首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to make a preliminary study of substituent effects on the rate and enantioselectivity obtained in esterolytic reactions catalyzed by a lipase from Candida rugosa, a series of racemic esters, derived from some α-alkyl and α-halo phenylacetic acids, were prepared. The reactions were studied at pH 6.0 and 50°C under which conditions uncatalyzed hydrolysis was relatively slow. Reaction samples were studied at different points of time by means of analytical chiral reversed-phase liquid chromatography, which permitted the simultaneous determination of product enantiomeric excess and of the degree of total ester hydrolysis. These data were then used to calculate initial rates as well as enantioselectivity. An increase of the steric bulk of the α-substituent was found to highly decrease the rate of the reaction. On the other hand, rates were higher for the p-nitrophenyl esters than for the corresponding 2-chloroethyl esters. Consistently, the enantioselectivity was found to be higher for the latter type of ester. The esters of the α-halo (bromo and chloro) phenylacetic acids gave mandelic acid as the final product. This was caused by a rapid solvolysis of the α-halo phenylacetic acid initially formed. © 1993 Wiley-Liss, Inc.  相似文献   

2.
Summary The hypothesis that an acyl-enzyme intermediate of the esterases from Xanthomonas citri and Acetobacter turbidans is reponsible for the acylation of 7-aminodeacetoxycephalosporanic acid and similar compounds by esters of amino acids, recently proposed by Kato, also accounts for the kinetics of hydrolysis of penicillin G by the amidohydrolase from E. coli and other reactions of the enzyme. Some further implications of the mechanism are derived and discussed.This paper is dedicated to Prof. G. Manecke, a pioneer of immobilized enzyme technology, with congratulations to his 65th birthday.  相似文献   

3.
Rate constants have been determined for hydrolysis of the acetate, glutarate, and phthalate monoesters of 2-hydroxy-1,10-phenanthroline in water at 30°C and μ = 0.1 M with KCl. The hydrolysis reactions of the esters are hydroxide ion catalyzed at pH > 9. The phthalate and glutarate monoesters have in addition pH-independent reactions from pH 5.5 to 9 that involve intramolecular participation by the neighboring carboxylate anion. The pH-independent reaction of the glutarate monoester is 5-fold faster than that of the phthalate monoester. The plots of log kobsd vs pH for hydrolysis of the carboxyl substituted esters are bell shaped at pH < 5, which indicates a rapid reaction of the zwitterionic species (carboxyl anion and protonated phenanthroline nitrogen). The divalent metal ions, Cu2+, Ni2+, Zn2+, and Co2+, complex strongly with the esters; saturation occurs at metal ion concentrations less than 0.01 M. The 1:1 metal ion complexes have greatly enhanced rates of hydrolysis; the second-order rate constants for the OH reactions are increased by factors of 105 to 108 by the metal ion. The pH-rate constant profiles for the phthalate and glutarate ester metal ion complexes have a sigmoidal region below pH 6 that can be attributed to a metal ion-promoted carboxylate anion nucleophilic reaction. The carboxyl group reactions are enhanced 102 - to 103 -fold by the metal ions, which allows the neighboring group reaction to be competitive with the favorable metal ion-promoted OH reaction at pH < 6, but not at pH > 6. The half-lives of the pH-independent neighboring carboxyl group reactions of the Cu(II) complexes at 30°C are l2 s. The other metal ion complexes are only slightly less reactive (half-lives vary from 2.5 to 40 s). These are the most rapid neighboring carboxyl group reactions that have been observed in ester hydrolysis.  相似文献   

