首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The binding of the Escherichia coli biotin holoenzyme synthetase to the two ligands, biotin and bio-5'-AMP, is coupled to disorder-to-order transitions in the protein. In the structure of the biotin complex, a "glycine-rich" loop that is disordered in the apo-enzyme is folded over the ligand. Mutations in three residues in this loop result in significant changes in the affinity of the enzyme for both biotin and bio-5'-AMP. The kinetic basis of these losses in the affinity resides primarily in changes in the unimolecular rates of dissociation of the complexes. In this work, isothermal titration calorimetry has been employed to examine the detailed thermodynamics of binding of three loop mutants to biotin and bio-5'-AMP. The energetic features of dissociation of the protein*ligand complexes also have been probed by measuring the temperature dependencies of the unimolecular dissociation rates. Analysis of the data using the Eyring formalism yielded entropic and enthalpic contributions to the energetic barrier to dissociation. The thermodynamic results coupled with the known structures of the apo-enzyme and biotin complex have been used to formulate a model for progression from the ground-state complex to the transition state in biotin dissociation. In this model, the transition-state is characterized by both partial disruption of noncovalent bonds and acquisition of some of the disorder that characterizes the glycine-rich loop in the absence of ligand.  相似文献   

2.
Biotin protein ligase (EC 6.3.4.15) catalyses the synthesis of an activated form of biotin, biotinyl-5'-AMP, from substrates biotin and ATP followed by biotinylation of the biotin carboxyl carrier protein subunit of acetyl-CoA carboxylase. The three-dimensional structure of biotin protein ligase from Pyrococcus horikoshii OT3 has been determined by X-ray diffraction at 1.6A resolution. The structure reveals a homodimer as the functional unit. Each subunit contains two domains, a larger N-terminal catalytic domain and a smaller C-terminal domain. The structural feature of the active site has been studied by determination of the crystal structures of complexes of the enzyme with biotin, ADP and the reaction intermediate biotinyl-5'-AMP at atomic resolution. This is the first report of the liganded structures of biotin protein ligase with nucleotide and biotinyl-5'-AMP. The structures of the unliganded and the liganded forms are isomorphous except for an ordering of the active site loop upon ligand binding. Catalytic binding sites are suitably arranged to minimize the conformational changes required during the reaction, as the pockets for biotin and nucleotide are located spatially adjacent to each other in a cleft of the catalytic domain and the pocket for biotinyl-5'-AMP binding mimics the combination of those of the substrates. The exact locations of the ligands and the active site residues allow us to propose a general scheme for the first step of the reaction carried out by biotin protein ligase in which the positively charged epsilon-amino group of Lys111 facilitates the nucleophilic attack on the ATP alpha-phosphate group by the biotin carboxyl oxygen atom and stabilizes the negatively charged intermediates.  相似文献   

