation influences the protein conformation and Ca(2+) binding, which might be crucial for its physiological functions.  相似文献   

10.
Digestion of scallop muscle membrane fractions with trypsin led to release of soluble polypeptides derived from the large cytoplasmic domain of a Na(+)-Ca(2+) exchanger. In the presence of 1 mm Ca(2+), the major product was a peptide of approximately 37 kDa, with an N terminus corresponding to residue 401 of the NCX1 exchanger. In the presence of 10 mm EGTA, approximately 16- and approximately 19-kDa peptides were the major products. Polyclonal rabbit IgG raised against the 37-kDa peptide also bound to the 16- and 19-kDa soluble tryptic peptides and to a 105-110-kDa polypeptide in the undigested membrane preparation. The 16-kDa fragment corresponded to the N-terminal part of the 37-kDa peptide. The conformation of the precursor polypeptide chain in the region of the C terminus of the 16-kDa tryptic peptide was thus altered by the binding of Ca(2+). Phosphorylation of the parent membranes with the catalytic subunit of protein kinase A and [gamma-(32)P]ATP led to incorporation of (32)P into the 16- and 37-kDa soluble fragments. A site may exist within the Ca(2+) regulatory domain of a scallop muscle Na(+)-Ca(2+) exchanger that mediates direct modulation of secondary Ca(2+) regulation by cAMP.  相似文献   

11.
C2 domains regulate numerous eukaryotic signaling proteins by docking to target membranes upon binding Ca(2+). Effective activation of the C2 domain by intracellular Ca(2+) signals requires high Ca(2+) selectivity to exclude the prevalent physiological metal ions K(+), Na(+), and Mg(2+). The cooperative binding of two Ca(2+) ions to the C2 domain of cytosolic phospholipase A(2) (cPLA(2)-alpha) induces docking to phosphatidylcholine (PC) membranes. The ionic charge and size selectivities of this C2 domain were probed with representative mono-, di-, and trivalent spherical metal cations. Physiological concentrations of monovalent cations and Mg(2+) failed to bind to the domain and to induce docking to PC membranes. Superphysiological concentrations of Mg(2+) did bind but still failed to induce membrane docking. In contrast, Ca(2+), Sr(2+), and Ba(2+) bound to the domain in the low micromolar range, induced electrophoretic mobility shifts in native polyacrylamide gels, stabilized the domain against thermal denaturation, and induced docking to PC membranes. In the absence of membranes, the degree of apparent positive cooperativity in binding of Ca(2+), Sr(2+), and Ba(2+) decreased with increasing cation size, suggesting that the C2 domain binds two Ca(2+) or Sr(2+) ions, but only one Ba(2+) ion. These stoichiometries were correlated with the abilities of the ions to drive membrane docking, such that micromolar concentrations of Ca(2+) and Sr(2+) triggered docking while even millimolar concentrations of Ba(2+) yielded poor docking efficiency. The simplest explanation is that two bound divalent cations are required for stable membrane association. The physiological Ca(2+) ion triggered membrane docking at 20-fold lower concentrations than Sr(2+), due to both the higher Ca(2+) affinity of the free domain and the higher affinity of the Ca(2+)-loaded domain for membranes. Kinetic studies indicated that Ca(2+) ions bound to the free domain are retained at least 5-fold longer than Sr(2+) ions. Moreover, the Ca(2+)-loaded domain remained bound to membranes 2-fold longer than the Sr(2+)-loaded domain. For both Ca(2+) and Sr(2+), the two bound metal ions dissociate from the protein-membrane complex in two kinetically resolvable steps. Finally, representative trivalent lanthanide ions bound to the domain with high affinity and positive cooperativity, and induced docking to PC membranes. Overall, the results demonstrate that both cation charge and size constraints contribute to the high Ca(2+) selectivity of the C2 domain and suggest that formation of a cPLA(2)-alpha C2 domain-membrane complex requires two bound multivalent metal ions. These features are proposed to stem from the unique structural features of the metal ion-binding site in the C2 domain.  相似文献   