4.
Porcine pancreatic lipase (PPL)-catalyzed enantioselective hydrolysis of N-benzyloxycarbonyl-dl-amino acid esters (Z-dl-AA-ORs) was studied for the optical resolution of a variety of non-protein amino acids. The ester moiety (R) of the substrate affected the rate of hydrolysis significantly. The glyceryl (Gl) and carbamoylmethyl (Cam) esters were found to be highly reactive substrates. The hydrolysis of the Gl esters (Z-dl-AA-OGls) of both aliphatic and aromatic amino acids was examined in acetonitrile containing 70% (v/v) of 0.02 M phosphate buffer (pH 7.0) at 30°C. With all amino acids tested, the corresponding l-enantiomers were hydrolyzed preferentially. PPL favored aromatic amino acids, such as phenylalanine and p-chlorophenylalanine, leading to completion of the hydrolysis within 20 min with excellent enantioselectivities (E>100). The PPL-catalyzed hydrolysis of the corresponding Cam esters (Z-dl-AA-OCams) was also examined under the same reaction conditions. Although the hydrolysis of the Cam esters was rapid, the l-enantioselectivities were rather poor with aromatic amino acids, such as 2-phenylglycine and homophenylalanine.  相似文献   

5.
The hydrolysis and esterification by a thermostable lipase from Humicola lanuginosa No. 3 were investigated. Both reactions occurred readily at temperatures between 45~50°C. Esterification by the enzyme with glycerol was observed to be specific towards fatty acids with carbon numbers of C12~C18. Laurie acid esters with different alcohols such as primary alcohols, terpene alcohols, eie., were also synthesized readily. Esterification by the enzyme was adversely affected by the water content (optimum, ca. 7%), however, the hydrolysis rate increased rapidly with increasing water content (optimum, az. 60%). The enzyme showed increased activity in organic solvent-aqueous reaction systems. Nevertheless, hydrolysis in complete organic phase reactions was found not to be feasible. Hydrolysis at a higher temperature (50 or 55°C) in a solvent free phase was almost the same as that in organic solvent-aqueous phase reactions. The components of glycerides varied considerably during hydrolysis, whereby esterification resulted in a higher quantity of mono- and diglycerides (about 40%), compared to in the case of hydrolysis, for which the value was about 10~20%.  相似文献   

6.
The generality of enantioselectivity enhancement through the modification of the alcohol moiety of a substrate ester was ascertained, for in the Bacillus subtilis protease-catalyzed hydrolysis of N-unprotected amino acid esters the enantioselectivity was enhanced largely by switching the conventional methyl ester to esters with a longer alkyl chain such as the isobutyl ester (from E = 3 to E = 130–170 in the case of 4-fluorophenylalanine esters) as in the enzymatic hydrolysis mediated by Aspergillus oryzae protease. There was indeed a profound dependence of E on the nature of the ester grouping.  相似文献   

7.
Human carboxylesterase 1 (hCES1) is an enzyme that plays an important role in hydrolysis of pharmaceuticals in the human liver. In this study, elucidation of the chiral recognition ability of hCES1 was attempted using indomethacin esters in which various chiral alcohols were introduced. Indomethacin was condensed with various chiral alcohols to synthesize indomethacin esters. The synthesized esters were hydrolyzed with a human liver microsome (HLM) solution and a human intestine microsome (HIM) solution. High hydrolytic rate and high stereoselectivity were confirmed in the hydrolysis reaction in the HLM solution but not in the HIM solution, and these indomethacin esters were thought to be hydrolyzed by hCES1. Next, these indomethacin esters were hydrolyzed in recombinant hCES1 solution and the hydrolysis rates of the esters were calculated. The stereoselectivity confirmed in HLM solution was also confirmed in the hCES1 solution. In the hydrolysis reaction of esters in which a phenyl group is bonded next to the ester, the Vmax value of the (R) form was 10 times larger than that of the (S) form.  相似文献   

