首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hypertension‐induced left ventricular hypertrophy (LVH) is an independent risk factor for heart failure. Regression of LVH has emerged as a major goal in the treatment of hypertensive patients. Here, we tested our hypothesis that the valosin‐containing protein (VCP), an ATPase associate protein, is a novel repressor of cardiomyocyte hypertrophy under the pressure overload stress. Left ventricular hypertrophy (LVH) was determined by echocardiography in 4‐month male spontaneously hypertensive rats (SHRs) vs. age‐matched normotensive Wistar Kyoto (WKY) rats. VCP expression was found to be significantly downregulated in the left ventricle (LV) tissues from SHRs vs. WKY rats. Pressure overload was induced by transverse aortic constriction (TAC) in wild‐type (WT) mice. At the end of 2 weeks, mice with TAC developed significant LVH whereas the cardiac function remained unchanged. A significant reduction of VCP at both the mRNA and protein levels in hypertrophic LV tissue was found in TAC WT mice compared to sham controls. Valosin‐containing protein VCP expression was also observed to be time‐ and dose‐dependently reduced in vitro in isolated neonatal rat cardiomyocytes upon the treatment of angiotensin II. Conversely, transgenic (TG) mice with cardiac‐specific overexpression of VCP showed a significant repression in TAC‐induced LVH vs. litter‐matched WT controls upon 2‐week TAC. TAC‐induced activation of the mechanistic target of rapamycin complex 1 (mTORC1) signaling observed in WT mice LVs was also significantly blunted in VCP TG mice. In conclusion, VCP acts as a novel repressor that is able to prevent cardiomyocyte hypertrophy from pressure overload by modulating the mTORC1 signaling pathway.  相似文献   

2.
The goal of this study was to determine the role of estrogen receptor subtypes in the development of pressure overload hypertrophy in mice. Epidemiological studies have suggested gender differences in the development of hypertrophy and heart disease, but the mechanism and the role of estrogen receptor subtypes are not established. We performed transverse aortic constriction (TAC) and sham operations in male and female wild-type (WT) mice and mice lacking functional estrogen receptor-alpha [alpha-estrogen receptor knockout (alpha-ERKO)] and mice lacking estrogen receptor-beta (beta-ERKO). Body, heart, and lung weights were measured 2 wk postsurgery. WT male mice subjected to TAC showed a 64% increase in the heart weight-to-body weight ratio (HW/BW) compared with sham, and WT males have increased lung weight at 2 wk. WT female mice subjected to TAC showed a 31% increase in HW/BW compared with sham, which was significantly less than their male counterparts and with no evidence of heart failure. alpha-ERKO females developed HW/BW nearly identical to that seen in WT littermate females in response to TAC, indicating that estrogen receptor-alpha is not essential for the attenuation of hypertrophy observed in WT females. In contrast, beta-ERKO females responded to TAC with a significantly greater increase in HW/BW than WT littermate females. beta-ERKO females have lower expression of lipoprotein lipase at baseline than WT or alpha-ERKO females. These data suggest an important role for estrogen receptor-beta in attenuating the hypertrophic response to pressure overload in females.  相似文献   

3.
Although nitric oxide synthase (NOS)3 is implicated as an important modulator of left ventricular (LV) remodeling, its role in the cardiac response to chronic pressure overload is controversial. We examined whether selective restoration of NOS3 to the hearts of NOS3-deficient mice would modulate the LV remodeling response to transverse aortic constriction (TAC). LV structure and function were compared at baseline and after TAC in NOS3-deficient (NOS3(-/-)) mice and NOS3(-/-) mice carrying a transgene directing NOS3 expression specifically in cardiomyocytes (NOS3(-/-TG) mice). At baseline, echocardiographic assessment of LV dimensions and function, invasive hemodynamic measurements, LV mass, and myocyte width did not differ between the two genotypes. Four weeks after TAC, echocardiographic and hemodynamic indexes of LV systolic function indicated that contractile performance was better preserved in NOS3(-/-TG) mice than in NOS3(-/-) mice. Echocardiographic LV wall thickness and cardiomyocyte width were greater in NOS3(-/-) mice than in NOS3(-/-TG) mice. TAC-induced cardiac fibrosis did not differ between these genotypes. TAC increased cardiac superoxide generation in NOS3(-/-TG) but not NOS3(-/-) mice. The ratio of NOS3 dimers to monomers did not differ before and after TAC in NOS3(-/-TG) mice. Restoration of NOS3 to the heart of NOS3-deficient mice attenuates LV hypertrophy and dysfunction after TAC, suggesting that NOS3 protects against the adverse LV remodeling induced by prolonged pressure overload.  相似文献   