3.
Citrate synthase from Escherichia coli enhances the fluorescence of its allosteric inhibitor, NADH, and shifts the peak of emission of the coenzyme from 457 to 428 nm. These effects have been used to measure the binding of NADH to this enzyme under various conditions. The dissociation constant for the NADH-citrate synthase complex is about 0.28 muM at pH 6.2, but increases toward alkaline pH as if binding depends on protonation of a group with a pKa of about 7.05. Over the pH range 6.2-8.7, the number of binding sites decreases from about 0.65 to about 0.25 per citrate synthase subunit. The midpoint of this transition is at about pH 7.7, and it may be one reflection of the partial depolymerization of the enzyme which is known to occur in this pH range. A gel filtration method has been used to verify that the fluorescence enhancement technique accurately reveals all of the NADH molecules bound to the enzyme in the concentration range of interest. NAD+ and NADP+ were weak competitive inhibitors of NADH binding at pH 7.8 (Ki values greater than 1 mM), but stronger inhibition was shown by 5'-AMP and 3'-AMP, with Ki values of 83 +/- 5 and 65 +/- 4 muM, respectively. Acetyl-CoA, one of the substrates, and KCl, an activator, also inhibit the binding in a weakly cooperative manner. All of these effects are consistent with kinetic observations on this system. We interpret our results in terms of two types of binding site for nucleotides on citrate synthase: an active site which binds acetyl-CoA, the substrate, or its analogue 3'-AMP; and an allosteric site which binds NADH or its analogue 5'-AMP and has a lesser affinity for other nicotinamide adenine dinucloetides. When the active site is occupied, we propose that NADH cannot bind to the allosteric site, but 5'-AMP can; conversely, when NADH is the in the allosteric site, the active site cannot be occupied. In addition to these two classes of sites, there must be points for interaction with KCl and other salts. Oxaloacetate, the second substrate, and alpha-ketoglutarate, an inhibitor whose mode of action is believed to be allosteric, have no effect on NADH binding to citrate synthase at pH 7.8. When NADH is bound to citrate synthase, it quenches the intrinsic tryptophan fluorescence of the enzyme. The amount of quenching is proportional to the amount of NADH bound, at least up to a binding ratio of 0.50 NADH per enzyme subunit. This amount of binding leads to the quenching of 53 +/- 5% of the enzyme fluorescence, which means that one NADH molecule can quench all the intrinsic fluorescence of the subunit to which it binds.  相似文献   

4.
Specific binding of [3H]AMP to rat hepatocytes and their plasma membranes was studied. It was shown that the time course of this binding reached a maximum within the first 15 seconds. An equilibrium binding study revealed the presence of a single class of binding sites with Kd of 20 microM both in hepatocytes and in plasma membranes. The [3H]AMP binding sites were inactivated by treatment with trypsin as well as by heating. 5'-Phosphorylated derivatives of adenosine (ATP, ADP) effectively competed with [3H]AMP for the binding sites, while adenosine, beta-glycerophosphate and 3'-AMP were inactive. The binding of [3H]AMP increased by 400% in the presence of concanavalin A, a specific inhibitor of plasma membrane 5'-nucleotidase. It was concluded that the catalytic center of 5'-nucleotidase is a receptor for adenine nucleotides.  相似文献   

5.
Pigeon liver fatty acid synthetase was inactivated by arginine modifying reagent, phenylglyoxal and 2,3-butanedione. The inactivation of overall fatty acid synthetase was accompanied by the loss of beta-ketoacyl reductase and enoyl-CoA reductase activity. The inactivation followed a pseudo-first order kinetics and sum of the second order rate constants for the two reductase reactions equaled that for the synthetase reaction. Inactivation of all three activities was prevented by NADPH or its analogs 2',5'-ADP and 2'-AMP but not by the corresponding nucleotides containing the 5'-phosphate. These results suggest that binding of NADPH to fatty acid synthetase involves specific interaction of the 2'-phosphate with the guanidino group of arginine residues at the active site of the two reductases. pH-Dependent inactivation by phenylglyoxal indicated that a group with a pka 7.5 is involved in the loss of enzyme activity. Stoichiometric results showed that 4 out of 164 arginine residues per enzyme molecule were essential for the enzyme activity.  相似文献   

6.
Studies on the effect of a series of alpha, omega-diadenosine 5'-polyphosphate (ApnA; n = 2 to 6) on carbamyl phosphate synthetase showed that only Ap5A is an effective inhibitor. Ap5A also inhibits two partial reactions catalyzed by the enzyme: bicarbonate-dependent ATPase and ATP synthesis from carbamyl phosphate and ADP. The data indicate that Ap5A binds to the enzyme sites that interact with ATP. Of a variety of ATP-utilizing enzymes (kinases, hydrolases, synthetases), only adenylate kinase (Leinhard, G. E., and Secemski, I. I. (1973) J. Biol. Chem. 248, 1121--1123) and carbamyl phosphate synthetase are inhibited by Ap5A. The present findings provide strong evidence that carbamyl phosphate synthetase has two separate binding sites for ATP in which the gamma-phosphate moeities of ATP are bound in close proximity to the bicarbonate binding site of the enzyme.  相似文献   