8.
Applications of lipase-catalyzed reactions, such as hydrolysis of fats for the production of fatty acids and esterification or interesterification of fats and other lipids for the preparation of diverse products in food and non-food industries, are reviewed. At present, the application of lipases in biotechnological processes seems to be economically feasible and appropriate mainly for the preparation of specific products of high commercial value, which cannot be prepared conveniently by chemical synthesis. For example, polyunsaturated fatty acids that can be used in dietetic products are prepared under mild conditions by hydrolysis of marine oils and certain plant oils with non-specific triacylglycerol lipases. Very long chain monounsaturated fatty acids (gadoleic, erucic and nervonic) that are of value in oleochemical industry can be prepared by partial hydrolysis of cruciferous oils with sn-1,3-specific lipases. Lipase-catalyzed esterification yields a variety of products, such as monoacylglycerols that are used as emulsifiers, and wax esters resembling jojoba oil which is used in cosmetics industry. Interesterification of fats with sn-1,3-specinc lipases affords specialty products, such as cocoa butter substitutes which are used in confectionary products and medium chain triacylglycerols that can be used in dietetic products. Phospholipase-catalyzed exchange of acyl moieties or bases of glycerophos-pholipids yields several products of biomedical interest.  相似文献   

9.
This review continues a general presentation of the metabolism of drugs and other xenobiotics begun in three recent issues of Chemistry & Biodiversity. The present Part is dedicated to reactions of conjugation, namely methylation, sulfonation, and phosphorylation, glucuronidation and other glycosidations, acetylation and other acylations, the formation and fate of coenzyme A conjugates, glutathione conjugation, and the reaction of amines with carbonyl compounds. It presents the many transferases involved, their nomenclature, relevant biochemical properties, catalytic mechanisms, and the reactions they catalyze. Nonenzymatic reactions, mainly of glutathione conjugation, also receive due attention. A number of medicinally, environmentally, and toxicologically relevant examples are presented and discussed.  相似文献   

10.
The effect of a chiral centre in the acyl group on the resolution of esters prepared from a racemic alcohol was investigated. R-2-chloropropionic acid afforded a higher enantiomeric ratio than S-2-chioropropionic acid in the hydrolysis of the corresponding esters of racemic 1-phenylethanol catalyzed by Candida cylindracea lipase. Even when a mixture of esters prepared from racemic acid and racemic alcohol was used for resolution of the alcohol, a noteworthy high enantioselectivity was observed. The hydrolysis of a bichiral ester offers an amplification in the resolution of enantiomers of alcohols by the combination of a chemical diastereoselectivity and an enzymatic enantio- and diastereoselectivity.  相似文献   

11.
The catalytic potential of β-galactosidase is usually determined by its hydrolytic activity over natural or synthetic substrates. However, this method poorly predicts enzyme behavior when transglycosylation instead of hydrolysis is being performed. A system for determining the transgalactosylation activity of β-galactosidase from Aspergillus oryzae was developed, and its activity was determined under conditions for the synthesis of galacto-oligosaccharides and lactulose. Transgalactosylation activity increased with temperature up to 55 °C while the effect of pH was mild in the range from pH 2.5 to 5.5, decreasing at higher values. The effect of glucose and galactose on transgalactosylation activity was also assessed both in the reactions for the synthesis of galacto-oligosaccharides and lactulose and also in the reaction of hydrolysis of o-nitrophenyl β-d-galactopiranoside. Galactose was a competitive inhibitor and its effect was stronger in the reactions of transgalactosylation than in the reaction of hydrolysis. Glucose was a mild activator of β-galactosidase in the reaction of hydrolysis, but its mechanism of action was more complex in the reactions of transgalactosylation, having this positive effect only at low concentrations while acting as an inhibitor at high concentrations. This information is relevant to properly assess the effect of monosaccharides during the reactions of the synthesis of lactose-derived oligosaccharides, such as galacto-oligosaccharides and lactulose.  相似文献   