4.
BACKGROUND: Activation of the vitamin D-vitamin D receptor (VDR) axis has been shown to reduce blood pressure and left ventricular (LV) hypertrophy. Besides cardiac hypertrophy, cardiac fibrosis is a key element of adverse cardiac remodeling. We hypothesized that activation of the VDR by paricalcitol would prevent fibrosis and LV diastolic dysfunction in an established murine model of cardiac remodeling. METHODS: Mice were subjected to transverse aortic constriction (TAC) to induce cardiac hypertrophy. Mice were treated with paricalcitol, losartan, or a combination of both for a period of four consecutive weeks. RESULTS: The fixed aortic constriction caused similar increase in blood pressure, both in untreated and paricalcitol- or losartan-treated mice. TAC significantly increased LV weight compared to sham operated animals (10.2±0.7 vs. 6.9±0.3mg/mm, p<0.05). Administration of either paricalcitol (10.5±0.7), losartan (10.8±0.4), or a combination of both (9.2±0.6) did not reduce LV weight. Fibrosis was significantly increased in mice undergoing TAC (5.9±1.0 vs. sham 2.4±0.8%, p<0.05). Treatment with losartan and paricalcitol reduced fibrosis (paricalcitol 1.6±0.3% and losartan 2.9±0.6%, both p<0.05 vs. TAC). This reduction in fibrosis in paricalcitol treated mice was associated with improved indices of LV contraction and relaxation, e.g. dPdtmax and dPdtmin and lower LV end diastolic pressure, and relaxation constant Tau. Also, treatment with paricalcitol and losartan reduced mRNA expression of ANP, fibronectin, collagen III and TIMP-1. DISCUSSION: Treatment with the selective VDR activator paricalcitol reduces myocardial fibrosis and preserves diastolic LV function due to pressure overload in a mouse model. This is associated with a reduced percentage of fibrosis and a decreased expression of ANP and several other tissue markers.  相似文献   

5.
Little is known about the effects of the composition of dietary carbohydrate on the development of left ventricular (LV) hypertrophy (LVH) and heart failure (HF) under conditions of pressure overload. The objective of this study was to determine the effect of carbohydrate composition on LVH, LV function, and mortality in a mouse model of chronic pressure overload. Male C57BL/6J mice of 6 wk of age (n = 14-16 mice/group) underwent transverse aortic constriction (TAC) or sham surgery and were fed either standard chow (STD; 32% corn starch, 35% sucrose, 3% maltodextrin, and 10% fat expressed as a percent of the total energy), high-starch chow (58% corn starch, 12% maltodextrin, and 10% fat), or high-fructose chow (9% corn starch, 61% fructose, and 10% fat). After 16 wk of treatment, mice with TAC fed the STD or high-fructose diets exhibited increased LV mass, larger end-diastolic and end-systolic diameters, and decreased ejection fraction compared with sham. The high-starch diet, in contrast, prevented changes in LV dimensions and contractile function. Cardiac mRNA for myosin heavy chain-beta was increased dramatically in the fructose-fed banded animals, as was mortality (54% compared with 8% and 29% in the starch and STD banded groups, respectively). In conclusion, a diet high in simple sugar was deleterious, resulting in the highest mortality and expression of molecular markers of cardiac dysfunction in TAC animals compared with sham, whereas a high-starch diet blunted mortality, increases in cardiac mass, and contractile dysfunction.  相似文献   