7.
D C Phelps  Y Hatefi 《Biochemistry》1985,24(14):3503-3507
Membrane-bound and purified mitochondrial energy-linked nicotinamide nucleotide transhydrogenase (TH) was inhibited by incubation with 5'-[p-(fluorosulfonyl)benzoyl]adenosine (FSBA), which is an analogue of TH substrates and their competitive inhibitors, namely, 5'-, 2'-, or 3'-AMP. NAD(H) and analogues, NADP, 5'-AMP, 5'-ADP, and 2'-AMP/3'-AMP mixed isomers protected TH against inhibition by FSBA, but NADPH accelerated the inhibition rate. In the absence of protective ligands or in the presence of NADP, FSBA appeared to modify the NAD(H) binding site of TH, because, unlike unmodified TH, the enzyme modified by FSBA under these conditions did not bind to an NAD-affinity column (NAD-agarose). However, when the NAD(H) binding site of TH was protected in the presence of 5'-AMP or NAD, then FSBA modification resulted in an inhibited enzyme that did bind to NAD-agarose, suggesting FSBA modification of the NADP(H) binding site or an essential residue outside the active site. [3H]FSBA was covalently bound to TH, and complete inhibition corresponded to the binding of about 0.5 mol of [3H]FSBA/mol of TH. Since purified TH is known to be dimeric in the isolated state, this binding stoichiometry suggests half-of-the-sites reactivity. A similar binding stoichiometry was found earlier for complete inhibition of TH by [14C]DCCD [Phelps, D.C., & Hatefi, Y. (1984) Biochemistry 23, 4475-4480]. The active site directed labeling of TH by radioactive FSBA should allow isolation of appropriate peptides for sequence analysis of the NAD(H) and possibly the NADP(H) binding domains.  相似文献   

8.
Rabbit muscle phosphorylase b reacts with the phosphate-like reagent potassium ferrate, K2FeO4, a potent oxidizing agent. The reaction results in inactivation of the enzyme and abolition of the ability of the enzyme to bind 5'-AMP. Activating and nonactivating nucleotides which bind at the 5'-AMP binding site such as 5'-AMP, 2'-AMP, 3'-AMP, and 5'-IMP substantially protect the enzyme from inactivation by ferrate. One to two residues of tyrosine and approximately 1 residue of cysteine are modified by ferrate under the conditions employed. Tyrosine is protected by 5-AMP, whereas cysteine is not. The tyrosine modification is suggested as the inactivating chemical reaction. The location of the inactivating reaction is suggested to be in or near the 5'-AMP binding site. The structural and chemical properties of ferrate ion are discussed and compared to those of phosphate. Ferrate ion may be a reagent useful for phosphate group binding site-directed modification of proteins.  相似文献   

9.
Src family kinases are implicated in cellular proliferation and transformation. Terminally differentiated myocytes have lost the ability to proliferate, indicating the existence of a down-regulatory mechanism(s) for these mitogenic kinases. Here we show that feline cardiomyocyte lysate contains thermostable components that inhibit c-Src kinase in vitro. This inhibitory activity, present predominantly in heart tissue, involves two components acting combinatorially. After purification by sequential chromatography, one component was identified by mass and nuclear magnetic resonance spectroscopies as 5'-AMP, while the other was identified by peptide sequencing as a small heat shock protein (sHSP). 5'-AMP and to a lesser extent 5'-ADP inhibit c-Src when combined with either HSP-27 or HSP-32. Other HSPs, including alphaB-crystallin, HSP-70, and HSP-90, did not exhibit this effect. The inhibition, observed preferentially on Src family kinases and independent of the Src tyrosine phosphorylation state, occurs via a direct interaction of the c-Src catalytic domain with the inhibitory components. Our study indicates that sHSPs increase the affinity of 5'-AMP for the c-Src ATP binding site, thereby facilitating the inhibition. In vivo, elevation of ATP levels in the cardiomyocytes results in the tyrosine phosphorylation of cellular proteins including c-Src at the activatory site, and this effect is blocked when the 5'-AMP concentration is raised. Thus, this study reveals a novel role for sHSPs and 5'-AMP in the regulation of Src family kinases, presumably for the maintenance of the terminally differentiated state.  相似文献   