12.
Novel benzoxazole derivatives were synthesized, and their antitubercular activity against sensitive and drug‐resistant Mycobacterium tuberculosis strains (M. tuberculosis H37Rv, M. tuberculosis sp. 210, M. tuberculosis sp. 192, Mycobacterium scrofulaceum, Mycobacterium intracellulare, Mycobacterium fortuitum, Mycobacterium avium, and Mycobacterium kansasii) was evaluated. The chemical step included preparation of ketones, alcohols, and esters bearing benzoxazole moiety. All racemic mixtures of alcohols and esters were separated in Novozyme SP 435‐catalyzed transesterification and hydrolysis, respectively. The transesterification reactions were carried out in various organic solvents (tert‐butyl methyl ether, toluene, diethyl ether, and diisopropyl ether), and depending on the solvent, the enantioselectivity of the reactions ranged from 4 to >100. The enzymatic hydrolysis of esters was performed in 2 phase tert‐butyl methyl ether/phosphate buffer (pH = 7.2) system and provided also enantiomerically enriched products (ee 88‐99%). The antitubercular activity assay has shown that synthesized compounds exhibit an interesting antitubercular activity. Racemic mixtures of alcohols, (±)‐4‐(1,3‐benzoxazol‐2‐ylsulfanyl)butan‐2‐ol ((±)‐ 3a ), (±)‐4‐[(5‐bromo‐1,3‐benzoxazol‐2‐yl)sulfanyl]butan‐2‐ol ((±)‐ 3b ), and (±)‐4‐[(5,7‐dibromo‐1,3‐benzoxazol‐2‐yl)sulfanyl]butan‐2‐ol ((±)‐ 3c ), displayed as high activity against M. scrofulaceum, M. intracellulare, M. fortuitum, and M. kansasii as commercially available antituberculosis drug‐Isoniazid. Moreover, these compounds exhibited twice higher activity toward M. avium (MIC 12.5) compared with Isoniazid (MIC 50).  相似文献   

13.
The synthesis and characterization of a number of new phosphate, sulfate and acetate esters of 3-(p-nitrophenoxy)-1,2-propanediol (PNG); 3-(2,4-dinitrophenoxy)-1,2-propanediol (DNG); 4-(p-nitrophenoxy)-1,2-butanediol (PNB) and 4-(2,4-dinitrophenoxy)-1,2-butanediol (DNB) are described. These esters were prepared to serve as substrates for their corresponding hydrolytic enzymes. The assay system used to measure enzyme hydrolysis requires periodate oxidation of the diol formed after hydrolysis of the ester. Base treatment of the resulting aldehyde yields either p-nitrophenolate ion or the 2,4-dinitrophenolate ion depending upon the substrate. In the presence of high concentrations of methylamine and excess periodate the oxidation and elimination reactions can be carried out simultaneously at pH 7.5. The reactions leading to these results are described.  相似文献   

14.
Summary Immobilised Penicillin G acylase from E. coli hydrolyses penicillin and cephalosporin derivatives protected at the carboxy group as the phenylacetoxymethylene esters. The corresponding hydrolysis of penicillin V retains the phenoxyacetyl moiety. Kinetic data of the hydrolysis are reported.  相似文献   

15.
The generally held belief that the selectivity of lipase can be changed by changing the media from aqueous to non-aqueous was tested by monitoring the rates of hydrolysis, ester synthesis and transesterification with a range of fatty acid mono-esters. Although the absolute rates of reaction varied, hydrolysis was by far the most rapid of the three, the relative rates for the fatty acids used were similar in all three reaction types. The selectivity of the five enzymes used appeared to remain unchanged irrespective of the type of reaction, i.e. hydrolysis of p-nitrophenyl esters, direct ester synthesis with butanol and fatty acid or transesterification with butyl butyrate and fatty acid, and could not be changed by changing water activity. This principle was applied to screen for suitable lipases which could be used to increase the gamma linolenic acid content of a fatty acid mixture. Enzymes could be selected by measuring the rate of hydrolysis of a range of P-nitrophenyl esters.  相似文献   

16.
Microbial lactonohydrolases (intramolecular ester bond-hydrolyzing enzymes) with unique properties were found. The lactonohydrolase fromFusarium oxysporum catalyzes enantioselective hydrolysis of aldonate lactones andd-pantoyl lactone (d-PL). This enzyme is useful for the large-scale optical resolution of racemic PL. TheAgrobacterium tumefaciens enzyme catalyzes asymmetric hydrolysis of PL, but the stereospecificity is opposite to that of theFusarium enzyme. Dihydrocoumarin hydrolase (DHase) fromAcinetobacter calcoaceticus is a bifunctional enzyme, which catalyzes not only hydrolysis of aromatic lactones but also bromination of monochlorodimedon in the presence of H2O2 and dihydrocoumarin. DHase also hydrolyzes several linear esters, and is useful for enantioselective hydrolysis of methyldl-β-acetylthioisobutyrate and regioselective hydrolysis of methyl cetraxate.  相似文献   