6.
Intact female rats fed a high-phytoestrogen diet are protected against adverse left ventricular (LV) remodeling induced by chronic volume overload. We hypothesized that both phytoestrogens and ovarian hormones, particularly estrogen, are necessary for this dietary-induced cardioprotection. To test this hypothesis, eight groups of female rats were studied; rats were fed either a high-phytoestrogen (+phyto) or phytoestrogen-free diet. Groups included sham-operated rats, intact rats with fistula (Fist), ovariectomized rats with fistula (Fist-OX), and Fist-OX rats treated with estrogen (EST). Myocardial function and remodeling were assessed after 8 wk of volume overload using a blood-perfused isolated heart apparatus. Fist-OX rats developed significant ventricular dilatation and increased compliance vs. intact Fist rats, which were associated with a significant decrease in contractility. Estrogen treatment prevented pulmonary edema and attenuated LV hypertrophy and dilatation but did not maintain contractility. However, dietary phytoestrogens completely prevented LV dilatation in both the Fist+phyto and Fist-OX+EST+phyto groups but had no effect on LV remodeling in the Fist-OX+phyto group. Contractility was significantly greater in the estrogen-treated rats fed the phytoestrogen diet than in those treated with estrogen alone. Dietary phytoestrogens did not affect LV or uterine mass, serum estrogen, LV estrogen receptor expression, or cardiac function in sham animals. These data indicate that estrogen is not solely responsible for the cardioprotection exhibited by intact females and that phytoestrogens can work synergistically with ovarian hormones to attenuate ventricular remodeling induced by chronic volume overload in female rats.  相似文献   

7.
To examine whether cardiac hypertrophy is associated with changes in beta-adrenoceptor signal transduction mechanisms, pressure overload (PO) was induced by occlusion of the abdominal aorta and volume overload (VO) by creation of an aortocaval shunt for 4 and 24 wk in rats. After hemodynamic assessment of the animals, the left ventricular (LV) particulate fraction was isolated for measurement of beta(1)-adrenoceptors and adenylyl cyclase activity, and cardiomyocytes were isolated for monitoring of the intracellular Ca(2+) concentration. Although PO and VO produced cardiac hypertrophy and increased LV end-diastolic pressure at 4 wk, cardiac function was increased in animals subjected to PO but remained unaltered in animals subjected to VO. Cardiac hypertrophy and increased LV end-diastolic pressure were associated with depressed cardiac function at 24 wk of PO or VO, but clinical signs of congestive heart failure were evident only in animals subjected to VO. Isoproterenol-induced increases in cardiac function, activation of adenylyl cyclase activity, and increase in intracellular Ca(2+) concentration, as well as beta(1)-adrenoceptor density, were unaltered by PO at 4 wk, augmented by VO at 4 wk, and attenuated by PO and VO at 24 wk. These results suggest that alterations in beta(1)-adrenoceptor signal transduction are dependent on the type and stage of cardiac hypertrophy.  相似文献   