10.
Data are presented demonstrating that the presence in vivo of adenosine 3',5'-monophosphate (3',5'-AMP) causes a rapid depletion of glycogen storage material in the cellular slime mold. The effect of adenosine 5'-monophosphate (5'-AMP) is twofold, stimulating both glycogen degradation and synthesis. In pseudoplasmodia, cell-free extracts appear to contain at least two species of glycogen phosphorylase, one of which is severely inhibited by glucose-1-phosphate and another which is only partially inhibited by this hexose-phosphate. In some cases, 5'-AMP partially overcomes the inhibition by glucose-1-phosphate. Data presented here also indicate the existence of two forms of glycogen synthetase, the total activity of which does not change during 10 hr of differentiation from aggregation to culmination. During this period there is a quantitative conversion of glucose-6-phosphate-independent enzyme activity to glucose-6-phosphate-dependent activity. It is suggested that one effect of 3',5'-AMP is closely related to enzymatic processes involved in the rapid conversion of glycogen to cell wall material and other end products accumulating during sorocarp construction.  相似文献   

11.
The kinetics of "P"-site-mediated inhibition of adenylyl cyclase was studied with the detergent-solubilized enzyme from rat brain. Mn2(+)-activated adenylyl cyclase exhibited typical noncompetitive inhibition by 2'-d3'-AMP or 2',5'-dideoxyadenosine (2',5'-ddAdo). However, enzyme that was preactivated with guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) or proteolytically with ninhibin (+ GTP gamma S) exhibited apparently uncompetitive inhibition with either 2'-d3'-AMP or 2',5'-ddAdo and with either MgATP or MgApp(NH)p (adenosine 5'-(beta gamma-imino)triphosphate) as substrate. Inhibition increased with increasing substrate concentration, consistent with distinct domains for catalysis and the P-site and the formation of a 2'-d3'-AMP.C.MgATP complex. This conclusion was supported by the kinetics of product inhibition. For both cAMP and inorganic pyrophosphate (MgPPi) inhibition was mixed, suggesting that product release is likely random sequential. Although MgPPi enhanced inhibition in the presence of P-site agonist, it did not affect the dissociation constant for P-site agonist. The uncompetitive character of P-site-mediated inhibition and the independence of inhibition by MgPPi and P-site agonist imply that the P-site binding domain is distinct from the substrate binding domain. Given the structural requirements for catalysis and for P-site-mediated inhibition, these domains would be expected to be homologous. Sensitivity to P-site-mediated inhibition was also dependent on the structure of ATP, with the following IC50 values for 2'-d3'-AMP: ATP approximately 2'-dATP (approximately 1 microM); adenosine 5'-O-(3-thiotriphosphate) (approximately 5 microM); App(NH)p (approximately 30 microM); adenosine 5'-(beta gamma-methylene)triphosphate (approximately 300 microM). The differing effectiveness of the ATP analogs to support P-site inhibition was not due to their binding at the P-site. This effect of substrate was also observed with the platelet enzyme and was independent of the means by which the enzyme was activated, whether by Mn2+ or proteolytically by ninhibin/GTP gamma S, suggesting it is a general characteristic of P-site-mediated inhibition. The data suggest a structure for activated adenylyl cyclase such that one nucleotide binding domain, selective for ATP vis-à-vis other ATP analogs, allosterically modulates a proximate P-site domain.  相似文献   