17.
Natural astaxanthin is widely used as a food and cosmetics additive because of its multiple biological activities. However, astaxanthin produced by Haematococcus pluvialis is generally esterified, and its activity is far less than that of free astaxanthin. Hydrolysis of astaxanthin esters to free astaxanthin by enzymes can overcome the drawbacks of chemical saponification methods. In this paper, a slug-flow microchannel reactor was constructed and tested in enzymatic hydrolysis of astaxanthin esters. The reactor consists of a “T” slug-flow generator, a stainless-steel microchannel, two constant-flow pumps, and a temperature controller. The reactor has the advantages of simple configuration and easy scale-up, and is suitable for two-phase biochemical reactions. Using the microchannel reactor, astaxanthin esters in H. pluvialis oil were efficiently hydrolyzed to free astaxanthin by lipase from Aspergillus niger. After hydrolysis, the content of free astaxanthin in H. pluvialis oil was 18.8 mg/L, 7.83-times higher than that before hydrolysis (2.13 mg/L). The hydrolysis rate reached 75.4 %. These results indicate that the microchannel reactor can be useful for the production of free astaxanthin from its esters.  相似文献   

18.
On the Acaciin     
Synthesis of N-2,2,3,3-tetrafluoropropionyl-amino acids (abbreviated as tetrafluoropropionyl- or Tfp-amino acids) by the reaction of amino acids with tetrafluoropropionyl anhydride was described, Racemization was observed to occur to a considerable extent during the process of the introduction of this group. Optically active Tfp-amino acids were able to be prepared free from racemization by transesterification of methyl tetrafluoropropionate with amino acid tert-butyl esters, followed by treatment of the resulting Tfp-amino acid tert-butyl esters with trifluoroacetic acid. Some Tfp-dipeptide esters were prepared from the corresponding dipeptide tert-butyl esters in this way. This group was cleavable by mild alkaline hydrolysis or by reduction with sodium borohydrde as well as the Tfa-group.  相似文献   

19.
Summary An acetyl specific carboxylesterase has been purified from Nocardia mediterranei. The purified enzyme is homogeneous as shown by SDS polyacrylamide gel electrophoresis. The esterase has a molecular weight of 68,000 and is composed of two identical subunits. The enzyme exhibits optimal activity at pH 7.5 and at 35°C and is stable below 40°C. The enzyme activity is inhibited by several sulfhydryl reagents. The esterase hydrolyzes preferentially acetyl esters. Propionyl esters are cleaved very slowly whereas butyryl esters are no substrates at all. In addition, the esterase shows a pronounced regiospecificity. On the other hand the enantiospecificity is rather low as demonstrated by the hydrolysis of prochiral and racemic substrates.  相似文献   

20.
Cutinases have been exploited for a broad range of reactions, from hydrolysis of soluble and insoluble esters to polymer synthesis. To further expand the biotechnological applications of cutinases for synthetic polyester degradation, we perform a comparative activity and stability analysis of five cutinases from Alternaria brassicicola (AbC), Aspergillus fumigatus (AfC), Aspergillus oryzae (AoC), Humicola insolens (HiC), and the well-characterized Fusarium solani (FsC). Of the cutinases, HiC demonstrated enhanced poly(ε-caprolactone) hydrolysis at high temperatures and under all pH values, followed by AoC and AfC. Both AbC and FsC are least stable and function poorly at high temperatures as well as at acidic pH conditions. Surface charge calculations and phylogenetic analysis reveal two important modes of cutinase stabilization: (1) an overall neutral surface charge within the “crowning area” by the active site and (2) additional disulfide bond formation. These studies provide insights useful for reengineering such enzymes with improved function and stability for a wide range of biotransformations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号