12.
The C-domain of troponin C, the Ca(2+)-binding subunit of the troponin complex, has two high-affinity sites for Ca(2+) that also bind Mg(2+) (Ca(2+)/Mg(2+) sites), whereas the N-domain has two low-affinity sites for Ca(2+). Two more sites that bind Mg(2+) with very low affinity (K(a)<10(3)M(-1)) have been detected by several laboratories but have not been localized or studied in any detail. Here we investigated the effects of Ca(2+) and Mg(2+) binding to isolated C-domain, focusing primarily on low-affinity sites. Since TnC has no Trp residues, we utilized a mutant with Phe 154 replaced by Trp (F154W/C-domain). As expected from previous reports, the changes in Trp fluorescence revealed different conformations induced by the addition of Ca(2+) or Mg(2+) (Ca(2+)/Mg(2+) sites). Exposure of hydrophobic surfaces of F154W/C-domain was monitored using the fluorescence intensity of bis-anilino naphthalene sulfonic acid. Unlike the changes reported by Trp, the increments in bis-ANS fluorescence were much greater (4.2-fold) when Ca(2+)+Mg(2+) were both present or when Ca(2+) was present at high concentration. Bis-ANS fluorescence increased as a function of [Ca(2+)] in two well-defined steps: one at low [Ca(2+)], consistent with the Ca(2+)/Mg(2+) sites (K(a) approximately 1.5 x 10(6)M(-1)), and one of much lower affinity (K(a) approximately 52.3M(-1)). Controls were performed to rule out artifacts due to aggregation, high ionic strength and formation of the bis-ANS-TnC complex itself. With a low concentration of Ca(2+) (0.6mM) to occupy the Ca(2+)/Mg(2+) sites, a large increase in bis-ANS binding also occurred as Mg(2+) occupied a class of low-affinity sites (K(a) approximately 59 M(-1)). In skinned fibers, a high concentration of Mg(2+) (10-44 mM) caused TnC to dissociate from the thin filament. These data provide new evidence for a class of weak binding sites for divalent cations. They are located in the C-domain, lead to exposure of a large hydrophobic surface, and destabilize the binding of TnC to the regulatory complex even when sites III and IV are occupied.  相似文献   

13.
Protein C undergoes Ca2+-induced conformational changes required for activation by the thrombin-thrombomodulin complex. A Ca2+-dependent monoclonal antibody (HPC4) that blocks protein C activation was used to study conformational changes near the activation site in protein C. The half-maximal Ca2+ dependence was similar for protein C and gamma-carboxy-glutamic acid-domainless protein C for binding to HPC4 (205 +/- 23 and 110 +/- 29 microM Ca2+, respectively), activation rates (214 +/- 22 and 210 +/- 37 microM), and intrinsic fluorescence of gamma-carboxyglutamic acid-domainless protein C (176 +/- 34 microM). Protein C heavy chain binding to HPC4 was half-maximal at 36 microM Ca2+, although neither the heavy chain nor HPC4 separately bound Ca2+ with high affinity. The epitope was lost when the activation peptide was released. A synthetic peptide, P (6-17), which spans the activation site, exhibited Ca2+-dependent binding to HPC4 (half-maximal binding = 6 microM Ca2+). Thus, each decrease in antigen structure resulted in a reduced Ca2+ requirement for binding to HPC4. Tb3+ and Ca2+ binding studies demonstrated a Ca2+-binding site in HPC4 required for high affinity antigen binding. These studies provide the first direct evidence for a Ca2+-induced conformational change in the activation region of a vitamin K-dependent zymogen. Furthermore, Ca2+ binding to HPC4 is required for antigen binding. The multiple roles of Ca2+ described may be useful in interpretation of other metal-dependent antibody/antigen interactions.  相似文献   