12.
The Escherichia coli repressor of biotin biosynthesis (BirA) is an allosteric site-specific DNA-binding protein. BirA catalyzes synthesis of biotinyl-5'-AMP from substrates biotin and ATP and the adenylate serves as the positive allosteric effector in binding of the repressor to the biotin operator sequence. Although a three-dimensional structure of the apo-repressor has been determined by X-ray crystallographic techniques, no structures of any ligand-bound forms of the repressor are yet available. Results of previously published solution studies are consistent with the occurrence of conformational changes in the protein concomitant with ligand binding. In this work the hydroxyl radical footprinting technique has been used to probe changes in reactivity of the peptide backbone of BirA that accompany ligand binding. Results of these studies indicate that binding of biotin to the protein results in protection of regions of the central domain in the vicinity of the active site and the C-terminal domain from chemical cleavage. Biotin-linked changes in reactivity constitute a subset of those linked to adenylate binding. Binding of both bio-5'-AMP and biotin operator DNA suppresses cleavage at additional sites in the amino and carboxy-terminal domains of the protein. Varying degrees of protection of the five surface loops on BirA from hydroxyl radical-mediated cleavage are observed in all complexes. These results implicate the C-terminal domain of BirA, for which no function has previously been known, in small ligand and site-specific DNA binding and highlight the significance of surface loops, some of which are disordered in the apoBirA structure, for ligand binding and transmission of allosteric information in the protein.  相似文献   

13.
Ribonuclease NT (RNase NT), induced upon tobacco mosaic virus (TMV) infection in Nicotiana glutinosa leaves, has a broad base specificity. The crystal structures of RNase NT in complex with either 5'-AMP, 5'-GMP, or 2'-UMP were determined at 1.8 A resolutions by molecular replacement. RNase NT consists of seven helices and seven beta strands, and the structure is highly similar to that of RNase NW, a guanylic acid preferential RNase from the N. glutinosa leaves, showing root mean square deviation (rmsd) of 1.1 A over an entire length of two molecules for Calpha atoms. The complex structures revealed that Trp42, Asn44, and Trp50 are involved in interactions with bases at B1 site (primary site), whereas Gln12, Tyr17, Ser78, Leu79, and Phe89 participate in recognition of bases at B2 site (subsite). The 5'-GMP and 5'-AMP bind both B1 and B2 sites in RNase NT, while 2'-UMP predominantly binds B1 site in the complex. The nucleotide binding modes in these complexes would provide a clue to elucidation of structural basis for the broad base specificity for RNase NT.  相似文献   

14.
J L Gabriel  G W Plaut 《Biochemistry》1990,29(14):3528-3535
The specificity of yeast NAD-specific isocitrate dehydrogenase for the structures of the allosteric effector 5'-AMP was examined with analogues modified in the purine ring, pentosyl group, and 5'-phosphate group. An unsubstituted 6-amino group was essential for activation as was the phosphoryl group at the 5'-position. Activity was retained when an oxygen function of the 5'-phosphoryl was replaced by sulfur (Murry & Atkinson, 1968) or by nitrogen (phosphoramidates). 2-NH2-AMP, 2-azido-AMP, and 8-NH2-AMP were active; 8-azido-AMP and 8-Br-AMP were inactive. The configuration or nature of substituents about carbons 2' and 3' of the pentosyl portion of AMP was not critical for allosteric activation since AMP analogues containing, e.g., 2',3'-dideoxyribose or the bulky 2',3'-O-(2,4,6-trinitrocyclo-hexadienylidene) substituent (TNP-AMP) were active. TNP-AMP was bound to the enzyme with fluorescence enhancement and had an S0.5 for activation similar to the S0.5 for AMP. Positive effector activity was decreased when the pentosyl moiety of 5'-AMP was replaced by the six-membered nitrogen-containing morpholine group, indicating that the pentosyl group may be critical as a spacer for the proper geometry of binding to enzyme at the 6-amino and 5'-phosphoryl groups of 5'-AMP. A comparison of molecular models of 5'-AMP with 8,5'-cycloAMP suggests that the species of 5'-AMP required for binding to the enzyme contains the purine and ribose moieties in an anti conformation and positioning of the 5'-phosphate trans with respect to carbon 4'.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Treatment of chicken liver fatty acid synthetase with the arginine-specific reagent phenylglyoxal resulted in the pseudo-first-order loss of synthetase, beta-ketoacyl reductase and enoyl reductase activities. The sum of the second-order rate constants for the two reductase reactions equalled that for the synthetase reaction, suggesting that inactivation of either reductase was responsible for the loss of fatty acid synthetase activity. Double-log plots of pseudo-first-order rate constant versus reagent concentration yielded straight lines with slopes of unity for all three activities tested, suggesting the reaction of one reagent molecule in the inactivation process. In parallel experiments, complete inactivation of synthetase activity was accompanied by the incorporation of 4.5 [14C]phenylglyoxal, and the loss of 2.3 arginine residues per subunit. Reaction of essential sulfhydryl groups was not involved, since inactivation by phenylglyoxal was unaffected by reversible protection of these groups with 5,5'-dithiobis(2-nitrobenzoic acid). Inactivation of all three activities by phenylglyoxal was prevented by saturating amounts of the coenzyme NADPH, or its analogs 2',5'-ADP and 2'-AMP, but not by the corresponding nucleotides containing only the 5'-phosphate. Conversely, the ability of this enzyme to bind NADPH was abolished upon inactivation. These results are consistent with the presence of an essential arginine residue at the binding site for the 2'-phosphate group of NADPH at each of the two reductase domains of the multifunctional fatty acid synthetase subunit.  相似文献   