8.
We have previously shown that high-sugar diets increase mortality and left ventricular (LV) dysfunction during pressure overload. The mechanisms behind these diet-induced alterations are unclear but may involve increased oxidative stress in the myocardium. The present study examined whether high-fructose feeding increased myocardial oxidative damage and exacerbated systolic dysfunction after transverse aortic constriction (TAC) and if this effect could be attenuated by treatment with the antioxidant tempol. Immediately after surgery, TAC and sham mice were assigned to a high-starch diet (58% of total energy intake as cornstarch and 10% fat) or high-fructose diet (61% fructose and 10% fat) with or without the addition of tempol [0.1% (wt/wt) in the chow] and maintained on the treatment for 8 wk. In response to TAC, fructose-fed mice had greater cardiac hypertrophy (55.1% increase in the heart weight-to-tibia length ratio) than starch-fed mice (22.3% increase in the heart weight-to-tibia length ratio). Treatment with tempol significantly attenuated cardiac hypertrophy in fructose-fed TAC mice (18.3% increase in the heart weight-to-tibia ratio). Similarly, fructose-fed TAC mice had a decreased LV area of fractional shortening (from 38+/-2% in sham to 22+/-4% in TAC), which was prevented by tempol treatment (33+/-3%). Markers of lipid peroxidation in fructose-fed TAC hearts were also blunted by tempol. In conclusion, tempol significantly blunted markers of cardiac hypertrophy, LV remodeling, contractile dysfunction, and oxidative stress in fructose-fed TAC mice.  相似文献   

9.
To investigate the role of endothelial nitric oxide synthase (NOS3) in left ventricular (LV) remodeling induced by chronic pressure overload, the impact of transverse aortic constriction (TAC) on LV structure and function was compared in wild-type (WT) and NOS3-deficient (NOS3(-/-)) mice. Before TAC, LV wall thickness, mass, and fractional shortening were similar in the two mouse strains. Twenty-eight days after TAC, both WT and NOS3(-/-) mice had increased LV wall thickness and mass as well as decreased fractional shortening. Although the pressure gradient across the TAC was similar in both strains of mice 28 days after TAC, LV mass and posterior wall thickness were greater in NOS3(-/-) than in WT mice, whereas fractional shortening and the maximum rate of developed LV pressure were less. Diastolic function, as measured by the time constant of isovolumic relaxation and the maximum rate of LV pressure decay, was impaired to a greater extent in NOS3(-/-) than in WT mice. The degree of myocyte hypertrophy and LV fibrosis was greater in NOS3(-/-) than in WT mice at 28 days after TAC. Mortality was greater in NOS3(-/-) than in WT mice 28 days after TAC. Long-term administration of hydralazine normalized the blood pressure and prevented the LV dilation in NOS3(-/-) mice but did not prevent the LV hypertrophy, dysfunction, and fibrosis associated with NOS3 deficiency after TAC. These results suggest that the absence of NOS3 augments LV dysfunction and remodeling in a murine model of chronic pressure overload.  相似文献   

10.
Obstructive sleep apnea (OSA) increases cardiovascular morbidity and mortality. We have reported that chronic intermittent hypoxia (CIH), a direct consequence during OSA, leads to left ventricular (LV) remodeling and dysfunction in rats. The present study is to determine LV myocardial cellular injury that is possibly associated with LV global dysfunction. Fifty-six rats were exposed either to CIH (nadir O(2) 4-5%) or sham (handled normoxic controls, HC), 8 h/day for 6 wk. At the end of the exposure, we studied LV global function by cardiac catheterization, and LV myocardial cellular injury by in vitro analyses. Compared with HC, CIH animals demonstrated elevations in mean arterial pressure and LV end-diastolic pressure, but reductions in cardiac output (CIH 141.3 +/- 33.1 vs. HC 184.4 +/- 21.2 ml x min(-1) x kg(-1), P < 0.01), maximal rate of LV pressure rise in systole (+dP/dt), and maximal rate of LV pressure fall in diastole (-dP/dt). CIH led to significant cell injury in the left myocardium, including elevated LV myocyte size, measured by cell surface area (CIH 3,564 +/- 354 vs. HC 2,628 +/- 242 microm(2), P < 0.05) and cell length (CIH 148 +/- 23 vs. HC 115 +/- 16 microm, P < 0.05), elevated terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-stained positive cell number (CIH 98 +/- 45 vs. HC 15 +/- 13, P < 0.01), elevated caspase-3 activity (906 +/- 249 vs. 2,275 +/- 1,169 pmol x min(-1) x mg(-1), P < 0.05), and elevated expression of several remodeling gene markers, including c-fos, atrial natriuretic peptide, beta-myosin heavy chain, and myosin light chain-2. However, there was no difference between groups in sarcomere contractility of isolated LV myocytes, or in LV collagen deposition on trichrome-stained slices. In conclusion, CIH-mediated LV global dysfunction is associated with myocyte hypertrophy and apoptosis at the cellular level.  相似文献   