14.
Protein C activation is catalyzed on endothelium by a complex between thrombin and thrombomodulin. Ca2+ stimulates protein C activation in the presence, and inhibits in the absence, of thrombomodulin. Protein C has Asp residues at the P3 and P3' positions relative to the scissile bond at Arg169-Leu. To determine the contribution of these residues to the Ca2+ effect on activation, we have expressed human 4-carboxyglutamic acid (Gla)-domainless protein C and 3 mutants with Asp-->Gly substitutions at P3, P3', and both positions. Ca2+ interaction with the protein C derivatives was monitored by changes in intrinsic fluorescence, and the Ca2+ dependence of activation by thrombin and a complex of thrombin-thrombomodulin with a soluble thrombomodulin derivative (the fourth through sixth epidermal growth factor domains). The affinity for Ca2+ of the mutants was reduced 3-6-fold, which was reflected by a comparable change in the Ca2+ concentration required for the half-maximal rate of activation by the thrombin-thrombomodulin complex. However, Ca2+ no longer effectively inhibited activation of the mutants by thrombin alone. We conclude that 1) the Asp residues play a specific role in the Ca(2+)-dependent inhibition of protein C activation by thrombin; 2) these mutations alter the affinity of Ca2+ for the high affinity binding site; and 3) the Asp residues in the P3 and P3' sites do not contribute in a positive fashion to rapid activation by the thrombin-thrombomodulin complex.  相似文献   

15.
Montigny C  Arnou B  Marchal E  Champeil P 《Biochemistry》2008,47(46):12159-12174
Rapid irreversible inactivation of Ca (2+)-free states of detergent-solubilized SERCA1a (sarco-endoplasmic reticulum calcium ATPase 1a) has so far prevented the use of Trp fluorescence for functional characterization of this ATPase after its solubilization in various detergents. Here we show that using 20-40% glycerol for protection makes this fluorescence characterization possible. Most of the ligand-induced Trp fluorescence changes previously demonstrated to occur for SERCA1a embedded in native sarcoplasmic reticulum membranes were observed in the combined presence of glycerol and detergent, although the results greatly depended on the detergent used, namely, octaethylene glycol mono- n-dodecyl ether (C 12E 8) or dodecyl maltoside (DDM). In particular, at pH 6, we found a C 12E 8-dependent unexpectedly huge reduction in SERCA1a affinity for Ca (2+). We suggest that a major reason for the different effects of the two detergents is that high concentrations of C 12E 8, but not of DDM, slow down the E2 to E1 transition in solubilized and delipidated SERCA1a. Independently of the characterization of the specific effects of various detergents on SR vesicles, our results open the way to functional characterization by Trp fluorescence of heterologously expressed and purified mutants of SERCA1a in the presence of detergent, without their preliminary reconstitution into liposomes. As an example, we used the E309Q mutant to demonstrate our previous suspicion that Ca (2+) binding to Site I of SERCA1a in fact slightly reduces Trp fluorescence, and consequently that the rise in this fluorescence generally observed when two Ca (2+) ions bind to WT SERCA1a mainly reflects Ca (2+) binding at Site II of SERCA1a.  相似文献   