16.
H S Kim  L Lee  D R Evans 《Biochemistry》1991,30(42):10322-10329
The ATP analogue 5'-[p-(fluorosulfonyl)benzoyl]adenosine (FSBA) was used to chemically modify the ATP binding sites of the carbamyl phosphate synthetase domain of CAD, the multifunctional protein that catalyzes the first steps in mammalian pyrimidine biosynthesis. Reaction of CAD with FSBA resulted in the inactivation of the ammonia- and glutamine-dependent CPSase activities but had no effect on its glutaminase, aspartate transcarbamylase, or dihydroorotase activities. ATP protected CAD against inactivation by FSBA whereas the presence of the allosteric effectors UTP and PRPP afforded little protection, which suggests that the ATP binding sites were specifically labeled. The inactivation exhibited saturation behavior with respect to FSBA with a K1 of 0.93 mM. Of the two ATP-dependent partial activities of carbamyl phosphate synthetase, bicarbonate-dependent ATPase was inactivated more rapidly than the carbamyl phosphate dependent ATP synthetase, which indicates that these partial reactions occur at distinct ATP binding sites. The stoichiometry of [14C]FSBA labeling showed that only 0.4-0.5 mol of FSBA/mol of protein was required for complete inactivation. Incorporation of radiolabeled FSBA into CAD and subsequent proteolysis, gel electrophoresis, and fluorography demonstrated that only the carbamyl phosphate synthetase domain of CAD is labeled. Amino acid sequencing of the principal peaks resulting from tryptic digests of FSBA-modified CAD located the sites of FSBA modification in regions that exhibit high homology to ATP binding sites of other known proteins. Thus CAD has two ATP binding sites, one in each of the two highly homologous halves of the carbamyl phosphate domain which catalyze distinct ATP-dependent partial reactions in carbamyl phosphate synthesis.  相似文献   

17.
The modes of binding of adenosine 2'-monophosphate (2'-AMP) to the enzyme ribonuclease (RNase) T1 were determined by computer modelling studies. The phosphate moiety of 2'-AMP binds at the primary phosphate binding site. However, adenine can occupy two distinct sites--(1) The primary base binding site where the guanine of 2'-GMP binds and (2) The subsite close to the N1 subsite for the base on the 3'-side of guanine in a guanyl dinucleotide. The minimum energy conformers corresponding to the two modes of binding of 2'-AMP to RNase T1 were found to be of nearly the same energy implying that in solution 2'-AMP binds to the enzyme in both modes. The conformation of the inhibitor and the predicted hydrogen bonding scheme for the RNase T1-2'-AMP complex in the second binding mode (S) agrees well with the reported x-ray crystallographic study. The existence of the first mode of binding explains the experimental observations that RNase T1 catalyses the hydrolysis of phosphodiester bonds adjacent to adenosine at high enzyme concentrations. A comparison of the interactions of 2'-AMP and 2'-GMP with RNase T1 reveals that Glu58 and Asn98 at the phosphate binding site and Glu46 at the base binding site preferentially stabilise the enzyme-2'-GMP complex.  相似文献   

