共查询到20条相似文献,搜索用时 15 毫秒
1.
Hypoacetylated histones are a hallmark of heterochromatin in organisms ranging from yeast to humans. Histone deacetylation is carried out by both NAD(+)-dependent and NAD(+)-independent enzymes. In the budding yeast Saccharomyces cerevisiae, deacetylation of histones in heterochromatic chromosomal domains requires Sir2, a phylogenetically conserved NAD(+)-dependent deacetylase. In the fission yeast Schizosaccharomyces pombe, NAD(+)-independent histone deacetylases are required for the formation of heterochromatin, but the role of Sir2-like deacetylases in this process has not been evaluated. Here, we show that spSir2, the S. pombe Sir2-like protein that is the most closely related to the S. cerevisiae Sir2, is an NAD(+)-dependent deacetylase that efficiently deacetylates histone H3 lysine 9 (K9) and histone H4 lysine 16 (K16) in vitro. In sir2 Delta cells, silencing at the donor mating-type loci, telomeres, and the inner centromeric repeats (imr) is abolished, while silencing at the outer centromeric repeats (otr) and rDNA is weakly reduced. Furthermore, Sir2 is required for hypoacetylation and methylation of H3-K9 and for the association of Swi6 with the above loci in vivo. Our findings suggest that the NAD(+)-dependent deacetylase Sir2 plays an important and conserved role in heterochromatin assembly in eukaryotes. 相似文献
2.
3.
Byung-Ho Rhie Young-Ha Song Hong-Yeoul Ryu Seong Hoon Ahn 《Biochemical and biophysical research communications》2013
Epigenetic changes in chromatin state are associated with aging. Notably, two histone modifications have recently been implicated in lifespan regulation, namely acetylation at H4 lysine 16 in yeast and methylation at H3 lysine 4 (H3K4) in nematodes. However, less is known about other histone modifications. Here, we report that cellular aging is associated with increased ubiquitylation of histone H2B in yeast telomeric heterochromatin. An increase in ubiquitylation at histone H2B lysine 123 and methylations at both H3K4 and H3 lysine 79 (H3K79) was observed at the telomere-proximal regions of replicatively aged cells, coincident with decreased Sir2 abundance. Moreover, deficiencies in the H2B ubiquitylase complex Rad6/Bre1 as well as the deubiquitylase Ubp10 reduced the lifespan by altering both H3K4 and H3K79 methylation and Sir2 recruitment. Thus, these results show that low levels of H2B ubiquitylation are a prerequisite for a normal lifespan and the trans-tail regulation of histone modifications regulates age-associated Sir2 recruitment through telomeric silencing. 相似文献
4.
Xhemalce B Miller KM Driscoll R Masumoto H Jackson SP Kouzarides T Verreault A Arcangioli B 《The Journal of biological chemistry》2007,282(20):15040-15047
In Saccharomyces cerevisiae, acetylation of lysine 56 (Lys-56) in the globular domain of histone H3 plays an important role in response to genotoxic agents that interfere with DNA replication. However, the regulation and biological function of this modification are poorly defined in other eukaryotes. Here we show that Lys-56 acetylation in Schizosaccharomyces pombe occurs transiently during passage through S-phase and is normally removed in G(2). Genotoxic agents that cause DNA double strand breaks during replication elicit a delay in deacetylation of histone H3 Lys-56. In addition, mutant cells that cannot acetylate Lys-56 are acutely sensitive to genotoxic agents that block DNA replication. Moreover, we show that Spbc342.06cp, a previously uncharacterized open reading frame, encodes the functional homolog of S. cerevisiae Rtt109, and that this protein acetylates H3 Lys-56 both in vitro and in vivo. Altogether, our results indicate that both the regulation of histone H3 Lys-56 acetylation by its histone acetyltransferase and histone deacetylase and its role in the DNA damage response are conserved among two distantly related yeast model organisms. 相似文献
5.