11.
12.
The JAK-STAT pathway is activated in the early and late phases of ischemic preconditioning (IPC) in normal myocardium. The role of this pathway and the efficacy of IPC in hypertrophied hearts remain largely unknown. We hypothesized that phosphorylated STAT-3 (pSTAT-3) is necessary for effective IPC in pressure-overload hypertrophy. Male Sprague-Dawley rats 8 wk after thoracic aortic constriction (TAC) or sham operation underwent echocardiography and Langendorff perfusion. Randomized hearts were subjected to 30 min of global ischemia and 120 min of reperfusion with or without IPC in the presence or absence of the JAK-2 inhibitor AG-490 (AG). Functional recovery and STAT activation were assessed. TAC rats had a 31% increase in left ventricular mass (1,347 +/- 58 vs. 1,028 +/- 43 mg, TAC vs. sham, P < 0.001), increased anterior and posterior wall thickness but no difference in ejection fraction compared with sham-operated rats. In TAC, IPC improved end-reperfusion maximum first derivative of developed pressure (+dP/dt(max); 4,648 +/- 309 vs. 2,737 +/- 343 mmHg/s, IPC vs. non-IPC, P < 0.05) and minimum -dP/dt (-dP/dt(min); -2,239 +/- 205 vs. -1,215 +/- 149 mmHg/s, IPC vs. non-IPC, P < 0.05). IPC increased nuclear pSTAT-1 and pSTAT-3 in sham-operated rats but only pSTAT-3 in TAC. AG in TAC significantly attenuated +dP/dt(max) (4,648 +/- 309 vs. 3,241 +/- 420 mmHg/s, IPC vs. IPC + AG, P < 0.05) and -dP/dt(min) (-2,239 +/- 205 vs. -1,323 +/- 85 mmHg/s, IPC vs. IPC + AG, P < 0.05) and decreased only nuclear pSTAT-3. In myocardial hypertrophy, JAK-STAT signaling is important in IPC and exhibits a pattern of STAT activation distinct from nonhypertrophied myocardium. Limiting STAT-3 activation attenuates the efficacy of IPC in hypertrophy.  相似文献   

13.
Inflammation plays a key role in pressure overload‐induced cardiac hypertrophy and heart failure, but the mechanisms have not been fully elucidated. High‐mobility group box 1 (HMGB1), which is increased in myocardium under pressure overload, may be involved in pressure overload‐induced cardiac injury. The objectives of this study are to determine the role of HMGB1 in cardiac hypertrophy and cardiac dysfunction under pressure overload. Pressure overload was imposed on the heart of male wild‐type mice by transverse aortic constriction (TAC), while recombinant HMGB1, HMGB1 box A (a competitive antagonist of HMGB1) or PBS was injected into the LV wall. Moreover, cardiac myocytes were cultured and given sustained mechanical stress. Transthoracic echocardiography was performed after the operation and sections for histological analyses were generated from paraffin‐embedded hearts. Relevant proteins and genes were detected. Cardiac HMGB1 expression was increased after TAC, which was accompanied by its translocation from nucleus to both cytoplasm and intercellular space. Exogenous HMGB1 aggravated TAC‐induced cardiac hypertrophy and cardiac dysfunction, as demonstrated by echocardiographic analyses, histological analyses and foetal cardiac genes detection. Nevertheless, the aforementioned pathological change induced by TAC could partially be reversed by HMGB1 inhibition. Consistent with the in vivo observations, mechanical stress evoked the release and synthesis of HMGB1 in cultured cardiac myocytes. This study indicates that the activated and up‐regulated HMGB1 in myocardium, which might partially be derived from cardiac myocytes under pressure overload, may be of crucial importance in pressure overload‐induced cardiac hypertrophy and cardiac dysfunction.  相似文献   