18.
Aminoacyl-tRNA synthetase family enzymes are of particular interest for creating universal phylogenetic trees and understanding the gene flow as these enzymes perform the basic and analogous biochemical function of protein synthesis in all extant organisms. Among them, tryptophanyl-tRNA synthetase (Trp-RS) plays a foremost role in phylogeny owing to the close relationship with tyrosine-tRNA synthetase. In this study, the sequence of the gene Trp-RS was amplified using degenerated adenylation domain primers in the periodontal bacterium Actinobacillus actinomycetemcomitans. The sequence of the cloned PCR amplicon confirmed the adenylation domain sequence with glutamic acid residue, which is absent in five other oral bacteria used in this study as well as in a number of other bacteria described in the database. The Trp-RS sequence analysis prevailed the identify elements such as Rossmann-fold sequence and tRNA(Trp) binding domains including acceptor stem and anticodon. A theoretical model of Trp-RS of A. actinomycetemcomitans was generated. Guided docking of the ligand tryptophanyl-5'-AMP revealed a highly identical active site in comparison with the bacterial template. The phylogenetic positioning of Trp-RS among a group of oral bacterial species revealed that A. actinomycetemcomitans is closely related to Haemophilus influenzae, H. ducreyi and Pasteurella multocida.  相似文献   

19.
The photoaffinity probes [gamma-32P]2-azidoATP (2-N3ATP) and [alpha-32P]8-azido-ATP (8-N3ATP) were used to investigate the binding of ATP to highly purified 2-5A synthetase. 2-N3ATP and 8-N3ATP are substrates for 2-5A synthetase [Suhadolnik, R.J., Karikó, K., Sobol, R.W., Jr., Li, S.W., Reichenbach, N.L., & Haley, B.E., preceding paper]. In this study we show that 2- and 8-N3ATP are competitive inhibitors of the enzymatic conversion of ATP to 2-5A. Ultraviolet irradiation results in the photoinsertion of 2-N3ATP and 8-N3ATP into the enzyme. The covalent photoinsertion of [alpha-32P]8-N3ATP into the 2-5A synthetase is proportional to the inactivation of the enzyme as UV irradiation is increased. Photolabeling of 2-5A synthetase is saturated at 1.5 mM 2-N3ATP and 2.0 mM 8-N3ATP. Computer analysis of the curvilinear Scatchard plots of the 2-5A synthetase suggests the presence of high-affinity and low-affinity binding sites that may correspond to the acceptor and the 2'-adenylation sites of the enzyme. The competition of nucleotides for the covalent photoinsertion of 8-N3ATP into the binding site(s) of the synthetase was as follows: ATP greater than 2'dATP = 3'dATP greater than CTP greater than ITP greater than AMP greater than NAD+ greater than UTP greater than UMP greater than CMP. Photoinsertion of 8-N3ATP into 2-5A synthetase increases with the addition of poly(rI).poly(rC).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The interaction between tRNAPhe (yeast), from which the Y-base has been removed by acid treatment, and phenylalanyl-tRNA synthetase (yeast) has been investigated by fluorescence competition titrations and sedimentation velocity runs. The binding parameters are given under various ionic conditions. The tRNAPhe-Y still can occupy the specific binding sites on the enzyme. Compared to unmodified tRNAPhe, the binding constant is lowered by more than one order of magnitude. It can be concluded that the Y-base is not necessary for specific recognition of tRNAPhe by the cognate synthetase, it rather may represent a point of attachment for the synthetase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号