Chromatin assembly factor 1 (CAF-1) and Rtt106 participate in the deposition of newly synthesized histones onto replicating DNA to form nucleosomes. This process is critical for the maintenance of genome stability and inheritance of functionally specialized chromatin structures in proliferating cells. However, the molecular functions of the acetylation of newly synthesized histones in this DNA replication-coupled nucleosome assembly pathway remain enigmatic. Here we show that histone H3 acetylated at lysine 56 (H3K56Ac) is incorporated onto replicating DNA and, by increasing the binding affinity of CAF-1 and Rtt106 for histone H3, H3K56Ac enhances the ability of these histone chaperones to assemble DNA into nucleosomes. Genetic analysis indicates that H3K56Ac acts in a nonredundant manner with the acetylation of the N-terminal residues of H3 and H4 in nucleosome assembly. These results reveal a mechanism by which H3K56Ac regulates replication-coupled nucleosome assembly mediated by CAF-1 and Rtt106. 相似文献
6.
7.
8.
DNA methylation controls histone H3 lysine 9 methylation and heterochromatin assembly in Arabidopsis 总被引:10,自引:0,他引:10 下载免费PDF全文
Soppe WJ Jasencakova Z Houben A Kakutani T Meister A Huang MS Jacobsen SE Schubert I Fransz PF 《The EMBO journal》2002,21(23):6549-6559
We propose a model for heterochromatin assembly that links DNA methylation with histone methylation and DNA replication. The hypomethylated Arabidopsis mutants ddm1 and met1 were used to investigate the relationship between DNA methylation and chromatin organization. Both mutants show a reduction of heterochromatin due to dispersion of pericentromeric low-copy sequences away from heterochromatic chromocenters. DDM1 and MET1 control heterochromatin assembly at chromocenters by their influence on DNA maintenance (CpG) methylation and subsequent methylation of histone H3 lysine 9. In addition, DDM1 is required for deacetylation of histone H4 lysine 16. Analysis of F(1) hybrids between wild-type and hypomethylated mutants revealed that DNA methylation is epigenetically inherited and represents the genomic imprint that is required to maintain pericentromeric heterochromatin. 相似文献
9.
Histone acetylation plays important roles for the regulation of many fundamental cellular processes. Saccharomyces cerevisiae Rtt109 is an important class of histone acetyltransferases (HATs), which promote genome stability by directly acetylating newly synthesized histone H3 lysine 56 (H3-K56) through an unknown mechanism. Here, we report the crystal structures of Rtt109 at 2.2 A and Rtt109/Acetyl-CoA binary complex at 1.9 A. The structure displays a vise-like topology with mixed three-layered alpha/beta module forming the central module, whose core region resembles the structure of GCN5 HAT domain and P300/CBP HAT domain. Using structural and biochemical analyses, we have discovered the catalytic active site and have identified Asp288 as the deprotonation residue and Lys290 as the autoacetylation residue. We have further proposed the unique H3-K56 anchoring pocket and the potential H3alphaN binding groove. Our work has provided structural insights to understand the acetylation mechanism of H3-K56 by Rtt109. 相似文献
10.
11.
《Epigenetics》2013,8(8):767-775
Chromatin is broadly compartmentalized in two defined states: euchromatin and heterochromatin. Generally, euchromatin is trimethylated on histone H3 lysine 4 (H3K4me3) while heterochromatin contains the H3K9me3 marks. The H3K9me3 modification is added by lysine methyltransferases (KMTs) such as SETDB1. Herein, we show that SETDB1 interacts with its substrate H3, but only in the absence of the euchromatic mark H3K4me3. In addition, we show that SETDB1 fails to methylate substrates containing the H3K4me3 mark. Likewise, the functionally related H3K9 KMTs G9A, GLP, and SUV39H1 also fail to bind and to methylate H3K4me3 substrates. Accordingly, we provide in vivo evidence that H3K9me2-enriched histones are devoid of H3K4me2/3 and that histones depleted of H3K4me2/3 have elevated H3K9me2/3. The correlation between the loss of interaction of these KMTs with H3K4me3 and concomitant methylation impairment leads to the postulate that, at least these four KMTs, require stable interaction with their respective substrates for optimal activity. Thus, novel substrates could be discovered via the identification of KMT interacting proteins. Indeed, we find that SETDB1 binds to and methylates a novel substrate, the inhibitor of growth protein ING2, while SUV39H1 binds to and methylates the heterochromatin protein HP1α. Thus, our observations suggest a mechanism of post-translational regulation of lysine methylation and propose a potential mechanism for the segregation of the biologically opposing marks, H3K4me3 and H3K9me3. Furthermore, the correlation between H3-KMTs interaction and substrate methylation highlights that the identification of novel KMT substrates may be facilitated by the identification of interaction partners. 相似文献
12.