14.
Pressure overload cardiac hypertrophy may be a compensatory mechanism to normalize systolic wall stress and preserve left ventricular (LV) function. To test this concept, we developed a novel in vivo method to measure myocardial stress (sigma)-strain (epsilon) relations in normal and hypertrophied mice. LV volume was measured using two pairs of miniature omnidirectional piezoelectric crystals implanted orthogonally in the endocardium and one crystal placed on the anterior free wall to measure instantaneous wall thickness. Highly linear sigma-epsilon relations were obtained in control (n = 7) and hypertrophied mice produced by 7 days of transverse aortic constriction (TAC; n = 13). Administration of dobutamine in control mice significantly increased the load-independent measure of LV contractility, systolic myocardial stiffness. In TAC mice, systolic myocardial stiffness was significantly greater than in control mice (3,156 +/- 1,433 vs. 1,435 +/- 467 g/cm(2), P < 0.01), indicating enhanced myocardial contractility with pressure overload. However, despite the increased systolic performance, both active (time constant of LV pressure decay) and passive (diastolic myocardial stiffness constant) diastolic properties were markedly abnormal in TAC mice compared with control mice. These data suggest that the development of cardiac hypertrophy is associated with a heightened contractile state, perhaps as an early compensatory response to pressure overload.  相似文献   

15.
To study the role of early energetic abnormalities in the subsequent development of heart failure, we performed serial in vivo combined magnetic resonance imaging (MRI) and (31)P magnetic resonance spectroscopy (MRS) studies in mice that underwent pressure-overload following transverse aorta constriction (TAC). After 3 wk of TAC, a significant increase in left ventricular (LV) mass (74 +/- 4 vs. 140 +/- 26 mg, control vs. TAC, respectively; P < 0.000005), size [end-diastolic volume (EDV): 48 +/- 3 vs. 61 +/- 8 microl; P < 0.005], and contractile dysfunction [ejection fraction (EF): 62 +/- 4 vs. 38 +/- 10%; P < 0.000005] was observed, as well as depressed cardiac energetics (PCr/ATP: 2.0 +/- 0.1 vs. 1.3 +/- 0.4, P < 0.0005) measured by combined MRI/MRS. After an additional 3 wk, LV mass (140 +/- 26 vs. 167 +/- 36 mg; P < 0.01) and cavity size (EDV: 61 +/- 8 vs. 76 +/- 8 microl; P < 0.001) increased further, but there was no additional decline in PCr/ATP or EF. Cardiac PCr/ATP correlated inversely with end-systolic volume and directly with EF at 6 wk but not at 3 wk, suggesting a role of sustained energetic abnormalities in evolving chamber dysfunction and remodeling. Indeed, reduced cardiac PCr/ATP observed at 3 wk strongly correlated with changes in EDV that developed over the ensuing 3 wk. These data suggest that abnormal energetics due to pressure overload predict subsequent LV remodeling and dysfunction.  相似文献   

16.
We characterized the time course of the left ventricular (LV) geometric and functional changes after aortic banding, validated them by necropsy, and investigated the sensitivity of echocardiographic findings on LV hypertrophy. C57BL/6 mice were subjected to transverse aortic constriction (TAC) or sham operation; echocardiographic assessments were performed before or at 2, 4, 6, and 11 wk after surgery; and some of the mice were euthanized at the corresponding time points. There was a progressive increase in diastolic posterior wall thickness and LV systolic dimension; the percentage of LV fractional shortening (LV%FS) decreased progressively at 4 wk, whereas these parameters remained stable in sham-operated mice. Echo LV mass and LV%FS correlated well with actual whole heart mass and ratio of lung weight to body weight, respectively (r = 0.765 and -0.749, respectively; P < 0.0001). These results suggest that the development of myocardial hypertrophy and systolic dysfunction is a time-dependent process. Echocardiographic assessment of myocardial hypertrophy and functional changes correlate well with the actual heart mass and lung mass. Echocardiography is sensitive enough to assess myocardial hypertrophy and heart functional changes induced by pressure overload in mice.  相似文献   