16.
Rezaie AR  He X 《Biochemistry》2000,39(7):1817-1825
The nature of residue 225 on a consensus loop in serine proteases determines whether a protease can bind Na(+). Serine proteases with a Pro at this position are unable to bind Na(+), but those with a Tyr or Phe can bind Na(+). Factor Xa (FXa), the serine protease of the prothrombinase complex, contains a Tyr at this position. Na(+) is also known to stimulate the amidolytic activity of FXa toward cleavage of small synthetic substrates, but the role of Na(+) in the prothrombinase complex has not been investigated. In this study, we engineered a Gla-domainless form of FX (GDFX) in which residue Tyr(225) was replaced with a Pro. We found that Na(+) stimulated the cleavage rate of chromogenic substrates by FXa or GDFXa approximately 8-24-fold with apparent dissociation constants [K(d(app))] of 37 and 182 mM in the presence and absence of Ca(2+), respectively. In contrast, Na(+) minimally affected the cleavage rate of these substrates by the mutant, and no K(d(app)) for Na(+) binding to the mutant could be estimated. Unlike the wild-type enzyme, the reactivity of the mutant with antithrombin was independent of Na(+) and impaired approximately 32-fold. Ca(2+) improved the reactivity of the mutant with antithrombin approximately 5-fold. Affinity of the mutant for binding to factor Va was weakened and its ability to activate prothrombin was severely impaired. Further studies with the wild-type prothrombinase complex revealed that FXa binds to factor Va with a similar K(d(app)) of 1. 1-1.8 nM in the presence of Na(+), K(+), Li(+), Ch(+), and Tris(+) and that the catalytic efficiency of prothrombinase is enhanced less than 1.5-fold by the specific effect of Na(+) in the reaction buffer. These results suggest that (1) the loop including residue 225 (225-loop) is a Na(+) binding site in FXa, (2) the Na(+)- and Ca(2+)-binding loops of FXa are allosterically linked, and (3) the Tyr conformer of the 225-loop is critical for factor Xa function; however, both Na(+)-bound and Na(+)-free forms of factor Xa in the prothrombinase complex can efficiently activate prothrombin.  相似文献   

17.
Guanylyl cyclase activating protein 1 (GCAP-1), a Ca(2+)/Mg(2+) sensor protein that accelerates retinal guanylyl cyclase (RetGC) in the light and decelerates it in the dark, is inactive in cation-free form. Binding of Mg(2+) in EF-hands 2 and 3 was essential for RetGC activation in the conditions mimicking light adaptation. Mg(2+) binding in EF-hand 2 affected the conformation of a neighboring non-metal binding domain, EF-hand-1, and increased GCAP-1 affinity for RetGC nearly 40-fold compared with the metal-free EF-hand 2. Mg(2+) binding in EF-hand 3 increased GCAP-1 affinity for RetGC 5-fold and its maximal RetGC stimulation 2-fold. Mg(2+) binding in EF-hand 4 affected neither GCAP-1 affinity for RetGC, nor RetGC activation. Inactivation of Ca(2+) binding in EF-hand 4 was sufficient to render GCAP-1 a constitutive activator of RetGC, whereas the EF-hand 3 role in Ca(2+)-dependent deceleration of RetGC was likely to be through the neighboring EF-hand 4. Inactivation of Ca(2+) binding in EF-hand 2 affected cooperativity of RetGC inhibition by Ca(2+), but did not prevent the inhibition. We conclude that 1) Mg(2+) binding in EF-hands 2 and 3, but not EF-hand 4, is essential for the ability of GCAP-1 to activate RetGC in the light; 2) Mg(2+) or Ca(2+) binding in EF-hand 3 and especially in EF-hand 2 is required for high-affinity interaction with the cyclase and affects the conformation of the neighboring EF-hand 1, a domain required for targeting RetGC; and 3) RetGC inhibition is likely to be primarily caused by Ca(2+) binding in EF-hand 4.  相似文献   