13.
14.
15.
Ozdemir A Spicuglia S Lasonder E Vermeulen M Campsteijn C Stunnenberg HG Logie C 《The Journal of biological chemistry》2005,280(28):25949-25952
Post-translational histone modifications abound and regulate multiple nuclear processes. Most modifications are targeted to the amino-terminal domains of histones. Here we report the identification and characterization of acetylation of lysine 56 within the core domain of histone H3. In the crystal structure of the nucleosome, lysine 56 contacts DNA. Phenotypic analysis suggests that lysine 56 is critical for histone function and that it modulates formamide resistance, ultraviolet radiation sensitivity, and sensitivity to hydroxyurea. We show that the acetylated form of histone H3 lysine 56 (H3-K56) is present during interphase, metaphase, and S phase. Finally, reverse genetic analysis indicates that none of the known histone acetyltransferases is solely responsible for H3-K56 acetylation in Saccharomyces cerevisiae. 相似文献
16.
The composition of posttranslational modifications on newly synthesized histones must be altered upon their incorporation into chromatin. These changes are necessary to maintain the same gene expression state at individual chromosomal loci before and after DNA replication. We have examined how one modification that occurs on newly synthesized histone H3, acetylation of K56, influences gene expression at epigenetically regulated loci in Saccharomyces cerevisiae. H3 K56 is acetylated by Rtt109p before its incorporation into chromatin during S phase, and this modification is then removed by the NAD+-dependent deacetylases Hst3p and Hst4p during G2/M phase. We found silenced loci maintain H3 K56 in a hypoacetylated state, and the absence of this modification in rtt109 mutants was compatible with HM and telomeric silencing. In contrast, loss of HST3 and HST4 resulted in hyperacetylation of H3 K56 within silent loci and telomeric silencing defects, despite the continued presence of Sir2p throughout these loci. These silencing defects in hst3Δ hst4Δ mutants could be suppressed by deletion of RTT109. In contrast, overexpression of Sir2p could not restore silencing in hst3Δ hst4Δ mutants. Together, our findings argue that HST3 HST4 play critical roles in maintaining the hypoacetylated state of K56 on histone H3 within silent chromatin. 相似文献
17.
18.
Recently, histone H4 lysine 20 and H3 lysine 79 methylations were functionally linked to DNA damage checkpoint. The crosstalk between histone methylation and the S-M checkpoint, however, has remained unclear. Here, we show that H3 lysine 9 (K9) and lysine 36 (K36) methylations catalyzed by two histone methyltransferases Clr4 and Set2 are involved in hydroxyurea (HU)-induced replication checkpoint. The clr4-set2 double mutants besides histone H3-K9 and K36 double mutants exhibited HU-sensitivity, a defective HU-induced S-M checkpoint, and a significant reduction of HU-induced phosphorylation of Cdc2. Intriguingly, the clr4-set2 double mutations impaired the HU-induced accumulation of a mitotic inhibitor Mik1. Double mutants in Alp13 and Swi6, which can specifically bind to H3-K36 and K9 methylations, exhibited phenotypes similar to those of the clr4-set2 mutants. Together, these findings suggest that methylations of histone H3-K9 and K36 by Clr4 and Set2 are functionally linked to DNA replication checkpoint via accumulation of Mik1. 相似文献
19.