17.
目的建立大鼠胸主动脉部分缩窄诱导心肌肥厚动物模型。方法雄性SD大鼠30只,随机分为两组:胸主动脉缩窄组20只和同期假手术组10只。在右无名动脉和左颈总动脉之间将主动脉结扎于8G针头上,随后将针头退出即可。术后10周,采用超声心动图检测心脏、观察心脏的大体剖面以及HE染色、测量心肌肥厚指数评价心肌肥厚的效果。结果术后10周,肉眼观:模型组心脏体积明显大于对照组。M型超声示:模型组较假手术组缩短分数下降,左室内径和室壁厚度明显增加。超声测量结果示:模型组与假手术组比较:室间隔厚度增加明显(2.527±0.269 vs.1.943±0.1)mm,(P〈0.01);后壁厚度增加明显(2.492±0.242 vs.1.902±0.076)mm,(P〈0.01);缩短分数略减小(49±7.681 vs.55.7±9.828)(P〉0.05);左室舒张末期内径、左室收缩末期内径及射血分数均无明显变化。心脏肥厚指数明显增大(3.196±0.11 vs.1.785±0.099),P〈0.01。结论胸主动脉缩窄可以导致大鼠心肌肥厚,为研究心室肥厚、心肌功能障碍以及心肌重构提供了一个很好的模型。  相似文献   

18.
In many patients with congenital heart disease, the right ventricle (RV) is subjected to abnormal loading conditions. To better understand the state of compensated RV hypertrophy, which could eventually progress to decompensation, we studied the effects of RV pressure overload in rats. In the present study, we report the biventricular adaptation to 6 wk of pulmonary artery banding (PAB). PAB resulted in an RV pressure overload to approximately 60% of systemic level and a twofold increase in RV mass (P < 0.01). Systemic hemodynamic parameters were not altered, and overt signs of heart failure were absent. Load-independent measures of ventricular function (end-systolic pressure-volume relation, preload recruitable stroke work relation, maximum first time derivative of pressure divided by end-diastolic volume), assessed by means of pressure-volume (PV) loops, demonstrated a two- to threefold increase in RV contractility under baseline conditions in PAB rats. RV contractility increased in response to dobutamine stimulation (2.5 microg.kg(-1).min(-1)) both in PAB and sham-operated rats in a similar fashion, indicating preserved RV contractile reserve in PAB rats. Left ventricular (LV) contractility at baseline was unaffected in PAB rats, although LV volume in PAB rats was slightly decreased. LV contractility increased in response to dobutamine (2.5 microg.kg(-1).min(-1)), both in PAB and sham rats, whereas the response to a higher dose of dobutamine (5 microg.kg(-1).min(-1)) was blunted in PAB rats. RV pressure overload (6 wk) in rats resulted in a state of compensated RV hypertrophy with preserved RV contractile reserve, whereas LV contractile state at baseline was not affected. Furthermore, this study demonstrates the feasibility of performing biventricular PV-loop measurements in rats.  相似文献   