18.
Yang SA  Klee CB 《Biochemistry》2000,39(51):16147-16154
Limited proteolysis of calcineurin in the presence of Ca(2+) suggested that its calmodulin-binding domain, readily degraded by proteases, was unfolded while calcineurin B was compactly folded [Hubbard, M. J., and Klee, C. B. (1989) Biochemistry 28, 1868-1874]. Moreover, in the crystal structure of calcineurin, with the four Ca(2+) sites of calcineurin B occupied, the calmodulin-binding domain is not visible in the electron density map [Kissinger, C. R., et al. (1995) Nature 378, 641-644]. Limited proteolysis of calcineurin in the presence of EGTA, shows that, when the low affinity sites of calcineurin B are not occupied, the calmodulin-binding domain is completely protected against proteolytic attack. Slow cleavages are, however, detected in the linker region between the calmodulin-binding and the autoinhibitory domains of calcineurin A. Upon prolonged exposure to the protease, selective cleavages in carboxyl-terminal end of the first helix and the central helix linker of calcineurin B and the calcineurin B-binding helix of calcineurin A are also detected. Thus, Ca(2+) binding to the low-affinity sites of calcineurin B affects the conformation of calcineurin B and induces a conformational change of the regulatory domain of calcineurin A, resulting in the exposure of the calmodulin-binding domain. This conformational change is needed for the partial activation of the enzyme in the absence of calmodulin and its full activation by calmodulin. A synthetic peptide corresponding to the calmodulin-binding domain is shown to interact with a peptide corresponding to the calcineurin B-binding domain, and this interaction is prevented by calcineurin B in the presence but not the absence of Ca(2+). These observations provide a mechanism to explain the dependence on Ca(2+) binding to calcineurin B for calmodulin activation and for the 10-20-fold increase in affinity of calcineurin for Ca(2+) upon removal of the regulatory domain by limited proteolysis [Stemmer, P. M., and Klee, C. B. (1994) Biochemistry 33, 6859-6866].  相似文献   

19.
Troponin C (TnC) is the Ca(2+)-binding regulatory protein of the troponin complex in muscle tissue. Vertebrate fast skeletal muscle TnCs bind four Ca(2+), while Akazara scallop (Chlamys nipponensis akazara) striated adductor muscle TnC binds only one Ca(2+) at site IV, because all the other EF-hand motifs are short of critical residues for the coordination of Ca(2+). Fourier transform infrared (FTIR) spectroscopy was applied to study coordination structure of Mg(2+) bound in a mutant Akazara scallop TnC (E142Q) in D(2)O solution. The result showed that the side-chain COO(-) groups of Asp 131 and Asp 133 in the Ca(2+)-binding site of E142Q bind to Mg(2+) in the pseudo-bridging mode. Mg(2+) titration experiments for E142Q and the wild-type of Akazara scallop TnC were performed by monitoring the band at about 1600 cm(-1), which is due to the pseudo-bridging Asp COO(-) groups. As a result, the binding constants of them for Mg(2+) were the same value (about 6 mM). Therefore, it was concluded that the side-chain COO(-) group of Glu 142 of the wild type has no relation to the Mg(2+) ligation. The effect of Mg(2+) binding in E142Q was also investigated by CD and fluorescence spectroscopy. The on-off mechanism of the activation of Akazara scallop TnC is discussed on the basis of the coordination structures of Mg(2+) as well as Ca(2+).  相似文献   

20.
Striated muscles are relaxed under low Ca(2+) concentration conditions due to actions of the thin filament protein troponin. To investigate this regulatory mechanism, an 11-residue segment of cardiac troponin I previously termed the inhibitory peptide region was studied by mutagenesis. Several mutant troponin complexes were characterized in which specific effects of the inhibitory peptide region were abrogated by replacements of 4-10 residues with Gly-Ala linkers. The mutations greatly impaired two of troponin's actions under low Ca(2+) concentration conditions: inhibition of myosin subfragment 1 (S1)-thin filament MgATPase activity and cooperative suppression of myosin S1-ADP binding to thin filaments with low myosin saturation. Inhibitory peptide replacement diminished but did not abolish the Ca(2+) dependence of the ATPase rate; ATPase rates were at least 2-fold greater when Ca(2+) rather than EGTA was present. This residual regulation was highly cooperative as a function of Ca(2+) concentration, similar to the degree of cooperativity observed with WT troponin present. Other effects of the mutations included 2-fold or less increases in the apparent affinity of the thin filament regulatory Ca(2+) sites, similar decreases in the affinity of troponin for actin-tropomyosin regardless of Ca(2+), and increases in myosin S1-thin filament ATPase rates in the presence of saturating Ca(2+). The overall results indicate that cooperative myosin binding to Ca(2+)-free thin filaments depends upon the inhibitory peptide region but that a cooperatively activating effect of Ca(2+) binding does not. The findings suggest that these two processes are separable and involve different conformational changes in the thin filament.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号