19.
Transgenic mice with cardiac-specific expression of a peptide inhibitor of G protein-coupled receptor kinase (GRK)3 [transgenic COOH-terminal GRK3 (GRK3ct) mice] display myocardial hypercontractility without hypertrophy and enhanced α(1)-adrenergic receptor signaling. A role for GRK3 in the pathogenesis of heart failure (HF) has not been investigated, but inhibition of its isozyme, GRK2, has been beneficial in several HF models. Here, we tested whether inhibition of GRK3 modulated evolving cardiac hypertrophy and dysfunction after pressure overload. Weight-matched male GRK3ct transgenic and nontransgenic littermate control (NLC) mice subjected to chronic pressure overload by abdominal aortic banding (AB) were compared with sham-operated (SH) mice. At 6 wk after AB, a significant increase of cardiac mass consistent with induction of hypertrophy was found, but no differences between GRK3ct-AB and NLC-AB mice were discerned. Simultaneous left ventricular (LV) pressure-volume analysis of electrically paced, ex vivo perfused working hearts revealed substantially reduced systolic and diastolic function in NLC-AB mice (n = 7), which was completely preserved in GRK3ct-AB mice (n = 7). An additional cohort was subjected to in vivo cardiac catheterization and LV pressure-volume analysis at 12 wk after AB. NLC-AB mice (n = 11) displayed elevated end-diastolic pressure (8.5 ± 3.1 vs. 2.9 ± 1.2 mmHg, P < 0.05), reduced cardiac output (3,448 ± 323 vs. 4,488 ± 342 μl/min, P < 0.05), and reduced dP/dt(max) and dP/dt(min) (both P < 0.05) compared with GRK3ct-AB mice (n = 16), corroborating the preserved cardiac structure and function observed in GRK3ct-AB hearts assessed ex vivo. Increased cardiac mass and myocardial mRNA expression of β-myosin heavy chain confirmed the similar induction of cardiac hypertrophy in both AB groups, but only NLC-AB hearts displayed significantly elevated mRNA levels of brain natriuretic peptide and myocardial collagen contents as well as reduced β(1)-adrenergic receptor responsiveness to isoproterenol, indicating increased LV wall stress and the transition to HF. Inhibition of cardiac GRK3 in mice does not alter the hypertrophic response but attenuates cardiac dysfunction and HF after chronic pressure overload.  相似文献   

20.
The hypothesis is that chronic increases in left ventricular (LV) load induce oxidative stress and latent matrix metalloproteinase (MMP) is activated, allowing the heart to dilate in the absence of endothelial nitric oxide (NO) and thereby reduce filling pressure. To create volume overload, an arteriovenous (A-V) fistula was placed in male Sprague-Dawley rats. To decrease oxidative stress and apoptosis, 0.08 mg/ml nicotinamide (Nic) was administered in drinking water 2 days before surgery. The rats were divided into the following groups: 1) A-V fistula, 2) A-V fistula + Nic, 3) sham operated, 4) sham + Nic, and 5) control (unoperated); n = 6 rats/group. After 4 wk, hemodynamic parameters were measured in anesthetized rats. The heart was removed and weighed, and LV tissue homogeneates were prepared. A-V fistula caused an increase in heart weight, lung weight, and end-diastolic pressure compared with the sham group. The levels of malondialdehyde (MDA; a marker of oxidative stress) was 6.60 +/- 0.23 ng/mg protein and NO was 6.87 +/- 1.21 nmol/l in the LV of A-V fistula rats by spectrophometry. Nic treatment increased NO to 13.88 +/- 2.5 nmol/l and decreased MDA to 3.54 +/- 0.34 ng/mg protein (P = 0.005). Zymographic levels of MMP-2 were increased, as were protein levels of nitrotyrosine and collagen fragments by Western blot analysis. The inhibition of oxidative stress by Nic decreased nitrotyrosine content and MMP activity. The levels of tissue inhibitor of metalloproteinase-4 mRNA were decreased in A-V fistula rats and increased in A-V fistula rats treated with Nic by Northern blot analysis. TdT-mediated dUTP nick-end labeling-positive cells were increased in A-V fistula rats and decreased in fistula rats treated with Nic. Acetylcholine and nitroprusside responses in cardiac rings prepared from the above groups of rats suggest impaired endothelial-dependent cardiac relaxation. Treatment with Nic improves cardiac relaxation. The results suggest that an increase in the oxidative stress and generation of nitrotyrosine are, in part, responsible for the activation of metalloproteinase and decreased endocardial endothelial function in chronic LV volume overload.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号